


Lecture Notes in Computer Science 3672
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Chris Hankin Igor Siveroni (Eds.)

Static Analysis

12th International Symposium, SAS 2005
London, UK, September 7-9, 2005
Proceedings

13



Volume Editors

Chris Hankin
Igor Siveroni
Imperial College London, Department of Computing
180 Queen’s Gate, London SW7 2BZ, UK
E-mail: {clh,siveroni}@doc.ic.ac.uk

Library of Congress Control Number: 2005931559

CR Subject Classification (1998): D.3.2-3, F.3.1-2, D.2.8, F.4.2, D.1

ISSN 0302-9743
ISBN-10 3-540-28584-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28584-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11547662 06/3142 5 4 3 2 1 0



Preface

Static analysis allows us to determine aspects of the dynamic behavior of pro-
grams and systems without actually executing them. Traditionally used in op-
timizing compilers, static analysis is now also used extensively in verification,
software certification and semantics-based manipulation. The research commu-
nity in static analysis covers a broad spectrum from foundational issues – new
semantic models of programming languages and systems – through to practical
tools. The series of Static Analysis Symposia has served as the primary venue for
presentation and discussion of theoretical, practical and application advances in
the area.

This volume contains the papers accepted for presentation at the 12th Inter-
national Static Analysis Symposium (SAS 2005) which was held 7–9 September
2005 at Imperial College London. A total of 66 papers were submitted; the
Program Committee held an online discussion which led to the selection of 22
papers for presentation. The selection was based on scientific quality, originality
and relevance to the scope of SAS. Every paper was reviewed by at least 3 PC
members or external referees. This volume also includes abstracts of talks given
by the two invited speakers: Samson Abramsky FRS (University of Oxford) and
Andrew Gordon (Microsoft Research, Cambridge).

On behalf of the Program Committee, the Program Chair would like to thank
all of the authors who submitted papers and all of the external referees for their
careful work in the reviewing process. The Program Chair would also particu-
larly like to thank Igor Siveroni who provided local support for the conference
management system and who helped in organizing the structure of this volume.
We would also like to express our gratitude to Herbert Wiklicky and Bridget
Gundry who masterminded the local arrangements.

SAS 2005 was held concurrently with LOPSTR 2005, the International Sym-
posium on Logic-Based Program Synthesis and Transformation. We would like
to thank Pat Hill (LOPSTR PC Chair) for her help and advice on the organi-
zational aspects.

London, June 2005 Chris Hankin
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Laurent Mauborgne École Normale Supérieure, France
Alan Mycroft University of Cambridge, UK
Andreas Podelski Max-Planck-Institut für Informatik, Germany
German Puebla Technical University of Madrid, Spain
Ganesan Ramalingam IBM, USA
Andrei Sabelfeld Chalmers University of Technology, Sweden
Mooly Sagiv Tel Aviv University, Israel
Harald Søndergaard University of Melbourne, Australia
Bernhard Steffen University of Dortmund, Germany

Steering Committee
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N. Dur D. Monniaux L. Vigano
S. Edelkamp M. Müller-Olm P. Wadler
C. Faggian B. Nicolescu H. Wiklicky
J. Feret K. Ostrovsky D. Xu
J. Field L. Pareto E. Yahav
A. Frisch M. Preda G. Yorsh
M. Gil P. Pietrzak S. Yong
A. Gotlieb H. Raffelt E. Zaffanella
T. Griffin F. Ranzato D. Zanardini
S. Gulwani A. Rensink R. Zunino
N. Halbwachs T. Rezk
R. Hansen N. Rinetzky



Table of Contents

Invited Talks

Algorithmic Game Semantics and Static Analysis
Samson Abramsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

From Typed Process Calculi to Source-Based Security
Andrew D. Gordon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Contributed Papers

Widening Operators for Weakly-Relational Numeric Abstractions
Roberto Bagnara, Patricia M. Hill, Elena Mazzi, Enea Zaffanella . . . . 3

Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra
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Algorithmic Game Semantics and Static Analysis

Samson Abramsky

Oxford University Computing Laboratory

Game Semantics has been developed over the past 12 years or so as a dist inc-
tive approach to the semantics of programming language. It is composit ional
in the tradition of denotational semantics, and has led to the cons truction of
fully abstract models for programming languages incorporating a wide variety of
features which have proved resistant to more tradition al approaches, including
(combinations of): higher-order procedures, loca lly scoped variables and refer-
ences, non-local control operators, non-det erminism, probability, concurrency
and more. At the same time, game seman tics has a concrete aspect: programs
are interpreted as strategies for ce rtain two-player games, and these strategies
can be represented by automa ta. This algorithmic aspect of game semantics has
been developed over the past few years, by Dan Ghica, Luke Ong, Andrzej Mu-
rawski and the present author. This has led to a novel approach to compositional
model-checking and static analysis. We will survey some of the work which has
been done , and discuss some directions for future research in this area.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



From Typed Process Calculi

to Source-Based Security

Andrew D. Gordon

Microsoft Research

The source-based security problem is to build tools to check security properties
of the actual source code of a system, as opposed to some abstract model. Static
analysis of C for buffer overruns is one approach. Another is to introduce security
types as a programming language feature so that the typechecker proves security
properties; for example, languages like Jif and Flow Caml can check noninter-
ference properties of application-level code. Independently, security types have
arisen in the setting of process calculi, for checking secrecy and authentication
properties of abstract models of low-level cryptographic protocols, for instance.

My talk argues that recent developments in security types for process calculi
can lead to better source-based security by typing. One development [2] removes
a significant limitation of previous type systems and checks security in spite
of the partial compromise of a dynamically-growing population of principals.
Another [1] generalizes a type system for authentication to check authorization
properties, by augmenting the typechecker with Datalog inference relative to a
declarative authorization policy. Both developments rely on the idea of enriching
process calculi with inert processes to represent both logical facts arising at
runtime and also expected security invariants.

References

1. C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization poli-
cies. In European Symposium on Programming (ESOP’05), volume 3444 of LNCS,
pages 141–156. Springer, 2005.

2. A. D. Gordon and A. Jeffrey. Secrecy despite compromise: Types, cryptography, and
the pi-calculus. In CONCUR 2005—Concurrency Theory, LNCS. Springer, 2005.
To appear.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, p. 2, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Widening Operators for Weakly-Relational

Numeric Abstractions�

Roberto Bagnara1, Patricia M. Hill2, Elena Mazzi1, and Enea Zaffanella1

1 Department of Mathematics, University of Parma, Italy
{bagnara, mazzi, zaffanella}@cs.unipr.it

2 School of Computing, University of Leeds, UK
hill@comp.leeds.ac.uk

Abstract. We discuss the construction of proper widening operators
on several weakly-relational numeric abstractions. Our proposal differs
from previous ones in that we actually consider the semantic abstract
domains, whose elements are geometric shapes, instead of the (more con-
crete) syntactic abstract domains of constraint networks and matrices.
Since the closure by entailment operator preserves geometric shapes, but
not their syntactic expressions, our widenings are immune from the di-
vergence issues that could be faced by the previous approaches when
interleaving the applications of widening and closure. The new widen-
ings, which are variations of the standard widening for convex polyhedra
defined by Cousot and Halbwachs, can be made as precise as the pre-
vious proposals working on the syntactic domains. The implementation
of each new widening relies on the availability of an effective reduction
procedure for the considered constraint description: we provide such an
algorithm for the domain of octagonal shapes.

1 Introduction

Numerical properties are of great interest in the broad area of formal methods for
their complete generality and since they often play a crucial role in the definition
of static analyses and program verification techniques. In the field of abstract
interpretation, classes of numerical properties are captured by numerical abstract
domains. These have been and are widely used, either as the main abstraction
for the application at hand, or as powerful ingredients to improve the precision
of other abstract domains.

Among the wide spectrum of numerical abstractions proposed in the litera-
ture, the most famous ones are probably the (non-relational) abstract domain of
intervals [16] and the (relational) abstract domain of convex polyhedra [19]. As
far as the efficiency/precision trade-off is concerned, these domains occupy the
opposite extremes of the spectrum: on the one hand, the operations on convex
� This work has been partly supported by MURST projects “Constraint Based Ver-

ification of Reactive Systems” and “AIDA — Abstract Interpretation: Design and
Applications,” and by a Royal Society (UK) International Joint Project (ESEP)
award.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 3–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



4 R. Bagnara et al.

polyhedra achieve a significant level of precision, which is however countered
by a worst-case exponential time complexity, often leading to scalability prob-
lems; on the other hand, the great efficiency of the corresponding operations on
intervals is made unappealing by the fact that the obtained precision is often un-
satisfactory. This well-known dichotomy (which does not impede that, for some
applications, convex polyhedra or intervals are the right choices) has motivated
recent studies on several abstract domains that lie somehow between these two
extremes, and can therefore be called weakly-relational abstract domains. Exam-
ples include domains based on constraint networks [3,4,5], the abstract domain
of difference-bound matrices [25,32], the octagon abstract domain [26], the ‘two
variables per inequality’ abstract domain [33], the octahedron abstract domain
[15], and the abstract domain of template constraint matrices [31]. Moreover,
similar proposals that are not abstractions of the domain of convex polyhedra
have been put forward, including the abstract domain of bounded quotients [3]
and the zone congruence abstract domain [27].

In this paper, we address the issue of the provision of proper widening op-
erators for these domains. For the abstract domain of convex polyhedra, all the
widenings that have been proposed are variations of, and/or improvements to,
what is commonly referred to as the standard widening [19,22]. This is based on
the general widening principle “drop the unstable components” applied to con-
straints. Not surprisingly, most proposals for widening operators for the weakly
relational domains are based on the same principle and analogous to the standard
widening. For instance, for the domain of difference bound matrices mentioned
above, an operator meant to match the standard widening is given in [32]. Un-
fortunately, as pointed out in [25,26], this operator is not a widening, since it
has no convergence guarantee. The reason is that closure by entailment, which
is systematically performed so as to provide a canonical form for the elements
and to improve the precision of several domain operations, has a negative inter-
action with the extrapolation operator of [32] that compromises the convergence
guarantee. Intuitively, what can happen is that, while the extrapolation operator
discards unstable constraints, the closure operation reinserts them (because they
were redundant): failure to drop such unstable constraints can (and, in practice,
quite often does) result in infinite upward iteration sequences. For this reason, it
is proposed in [25,26] to apply the same operator given in [32] to the “syntactic”
version of the same abstract domain, that is, where closure is only very carefully
applied during the fixpoint computations.

We have taken a different approach and resolve the apparent conflict by
considering a “semantic” abstract domain whose elements are the geometric
shapes themselves. Since closure by entailment preserves the geometric shapes
(even though this does not preserve their syntactic expressions), the approach
is immune from the divergence problem described above. On the other hand, in
order to use the standard widening as the basis of the proposed widening, it is
important that we can compute reduced representations of the domain elements
that encode non-redundant systems of constraints. Thus the implementations of
any new widenings based on the semantic approach will need effective reduction
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procedures for the considered constraint description: here we provide such an
algorithm for the domain of octagonal shapes. As a by-product of our work
on verifying the correctness of this reduction algorithm, we noticed that the
algorithm for computing the strong closure of octagonal graphs as described
in [25] could be simplified with a consequential improvement in its efficiency.
This revised strong closure algorithm is also described here.

The paper is structured as follows: Section 2 recalls the required concepts
and notations; Section 3 introduces the domain of bounded difference graphs; a
domain of bounded difference shapes is presented in Section 4, where an alter-
native solution to the divergence problem is proposed; the generalization of the
above results to the case of octagons is the subject of Section 5, where we define
a new strong reduction procedure and an improved strong closure procedure for
octagonal graphs, as well as a semantic widening operator for octagonal shapes.
Section 6 concludes with a discussion of the results achieved. The proofs of all
the stated results can be found in [6].

2 Preliminaries

The reader is assumed to be familiar with the fundamental concepts of lattice
theory [13] and abstract interpretation theory [17,18]. We refer the reader to the
classical works on the numeric domains of intervals [16] and convex polyhedra [19]
for the specification of the corresponding widening operators.

Let Q∞ := Q ∪ {+∞} be totally ordered by the extension of ‘<’ such that
d < +∞ for each d ∈ Q. Let N be a finite set of nodes. A weighted directed graph
(graph, for short) G in N is a pair (N , w), where w : N ×N → Q∞ is the weight
function for G. A pair (ni, nj) ∈ N ×N is an arc of G if w(ni, nj) < +∞; the
arc is proper if ni �= nj .

A path π = n0 · · ·np in a graph G = (N , w) is a non-empty and finite
sequence of nodes such that (ni−1, ni) is an arc of G, for all i = 1, . . . , p; each
arc (ni−1, ni) where i = 1, . . . , p is said to be in the path π. The path π is
proper if all the arcs in it are proper. The path π is a proper cycle if it is a
proper path and n0 = np (so that p ≥ 2). The length of the path π is the
number p of occurrences of arcs in π and denoted by ‖π‖; the weight of the path
π is

∑p
i=1 w(ni−1, ni) and denoted by w(π). The path π is a zero-cycle if it is

a proper cycle with 0 weight. A graph is consistent if it has no negative weight
cycles; it is zero-cycle free if all its proper cycles have strictly positive weights.

The set G of consistent graphs in N is partially ordered by the relation ‘�’
defined, for all G1 = (N , w1) and G2 = (N , w2), by

G1 �G2 ⇐⇒ ∀i, j ∈ N : w1(i, j) ≤ w2(i, j).

When augmented with a bottom element ⊥ representing inconsistency, this par-
tially ordered set becomes a (non-complete) lattice G⊥ =

〈
G ∪ {⊥},�,�,�

〉
,

where ‘�’ and ‘�’ denote the (finitary) greatest lower bound and least upper
bound operators, respectively.
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Definition 1. (Closed graph.) A consistent graph G = (N , w) is closed if the
following properties hold:

∀i ∈ N : w(i, i) = 0; (1)
∀i, j, k ∈ N : w(i, j) ≤ w(i, k) + w(k, j). (2)

The (shortest-path) closure of a consistent graph G in N is

closure(G) :=
⊔{

Gc ∈ G
∣∣ Gc �G and Gc is closed

}
.

When trivially extended so as to behave as the identity function on the bottom
element ⊥, shortest-path closure is a kernel operator (monotonic, idempotent
and reductive) on the lattice G⊥.

3 Systems of Bounded Differences

The typical way to simplify the domain of convex polyhedra is by restricting
attention to particular subclasses of linear inequalities. One possibility, which has
a long tradition in computer science [12], is to only consider potential constraints,
also known as bounded differences : these are restricted to take the form vi−vj ≤ d
or ±vi ≤ d. Systems of bounded differences have been used by the artificial
intelligence community as a way to reason about temporal quantities [2,20], as
well as by the model checking community as an efficient yet precise way to model
and propagate timing requirements during the verification of various kinds of
concurrent systems [21,24]. In the abstract interpretation field, the idea of using
an abstract domain of bounded differences was put forward in [3].

A finite system C of bounded differences on variables V = {v0, . . . , vn−1} can
be represented by a weighted directed graph G = (N0, w) where N0 = {0} ∪ V ,
0 /∈ V is the special variable, and the weight function w is defined, for each
vi, vj ∈ N0, by

w(vi, vj) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

{
d ∈ Q

∣∣ (vi − vj ≤ d) ∈ C
}
, if vi �= 0 and vj �= 0;

min
{
d ∈ Q

∣∣ (vi ≤ d) ∈ C
}
, if vi �= 0 and vj = 0;

min
{
d ∈ Q

∣∣ (−vj ≤ d) ∈ C
}
, if vi = 0 and vj �= 0;

0, if vi = vj = 0.

Notice that we assume that min ∅ = +∞; moreover, unary constraints are en-
coded by means of the special variable, which is meant to always have value 0.
A possible representation of (the weight function of) the graph G is by means of
a matrix-like data structure called Difference-Bound Matrix (DBM) [12]. How-
ever, this representation provides no conceptual advantage over the isomorphic
graph (or constraint network [20]) representation. For this reason we will consis-
tently adopt the terminology and notation introduced in Section 2 for weighted
directed graphs. In particular, a graph encoding a consistent system of bounded
differences will be called a Bounded Difference Graph (BDG).
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The first fully developed application of bounded differences in the field of
abstract interpretation can be found in [32], where an abstract domain of closed
BDGs is defined. In this case, the shortest-path closure requirement was meant
as a simple and well understood way to obtain a canonical form for the do-
main elements by abstracting away from the syntactic details; since, basically,
it corresponds to the closure by entailment of the encoded system of bounded
differences. In [32] the specification of all the required abstract semantics oper-
ators is provided, including an operator that is meant to match the widening
operators defined on more classical numeric domains. This operator can be in-
terpreted either as a generalization for closed BDGs of the widening operator
defined on the abstract domain of intervals [16], or as a restriction on the do-
main of closed BDGs of the standard widening defined on the abstract domain
of convex polyhedra [19,22]: its implementation is based on the following upper
bound operator on the set of consistent graph representations.

Definition 2. (Widening graphs.) Let G1 = (N , w1) and G2 = (N , w2) be
consistent graphs. Then G1∇G2 := (N , w), where the weight function w is de-
fined, for each i, j ∈ N , by

w(i, j) :=

{
w1(i, j), if w1(i, j) ≥ w2(i, j);
+∞, otherwise.

Unfortunately, as pointed out in [25,26], when used in conjunction with shortest-
path closure, this extrapolation operator does not provide a convergence guar-
antee for fixpoint computations, hence it is not a widening. The reason is that,
whereas the closure operation adds redundant constraints to the input BDG, a
key requirement in the specification of the standard widening is that the first
argument polyhedron must be described by a non-redundant system of con-
straints.1 Thus we have a “conflict of interest” between the use of a convenient
canonical form for the abstract domain —a form that also allows for increased
precision of several domain operations— and the requirements of the widening.

The abstract domain of BDGs has been reconsidered in [25]. Differently from
[32], in [25] BDGs are not required to be closed. In this more concrete, syntactic
domain, the shortest-path closure operator maps each domain element into the
smallest BDG encoding the same geometric shape. Closure is typically used as a
preprocessing step before the application of most, though not all, of the abstract
semantic operators, allowing for improved accuracy in the results of the abstract
computation. The same widening operator proposed in [32] is also used in [25];
however, it is observed that this widening “could have intriguing interactions”
with shortest-path closure, therefore identifying the divergence issue faced in [32].
This observation led the author of [25] to the adoption of the syntactic domain
of BDGs, where closure is not enforced.
1 This requirement was sometimes neglected in recent papers describing the standard

widening on convex polyhedra; it was recently recalled and exemplified in [7,8].
Note that a similar requirement is implicitly present even in the specification of the
widening on intervals.



8 R. Bagnara et al.

4 Bounded Difference Shapes

While the analysis of the divergence problem is absolutely correct, the solution
identified in [25] is sub-optimal since, as is usually the case, resorting to a syn-
tactic domain (such as the one of BDGs) has a number of negative consequences,
some of which will be recalled in Section 6.

To identify a simpler, more natural solution, we first have to acknowledge
that an element of our abstract domain should be a geometric shape, rather
than (any) one of its graph representations. To stress this concept, such an el-
ement will be called a Bounded Difference Shape (BDS). A BDS corresponds
to the equivalence class of all the BDGs representing it. The implementation of
the abstract domain can freely choose between these possible representations,
switching at will from one to the other, as long as the semantic operators are im-
plemented as expected. Notice that, in such a context, the shortest-path closure
operator is just a transparent implementation detail: on the abstract domain of
BDSs it corresponds to the identity function.

The other step towards the solution of the divergence problem is the simple
observation that a BDS is a convex polyhedron and the set of all BDSs is closed
under the application of the standard widening on convex polyhedra. Thus, no
divergence problem can be incurred when applying the standard widening to an
increasing sequence of BDSs. As mentioned in Section 3, a crucial requirement in
the specification of the standard widening is that the first argument polyhedron is
described by a non-redundant system of constraints [7,8]. Thus it is not surprising
that using closed BDGs has problems since it is very likely that they will encode
redundant constraints. By contrast, we propose the use of a maximal BDG in
the equivalence class of BDGs representing the same geometric shape; since such
a graph encodes no redundant constraints at all.

Definition 3. (Reduced graph.) A consistent graph G1 is reduced if, for
each consistent graph G2 �= G1 such that G1 � G2, we have closure(G1) �=
closure(G2). A reduction for the consistent graph G is any reduced graph Gr
such that closure(G) = closure(Gr).

Hence, a graph is reduced if it is maximal in the subset of graphs having the
same shortest-path closure. In order to provide a correct and reasonably efficient
implementation of the standard widening on the domain of BDSs, all we need
is a reduction procedure mapping a BDG representation into (any) one of the
equivalent reduced graphs. Such an algorithm was defined in [24] and called
shortest-path reduction. Basically, it is an extension of the transitive reduction
algorithm of [1] to the case of weighted directed graphs. Note that, since each
equivalence class may have many maximal elements, shortest-path reduction is
not a properly defined operator on the domain of BDGs. However, the shortest-
path reduction algorithm of [24] provides a canonical form as soon as we fix a
total order for the nodes in the graph.

In summary, the solution to the divergence problem for BDSs is to apply
the operator specified in Definition 2 to a reduced BDG representation of the
first argument of the widening. From the point of view of the user, this will
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be a transparent implementation detail: on the domain of BDSs, shortest-path
reduction is the identity function, as was the case for shortest-path closure.

4.1 On the Precision of the Standard Widening

The standard widening on BDSs could result, if used with no precautions, in
poorer precision with respect to its counterpart defined on the syntactic do-
main of BDGs. For increased precision, the specification of [25] prescribes two
conditions that the abstract iteration sequence must satisfy:

1. the second argument of the widening should be represented by a closed BDG
(note that, in this case, no divergence problem can arise);

2. the first BDG of the abstract iteration sequence G0 � G1 � . . . � Gi � . . .
should be closed too.

The effects of both improvements can be obtained also with the semantic
domain of BDSs. As for the first one, this can be applied as is, leading to an
implementation where the two arguments of the widening are represented by a
reduced BDG and a closed BDG, respectively. The result of such a widening op-
erator will depend on the specific reduced form computed for the first argument.
The second precision improvement can be achieved by applying the well-known
‘widening up to’ technique defined in [23] or its variation called ‘staged widening
with thresholds’ [14,29]: in practice, it is sufficient to add to the set of ‘up to’
thresholds all the constraints of the shortest-path closure of the first BDG G0.
Further precision improvements can be obtained by applying any delay strategy
and/or the framework defined in [7,8].

5 Octagonal Graphs and Shapes

From a theoretical point of view, the observations made in the previous section
are immediately applicable to any other weakly-relational numeric domain whose
elements are convex polyhedra and is closed with respect to the application of the
standard widening, therefore including the domains proposed in [15,26,31,33].
From a practical perspective, the success of such a construction depends on
the availability of a reasonably efficient reduction procedure for the considered
subclass of constraints, because the minimization algorithm for arbitrary linear
inequality constraints is not efficient enough. In this section we provide such a
reduction procedure for the octagon abstract domain [26].

The octagon abstract domain allows for the manipulation of octagonal con-
straints of the form avi + bvj ≤ c, where a, b ∈ {−1, 0,+1} (the same class of
constraints was considered in [11], where octagons were called simple sections).
Bounded differences can then be used to express octagonal constraints by split-
ting each variable vi ∈ V into two forms: a positive form v+

i , interpreted as +vi;
and a negative form v−i , interpreted as −vi. Thus, an octagonal constraint such as
vi +vj ≤ d can be translated into the bounded difference constraint v+

i −v−j ≤ d;
alternatively, the same constraint can be translated into v+

j − v−i ≤ d. Note that
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unary (octagonal) constraints such as vi ≤ d and −vj ≤ d can be encoded as
v+

i − v−i ≤ 2d and v−j − v+
j ≤ 2d, respectively, so that the special variable 0 is

no longer needed.
In the following we assume that N± = {0, . . . , 2n−1} is a fixed and finite set

of nodes where, for all i = 0, . . . , n− 1, the node 2i represents the positive form
v+

i and 2i+ 1 the negative form v−i of the variable vi. Moreover, for all i ∈ N±,
ı denotes i+1 if i is even, and i−1 if i is odd. Thus, for all i ∈ N±, we also have
ı ∈ N± and ı = i. Therefore, any finite system of octagonal constraints on the
n variables V = {v0, . . . , vn−1} can be represented by a weighted directed graph
on the 2n nodes N±. Note that, for any i, j ∈ N±, as arcs (i, j) and (j, ı) denote
equivalent expressions, the pair is said to be coherent. We restrict attention to
consistent systems of constraints and hence to consistent graphs where coherent
pairs of arcs have the same weight.

Definition 4. (Octagonal graph.) An octagonal graph in N± is any consis-
tent graph G = (N±, w) satisfying the coherence assumption:

∀i, j ∈ N± : w(i, j) = w(j, ı). (3)

Thus any octagonal graph on the 2n nodes N± encodes a consistent system of
octagonal constraints on n variables. The set O of all octagonal graphs, with
the usual addition of the bottom element representing the empty octagon, is a
sub-lattice of G⊥, sharing the same least upper bound and greatest lower bound
operators. Note that, at the implementation level, coherence can be automati-
cally and efficiently enforced by letting arc (i, j) and arc (j, ı) share the same
representation.

The octagon abstract domain developed in [26] is thus a syntactic domain
having octagonal graphs as elements. When dealing with octagonal graphs, one
has to remember the relation linking the positive and negative forms of each vari-
able: in particular, besides transitivity, a proper closure by entailment procedure
should also consider the following inference rule:

i− ı ≤ d1 j− j ≤ d2

2(i− j) ≤ d1 + d2
(4)

Thus, the standard shortest-path closure algorithm is not enough to obtain a
canonical form for octagonal graphs: to this end, a modified closure procedure
is defined in [26], yielding strongly closed octagonal graphs.

Definition 5. (Strongly closed graph.) An octagonal graph G = (N±, w) is
strongly closed if it is closed and the following property holds:

∀i, j ∈ N± : 2w(i, j) ≤ w(i, ı) + w(j, j). (5)

The strong closure of an octagonal graph G in N± is

Closure(G) :=
⊔{

GC ∈ O
∣∣ GC �G and GC is strongly closed

}
.
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Similarly to shortest-path closure, strong closure is a kernel operator on the
lattice of octagonal graphs.

By repeating the reasoning of the previous section, we define the semantic
abstract domain of octagonal shapes, whose elements are equivalence classes of
octagonal graphs representing the same geometric shape. Hence, strong closure
maps an octagonal graph representation of a non-empty octagonal shape into the
minimum element of the corresponding equivalence class. The dual procedure,
mapping the octagonal graph into (any) one of the maximal elements in its
equivalence class, is called strong reduction.

Definition 6. (Strongly reduced graph.) An octagonal graph G1 is strongly
reduced if, for each octagonal graph G2 �= G1 such that G1 � G2, we have
Closure(G1) �= Closure(G2). A strong reduction for the octagonal graph G is
any strongly reduced octagonal graph GR such that Closure(G) = Closure(GR).

Note that, in the above definition, we only compare G1 with other octagonal
graphs. Thus, we explicitly disregard those trivial redundancies that are due
to the coherence assumption. This is not a real problem because, as discussed
before, any reasonable implementation will automatically and efficiently filter
away these kinds of redundancies.

5.1 A Strong Reduction Procedure for Octagonal Graphs

In this section we generalize the shortest-path reduction algorithm of [24] so as to
obtain a strong reduction procedure for octagonal graphs. Clearly, the algorithm
of [24] cannot be used without modifications, since it takes no account of the
redundancies caused by the new constraint inference rule (4). Nonetheless, the
high-level structure of the strong reduction procedure is the same as that defined
in [24] for shortest-path reduction:

1. Compute the closure by entailment of the constraint graph;
2. Partition the nodes into equivalence classes based on equality constraints;
3. Decompose the graph so as to separate those arcs that link different equiv-

alence classes (encoding only inequalities) from the partition information
(encoding the equivalence classes themselves, i.e., all the equalities);

4. Reduce the subgraph that gives constraints on different equivalence classes;
5. Reduce the partition information;
6. Merge the results of steps 4 and 5 to obtain the reduced constraint graph.

We now describe each of the above steps, formally stating the correctness of the
overall procedure.

Step 1 of the algorithm can be performed by applying the strong closure
procedure defined in [26].

Step 2 is also easily implemented by observing that, in a strongly closed
octagonal graph, equality constraints correspond to proper zero-cycles having
length two.
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Definition 7. (Zero-equivalence.) Let G = (N±, w) be a strongly closed oc-
tagonal graph. The nodes i, j ∈ N± are zero-equivalent in G, denoted i ≡G j, if
and only if w(i, j) = −w(j, i).

While step 6 carries over from BDGs to octagonal graphs, the formal definition
of steps 3–5 of the reduction algorithm is more difficult for octagonal graphs
than it was for BDGs, as it requires some understanding of the structure of the
zero-equivalence classes.

As a first observation, note that i ≡G j if and only if ı ≡G j. Therefore, if
E ⊆ N± is a zero-equivalence class for the strongly closed octagonal graph G,
then E := { ı ∈ N± | i ∈ E } is also a zero-equivalence class for G. We say that E
is non-singular if E ∩E = ∅, and singular if E = E ; there is at most one singular
zero-equivalence class in G. We associate to each zero-equivalence class E ⊆ N±

a leader �E := min E ; the class having the leader in positive (resp., negative) form
will be said to be a positive (resp., negative) zero-equivalence class. Thus, the
singular zero-equivalence class, if present, is always positive and, for non-singular
zero-equivalence classes E and E , we have �E = �E .

We are now ready to provide a formal specification for step 3 of the strong
reduction algorithm. As was the case in [24], the first subgraph resulting from the
decomposition, relating nodes in different zero-equivalence classes, is obtained
by only connecting the leaders. However, we do not connect the leader of the
singular zero-equivalence class to the other leaders. The second subgraph only
encodes those constraints relating nodes in the same zero-equivalence class.

Definition 8. (Non-singular leaders and zero-equivalence subgraphs.)
Let G = (N±, w) be a strongly closed octagonal graph and L ⊆ N± the set
of leaders of the non-singular zero-equivalence classes for G. The non-singular
leaders’ subgraph of G is the graph L = (N±, wL), where the weight function
wL is defined, for each i, j ∈ N±, by

wL(i, j) :=

{
w(i, j), if i = j or {i, j} ⊆ L;
+∞, otherwise.

The zero-equivalence subgraph of G is the graph E = (N±, wE), where the
weight function wE is defined, for each i, j ∈ N±, by

wE(i, j) :=

{
w(i, j), if i ≡G j;
+∞, otherwise.

Step 4 of the strong reduction algorithm is implemented by checking, for each
proper arc in the non-singular leaders’ subgraph, whether it can be obtained
from the other arcs by a single application of the constraint inference rules. Once
again, note that we disregard redundancies caused by the coherence assumption.

Definition 9. (Strongly atomic arc and subgraph.) Let G = (N±, w) be
an octagonal graph. An arc (i, j) of G is atomic if it is proper and, for all
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k ∈ N± \ {i, j}, w(i, j) < w(i, k) + w(k, j). The arc (i, j) is strongly atomic if
it is atomic and either i = j or 2w(i, j) < w(i, ı) + w(j, j).

The strongly atomic subgraph of G is the graph A = (N±, wA) where the
weight function wA is defined, for all i, j ∈ N±, by

wA(i, j) =

{
w(i, j), if (i, j) is strongly atomic in G;
+∞, otherwise.

The implementation of step 5 of the algorithm, i.e., the strong reduction of the
zero-equivalence subgraph, is performed by reducing each zero-equivalence class
in isolation. Once again, we exploit the total ordering defined on N±.

E z0 z1 . . . zm

E z0 z1 . . . zm

Fig. 1. Strong reduction for non-singular zero-equivalence classes

The strong reduction for a positive non-singular zero-equivalence class E fol-
lows that of [24]: it creates a single zero-cycle connecting all nodes in E following
their total ordering, where the weights of the component arcs are as in the
strong closure of the graph. By the coherence assumption, the nodes in the cor-
responding negative zero-equivalence class E are automatically connected in the
opposite order. Figure 1 shows the arcs in the strong reduction of both E and
E , where E = {z0, . . . , zm} is the positive class and where z0 < · · · < zm. The
strong reduction for a singular zero-equivalence class E is similar except that
there is now a single zero-cycle connecting all the positive and negative nodes
in E . Figure 2 shows the strong reduction for the singular zero-equivalence class
E = {z0, z0, . . . , zm, zm}, where z0 < z0 < · · · < zm < zm. In both Figures 1
and 2, the dashed arcs are those that can be obtained from the non-dashed ones
by application of the coherence assumption.

The following definition formalizes the above observations.

Definition 10. (Zero-equivalence reduction.) Let G=(N±, w) be a strongly
closed octagonal graph and let w′ be the weight function defined, for all i, j ∈ N±,
as follows: if i, j ∈ E for some positive zero-equivalence class E of G and

– if E = {z0, . . . , zm} is non-singular, assuming z0 < · · · < zm,

w′(i, j) :=

⎧⎪⎨⎪⎩
w(i, j), if i = zh−1, j = zh, for some h = 1 . . . , m;
w(i, j), if i = zm, j = z0 and m > 0;
+∞, otherwise;
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E

z0 z1 . . . zm

z0 z1 . . . zm

Fig. 2. Strong reduction for the singular zero-equivalence class

– if E = {z0, z0, . . . , zm, zm} is singular, assuming z0 < z0 < · · · < zm < zm,

w′(i, j) :=

⎧⎪⎨⎪⎩
w(i, j), if i = zh−1, j = zh, for some h = 1 . . . , m;
w(i, j), if i = z0, j = z0 or i = zm, j = zm;
+∞, otherwise;

and w′(i, j) := +∞, otherwise. Then, the zero-equivalence reduction for G is
the octagonal graph Z = (N±, wZ), where, for each i, j ∈ N±,

wZ(i, j) := min
{
w′(i, j), w′(j, ı)

}
.

The final step 6 of the strong reduction algorithm is implemented by computing
the greatest lower bound A � Z, where A is the strongly atomic subgraph of L
and Z is the zero-equivalent reduction of E, as obtained at steps 4 and 5 of the
algorithm.

Theorem 1. Given an octagonal graph G, the strong reduction algorithm com-
putes a strong reduction for G.

If n is the cardinality of the original set V of variables, then steps 1 and 4
of the algorithm have worst-case complexity in O(n3), while all the others steps
are in O(n2). Thus, the overall procedure has cubic complexity. As was the case
for the reduction procedure of [24], once the ordering of variables is fixed, the
strong reduction algorithm returns a canonical form for octagonal graphs.

5.2 An Improved Strong Closure Algorithm

The formal proof of Theorem 1 led to a new result regarding the strong closure
operator for octagonal graphs. The strong closure algorithm formalized in [26,30]
performs n local propagation steps: in each step, a rather involved variant of the
constraint propagation in the Floyd-Warshall algorithm is followed by another
constraint propagation corresponding to the new inference rule (4). A finely
tuned implementation of this algorithm [28] performs 20n3 + 24n2 coefficient
operations (additions and comparisons), where n is the dimension of the vector
space. It turns out that the interleaving of the two kinds of propagation steps
is not needed: the same final result can be obtained by the application of the
classical Floyd-Warshall closure algorithm followed by a single local propagation
step using the constraint inference rule (4).
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Theorem 2. Let Gc = (N±, wc) be a closed octagonal graph. Consider the
graph GS = (N±, wS), where wS is defined, for each i, j ∈ N±, by

wS(i, j) := min
{
wc(i, j), wc(i, ı)/2 + wc(j, j)/2

}
.

Then GS = Closure(Gc).

By coupling the above optimization with the classical Floyd-Warshall algo-
rithm, we obtain a much simpler implementation performing 16n3 + 4n2 + 4n
coefficient operations: the saving is always above 20% and it is above 30% for
n ≤ 8.

5.3 A Semantic Widening for Octagonal Shapes

A correct implementation of the standard widening on octagonal shapes is ob-
tained by computing any strong reduction of the octagonal graph representing
the first argument. As in the case of BDSs, for maximum precision the strongly
closed representation for the second argument should be computed. Even better,
by adopting the following minor variant, we obtain a “truly semantic” widening
operator for the domain of octagonal shapes.

Definition 11. (Widening octagonal shapes.) Let S1, S2 ∈ ℘(Rn), where
∅ �= S1 ⊆ S2, be two octagonal shapes represented by the strongly reduced octag-
onal graph G1 and the strongly closed octagonal graph G2, respectively. Let also
S ∈ ℘(Rn) be the octagonal shape represented by the octagonal graph G1 ∇ G2.
Let dim(T ) denote the affine dimension of shape T . Then we define

S1 ∇ S2 :=

{
S2, if dim(S1) < dim(S2);
S, otherwise.

By refraining from applying the graph-based widening when the affine dimension
of the geometric shapes is increasing, the operator becomes independent from
the specific strongly reduced form computed, i.e., from the total ordering defined
on the nodes of the graphs. Also note that the test dim(S1) < dim(S2) can be
efficiently decided by checking whether the nodes of the two octagonal graphs
are partitioned into different collections of zero-equivalence classes.

Theorem 3. The operator ‘∇’ of Definition 11 is a proper widening on the
domain of octagonal shapes. Let ‘∇s’ be the standard widening on the domain of
convex polyhedra, as defined in [22]. Then, for all octagonal shapes S1, S2 ∈ Rn

such that ∅ �= S1 ⊆ S2, we have S1 ∇ S2 ⊆ S1 ∇s S2.

The definition of a semantic widening for the domain of BDSs is obtained by
simply replacing, in Definition 11, the strongly reduced and strongly closed oc-
tagonal graph representations with the reduced and closed BDG representations,
respectively. Then a result similar to Theorem 3 holds for BDSs.
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6 Conclusion

By considering the semantic abstract domains of geometric shapes, instead of
their syntactic representations in terms of constraint networks, we have shown
how proper widening operators can be derived for several weakly-relational nu-
meric abstractions. For what concerns the efficient representation of octagonal
shapes by means of octagonal graphs, we have specified and proved correct a
strong reduction procedure, as well as a more efficient strong closure procedure.

It is worth stressing that both the syntactic and the semantic abstract do-
mains are well defined and may be safely adopted for the implementation of a
static analysis application. Nonetheless, it can be argued that using a semantic
abstract domain provides several advantages, as already pointed out in [25, Sec-
tion 5] where the domain of BDGs is compared to the domain of closed BDGs.2

For instance, it is noted that the domain of closed BDGs allows for the specifica-
tion of a nicer, injective meaning function; also, the least upper bound operator
on BDGs is not the most precise approximation of the union of two geometric
shapes. In summary, the discussion in [25, Section 5] makes clear that the solu-
tion to the divergence problem for the abstract iteration sequence was the one
and only motivation for adopting a syntactic domain.

One disadvantage of syntactic abstract domains concerns the user-level in-
terfaces of the corresponding software implementations. Namely, the user of a
syntactic abstract domain (e.g., the developer of a specific static analysis ap-
plication using this domain) has to be aware of many details that, in principle,
should be hidden by the implementation. As an example, consider the shortest-
path closure and reduction procedures for BDGs, which the user might rightfully
see as semantics-preserving operations. As a matter of fact, for the syntactic do-
main of BDGs, these are not semantics-preserving: their application affects both
the precision and the convergence of the abstract iteration. In such a situation,
the documentation of the abstract domain software needs to include several
warnings about the correct usage of these operators, so as to avoid possible
pitfalls. In contrast, when adopting the semantic domain of BDSs, both the clo-
sure and reduction operators may be excluded from the public interface while
the implementation can apply them where and when needed or appropriate.
Such an approach is systematically pursued in the implementation of the Parma
Polyhedra Library [10] (PPL, http://www.cs.unipr.it/ppl), free software dis-
tributed under the GNU General Public License; future releases of the library
will support computations on the domains of BDSs and octagonal shapes.

Another potential drawback of the adoption of a syntactic abstract domain
can be found in the application of domain refinement operators. As an example,
consider the application of the finite powerset operator [9] to the domains of
BDGs and BDSs, so as to obtain two abstract domains that are able to repre-
sent finite disjunctions of the corresponding abstract elements. In both cases, by
providing the widenings on BDGs and BDSs with appropriate finite convergence
certificates [9], it will be possible to lift them to corresponding widenings on the

2 Similar observations, tailored to the case of octagons, are also in [26, Section VII].
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powerset domains. However, when upgrading the syntactic domain, avoidable
redundancies will be incurred, since different disjuncts inside a domain element
may represent the same geometric shape; furthermore, these “duplicates” can-
not be systematically removed, since by doing so we could change the value of
the finite convergence certificate of the powerset element, possibly breaking the
convergence guarantee of the lifted widening.

The shortest-path reduction algorithm of [24] has also been considered in the
PhD thesis of A. Miné [30] as a tool for the computation of hollow (i.e., sparse)
representations for BDGs, as originally proposed in [24], so as to obtain mem-
ory space savings. The author appears not to identify the positive interaction
between reduction and widening and, as a consequence, he conjectures that the
computation of hollow representations could compromise the convergence of the
abstract iteration sequence (see [30, Section 3.8.2]). An adaptation of the reduc-
tion algorithm for the case of octagonal graphs is defined in [30, Section 4.5.2]:
this differs from the one proposed in Section 5.1 and may fail to obtain a strongly
reduced graph in the sense of Definition 6.

The theoretical results concerning weighted directed graphs hold when the
data type adopted for the representation of weights allows for exact computa-
tions. If a floating-point data type is considered, then most of these results will
be broken due to rounding errors, so that the implementation of a truly semantic
abstract domain will not be possible. Nonetheless, the (approximate) reduction
operators allow for the removal of most of the syntactic redundancies.
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France, release 0.9.6, 2002. Available at http://www.di.ens.fr/∼mine/oct/.
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Abstract. A technique for generating invariant polynomial inequalities
of bounded degree is presented using the abstract interpretation frame-
work. It is based on overapproximating basic semi-algebraic sets, i.e., sets
defined by conjunctions of polynomial inequalities, by means of convex
polyhedra. While improving on the existing methods for generating in-
variant polynomial equalities, since polynomial inequalities are allowed in
the guards of the transition system, the approach does not suffer from the
prohibitive complexity of the methods based on quantifier-elimination.
The application of our implementation to benchmark programs shows
that the method produces non-trivial invariants in reasonable time. In
some cases the generated invariants are essential to verify safety proper-
ties that cannot be proved with classical linear invariants.

1 Introduction

The discovery of invariant properties is at the core of the analysis and verification
of infinite state systems such as sequential programs and reactive systems. For
this reason, invariant generation has been a major research problem since the
seventies. Abstract interpretation [11] provides a solid foundation for the devel-
opment of techniques automatizing the synthesis of invariants of several classes,
most significantly intervals [10], linear equalities [20] and linear inequalities [14].

For some applications, linear invariants are not enough to get a precise anal-
ysis of numerical programs and nonlinear invariants may be needed as well. For
example, the ASTRÉE static analyzer, which has been successfully employed to
verify the absence of run-time errors in flight control software [13], implements
the ellipsoid abstract domain [7], which represents a certain class of quadratic
inequality invariants. Moreover, it has been acknowledged elsewhere [28,30] that
nonlinear invariants are sometimes required to prove program properties.

As a consequence, a remarkable amount of work has been recently directed
to the generation of invariant polynomial equalities. Some of the methods plainly
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ignore all the conditional guards [25,27]; other methods can only consider the
polynomial equalities in the guards [8,31], whereas some other proposals [23,26]
can handle polynomial disequalities in guards (i.e., guards of the form p �= 0
where p is a polynomial). None of the techniques previously mentioned can
handle the case of polynomial inequalities in the guards: these are ignored to the
expense of precision.

In this paper we present a method for generating conjunctions of polynomial
inequalities as invariants of transition systems, which we have chosen as our
programming model. The transition systems that the approach can handle admit
finite conjunctions of polynomial inequalities as guards and initial conditions,
as well as polynomial assignments and nondeterministic assignments where the
rvalue is unknown (these may correspond, for instance, to the assignment of
expressions that cannot be modeled by means of polynomials).

Formally, our technique is an abstract interpretation in the lattice of poly-
nomial cones of bounded degree, which are the algebraic structures analogous
to vector spaces in the context of polynomial equality invariants [8]. Intuitively,
the approach is based on considering nonlinear terms as additional independent
variables and using convex polyhedra to represent polynomial cones in this ex-
tended set of variables. In order to reduce the loss of precision induced by this
overapproximation, additional linear constraints are added conservatively to the
polyhedra, so as to enforce some (semantically redundant) nonlinear constraints
that would be lost in the translation. The strength of the approach is that, while
allowing for a much broader class of programs than linear analysis, it uses the
very same underlying machinery: this permits the adoption of already existing
implementations of convex polyhedra like [4], as well as the possibility of resort-
ing to further approximations, such as bounded differences [1] or octagons [22],
when facing serious scalability problems.

The rest of the paper is organized as follows. In the next subsection, related
work is briefly reviewed. Section 2 gives background information on algebraic
geometry, transition systems and abstract interpretation. Section 3 presents the
main contribution of the paper, where it is shown how polynomial inequalities
can be discovered as invariants by means of polynomial cones, represented as
convex polyhedra. The experimental evaluation of our implementation of these
ideas is described in Section 4. Finally in Section 5 we summarize the contribu-
tions of the paper and sketch some ideas for future work.

1.1 Related Work

To the best of our knowledge, the first contribution towards the generation of
invariant polynomial inequalities is [6]. The authors consider a simple class of
transition systems, where assignments are of the form x := x+ k or x := k with
k ∈ Z. Such a transition system is soundly abstracted into a new one whose
exact reachability set is computable and overapproximates the reachability set
of the original system. Besides the fact that the programming model is more
restrictive than the one used in this paper, these ideas do not seem to have
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undergone experimental evaluation so that, as far as we can tell, their practical
value remains to be assessed.

In [19], Kapur proposes a method based on imposing that a template poly-
nomial inequality with undetermined coefficients is invariant and solving the
resulting constraints over the coefficients by real quantifier elimination. Unfor-
tunately, the great computational complexity of quantifier elimination appears
to make the method impractical: as the author reports, an experimental imple-
mentation performed poorly or did not return any answer for all the analyzed
programs [D. Kapur, personal communication, 2005].

A similar idea is at the core of [9,28], where, instead of real quantifier elimina-
tion, semidefinite programming is employed. The method, which is reported to
perform rather efficiently for several interesting cases, automatically determines
one solution to the constraint system on the template parameters. This is par-
ticularly appropriate for proving program termination because, once a class of
candidate ranking functions has been chosen, any solution belonging to this class
is good enough. The same approach has also been applied to the computation
of invariant properties. In this case, according to [9], the one above becomes the
main limitation of the method: any invariant property, even a weak one, may
be obtained and it is unclear whether it is possible to drive the solver so as to
produce a more precise invariant in the same class.

In [30], Sankaranarayanan et al. propose a technique for generating linear
invariants by linear programming. It is based on imposing, as invariants, con-
straints where the coefficients of the variables are fixed a priori ; the analysis
then returns, for each such constraint, an independent term for which the con-
straint is indeed an invariant of the system (in the case where this is not possible,
the analysis returns ±∞). A generalization of this approach for the discovery
of invariant polynomial inequalities by means of semidefinite programming is
sketched. Similarly, the ellipsoid abstract domain [7] allows to generate invari-
ant quadratic inequalities with two variables by also fixing the coefficients of
terms and leaving the independent term to be determined by the analysis. The
approach proposed in this paper differs in that we do not need to fix any of
these coefficients in advance, but rather it is the analysis itself that determines
all coefficients.

2 Preliminaries

2.1 Algebraic Geometry

We denote the real numbers by R, and the nonnegative real numbers by R+.
A term in the tuple of variables x = (x1, . . . , xn) is any expression of the form
xα := xα1

1 xα2
2 · · ·xαn

n , where α = (α1, . . . , αn) ∈ Nn. A monomial is an expres-
sion of the form c · xα, simply written as cxα, where c ∈ R and xα is a term.
The degree of a monomial cxα with c �= 0 is deg(cxα) := α1 + · · · + αn; the
degree of 0 is deg(0) := −∞. A polynomial is a finite sum of monomials. The set
of all polynomials in x with coefficients in R is denoted by R[x]. In the follow-
ing we will only consider polynomials in canonical form, meaning that all the
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monomials occurring in them have non-null coefficients and distinct terms. The
degree of a non-null polynomial is the maximum of the degrees of its monomials.
We denote by Rd[x] the set of all polynomials in R[x] having degree at most d.
In particular, the polynomials in R1[x], i.e., having degree at most 1, are called
linear ; similarly, the polynomials in R2[x] are called quadratic.

A polynomial equality (resp., polynomial inequality) is a formula of the form
p = 0 (resp., p ≥ 0), where p ∈ R[x]. Both will be referred to as polynomial
constraints or simply constraints. Given a constraint system ψ, i.e., a finite set
of polynomial constraints, we define

poly(ψ) :=
{
p ∈ R[x]

∣∣ (p = 0) ∈ ψ or (−p = 0) ∈ ψ or (p ≥ 0) ∈ ψ
}
.

We will sometimes abuse notation by writing the set ψ to denote the finite
conjunction of the constraints occurring in it.

The algebraic set defined by a finite set of polynomials {p1, . . . , pk} ⊆ R[x]
is the set of points that satisfy the corresponding polynomial equalities, i.e.,{

v ∈ Rn
∣∣ p1(v) = 0, . . . , pk(v) = 0

}
. Similarly, the basic semi-algebraic set

defined by the same set of polynomials is the set of points that satisfy all the
corresponding polynomial inequalities:

{
v ∈ Rn

∣∣ p1(v) ≥ 0, . . . , pk(v) ≥ 0
}
.

2.2 Transition Systems

In this section we define our programming model: transition systems.

Definition 1. (Transition system.) A transition system (x,L, T , I) is a tu-
ple that consists of the following components:

– An n-tuple of real-valued variables x = (x1, . . . , xn).
– A finite set L of locations.
– A finite set T ⊂ L×L×℘(Rn)×

(
Rn → ℘(Rn)

)
of transitions. A transition

(�, �′, γ, ρ) ∈ T consists of a source location � ∈ L, a target location �′ ∈ L,
a guard γ ∈ ℘(Rn) that enables the transition, and, finally, an update map
ρ : Rn → ℘(Rn) that relates the values of the variables before and after the
firing of the transition.

– A map I : L → ℘(Rn) from locations to initial conditions.

The guards, the update maps and the initial conditions are all assumed to be
finitely computable.

The state of a transition system is completely characterized by the location
at which control resides and by a valuation for the variables.

Definition 2. (Local and global state.) A local state (at some unspecified
location) is any real vector v = (v1, . . . , vn) ∈ Rn, interpreted as a valuation for
the variables x = (x1, . . . , xn): in local state v, we have xi = vi for each i = 1,
. . . , n. A global state is a pair (�,v), where � ∈ L and v is the local state at �.
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Definition 3. (Run, initial state.) A run of the transition system (x,L, T , I)
is a sequence of global states (�0,v0), (�1,v1), (�2,v2), . . . such that (1) (�0,v0)
is an initial state, that is v0 ∈ I(�0), and (2) for each pair of consecutive
states, (�i,vi) and (�i+1,vi+1), there exists a transition (�i, �i+1, γ, ρ) ∈ T that
is enabled, i.e., vi ∈ γ, and such that vi+1 ∈ ρ(vi).

The fundamental notion is that of an invariant of a transition system:

Definition 4. (Reachable state, invariant property and map.) A global
state (�,v) is called reachable in the transition system S = (x,L, T , I), if there
exists a run (�0,v0), (�1,v1), . . . , (�m,vm) of S such that (�,v) = (�m,vm). We
denote the set of reachable states of S by reach(S), and the set of (local) reachable
states at location �, i.e., those v such that (�,v) ∈ reach(S), by reach�(S).

If x = (x1, . . . , xn), an invariant property of S at location � ∈ L (also called
an invariant) is any set I ∈ ℘(Rn) such that reach�(S) ⊆ I. Finally, an invariant
map is a map inv : L → ℘(Rn) such that for any � ∈ L, inv(�) is an invariant
of S at location �.

In this paper we focus on a particular class of transition systems, basic semi-
algebraic transition systems:

Definition 5. (Basic semi-algebraic transition system.) A transition sys-
tem (x,L, T , I), where x = (x1, . . . , xn), is called basic semi-algebraic if:

1. for all (�, �′, γ, ρ) ∈ T , γ is a basic semi-algebraic set and there exist k ≤ n
polynomials p1, . . . , pk ∈ R[x] and distinct indices i1, . . . , ik ∈ {1, . . . , n}
such that ρ(v) =

{
(v′1, . . . , v

′
n) ∈ Rn

∣∣ v′i1 = p1(v), . . . , v′ik
= pk(v)

}
for

each v ∈ Rn;
2. I(�) is a basic semi-algebraic set, for each � ∈ L.

Notice that a basic semi-algebraic transition system can also model nonde-
terministic assignments, that is, assignments whose rvalue is unknown.

Example 1. The program shown on the left of Figure 1 is a minor variant of the
program in [15, p. 64], computing the floor of the square root of a natural number
a. The basic semi-algebraic transition system shown on the right of the figure
models the (second loop of the) program. Note that even the original program
in [15], which has the disequality c �= 1 in the guard of the second loop, can
be modeled as a basic semi-algebraic transition system (by translating c �= 1 as
c ≤ 0 ∨ c ≥ 2 and then having four transitions instead of two). The variant in
Figure 1 has been adopted just for presentation purposes: its analysis leads to
the same invariants that are computed when analyzing the original program.

2.3 Abstract Interpretation

Abstract interpretation [11] is a general theory of approximation of the behavior
of dynamic discrete systems. One of its classical applications is the inference of
invariant properties of transition systems [12]. This is done by specifying the set
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{ a ≥ 0 }

b := 0; c := 1;

while c2 ≤ a do

c := 2c;
end while

�0 : while c ≥ 2 do

c := c/2;
if (b + c)2 ≤ a then

b := b + c;
end if

end while

return b;

I(�0) �0

τ0 := γ0 → ρ0

τ1 := γ1 → ρ1

I(�0) := {a ≥ 0, b = 0, c ≥ 1, c2 ≥ a + 1}

γ0 :=
{
c ≥ 2, (2b + c)2 ≤ 4a

}
ρ0 := (a′, b′, c′) = (a, b + c/2, c/2)

γ1 :=
{
c ≥ 2, (2b + c)2 ≥ 4a + 4

}
ρ1 := (a′, b′, c′) = (a, b, c/2)

Fig. 1. A program and its model as a basic semi-algebraic transition system

of reachable states of the given transition system as the solution of a system of
fixpoint equations. The concrete behavior of the transition system is then over-
approximated by setting up a corresponding system of equations defined over an
abstract domain, providing computable representations for the abstract properties
that are of interest for the analysis, as well as abstract operations that are sound
approximations of the concrete operations used by the transition system being
analyzed. An approximation of one solution of the system of abstract equations
can be found iteratively, possibly applying further conservative approximations
and using convergence acceleration methods, such as widenings [11]. One of the
main advantages of this methodology for the inference of invariant properties is
that the correctness of the obtained results follows by design.

More specifically, given a transition system S = (x,L, T , I), the set of its
reachable states reach(S) can be characterized by means of the following system
of fixpoint equations where, for each � ∈ L, we have the equation

reach�(S) = I(�) ∪
⋃{

ρ
(
reach�′(S) ∩ γ

) ∣∣∣ (�′, �, γ, ρ) ∈ T
}
. (1)

The least fixpoint of this system of equations, with respect to the pointwise
extension of the subset ordering on ℘(Rn), is reach(S); any overapproximation
of reach(S) yields an invariant map for S.

3 Approximating Basic Semi-algebraic Sets

The construction of our abstract domain is analogous to that in [8], where
pseudo-ideals of polynomials are introduced to infer polynomial equalities as
invariants, while still reasoning in the framework of linear algebra. Here, we
extend this approach so as to handle polynomial inequalities as invariants.
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In [8], the basic underlying definition is that of a vector space of polynomials:

Definition 6. (Vector space.) A set of polynomials V ⊆ R[x] is a vector
space if (1) 0 ∈ V ; and (2) λp + μq ∈ V whenever p, q ∈ V and λ, μ ∈ R. For
each Q ⊆ R[x], the vector space spanned by Q, denoted by V(Q), is the least
vector space containing Q, that is,

V(Q) :=
{ s∑

i=1

λiqi ∈ R[x]
∣∣∣∣ s ∈ N, ∀i ∈ {1, . . . , s} : λi ∈ R, qi ∈ Q

}
.

Given a vector space V , we associate the constraint p = 0 to any p ∈ V .
Notice that, if p, q ∈ R[x] and v ∈ Rn are such that p(v) = 0 and q(v) = 0, then
(λp+μq)(v) = 0, for any λ, μ ∈ R. Further, for any v ∈ Rn, the zero polynomial
trivially satisfies 0(v) = 0. Thus, the set of polynomials that evaluate to 0 on a set
of states S ∈ ℘(Rn), that is

{
p ∈ R[x]

∣∣ ∀v ∈ S : p(v) = 0
}
, has the structure

of a vector space. Unfortunately, this vector space has infinite dimension. In
order to work with objects of finite dimension, it is necessary to approximate by
bounding the degrees of the polynomials.

Moreover, when considering polynomials as elements of a vector space, the
algebraic relationships between terms such as x1, x2 and x1x2 are lost. For in-
stance, consider the vector space V

(
{x1, x2−x1x2}

)
, generated by the polynomial

equalities x1 = 0 and x2 = x1x2. Then, even though the polynomial equality
x2 = 0 is semantically entailed by the previous ones, x2 /∈ V

(
{x1, x2 − x1x2}

)
.

The reason is that the vector space generated by x1 and x2 −x1x2 only includes
the linear combinations of its generators, whereas in the case above x2 can only
be obtained by a nonlinear combination of the generators, namely x2 = x2 ·
(x1)+1 · (x2−x1x2). This problem can be solved by adding the polynomial x1x2
to the set of generators, so that the polynomial x2 ∈ V

(
{x1, x1x2, x2 − x1x2}

)
can be obtained by the linear combination 0 · (x1) + 1 · (x1x2) + 1 · (x2 − x1x2).

In general, in order to reduce the loss of precision due to the linearization
of the abstraction, additional polynomials are added taking into account that,
when p ∈ R[x] and v ∈ Rn are such that p(v) = 0, we have (pq)(v) = 0 for each
q ∈ R[x]. Therefore, pseudo-ideals are defined as follows:

Definition 7. (Pseudo-ideal.) A pseudo-ideal of degree d ∈ N is a vector
space P ⊆ Rd[x] such that pq ∈ P whenever p ∈ P , q ∈ R[x] and deg(pq) ≤ d.
For each Q ⊆ Rd[x], the pseudo-ideal of degree d spanned by Q, denoted by
pseudod(Q), is the least pseudo-ideal of degree d containing Q.

Pseudo-ideals are closed under addition, product by scalars and degree-
bounded product by polynomials. For instance, for the example above x1x2 ∈
pseudo2

(
{x1, x2}

)
. Pseudo-ideals are the elements of the abstract domain used

in [8].
In order to extend this methodology to the generation of invariant polynomial

inequalities, a first, necessary step is the identification, in the basic semi-algebraic
context, of an adequate algebraic structure playing the same role of vector spaces
for polynomial equalities. It turns out that polynomial cones are the right notion:
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Definition 8. (Polynomial cone.) A set of polynomials C ⊆ R[x] is a poly-
nomial cone if (1) 1 ∈ C; and (2) λp+μq ∈ C whenever p, q ∈ C and λ, μ ∈ R+.
For each Q ⊆ R[x], the polynomial cone generated by Q, denoted by C(Q), is
the least polynomial cone containing Q, that is,

C(Q) :=
{
λ+

s∑
i=1

λiqi ∈ R[x]
∣∣∣∣ λ ∈ R+, s ∈ N, ∀i ∈ {1, . . . , s} : λi ∈ R+, qi ∈ Q

}
.

Mimicking the reasoning done before for vector spaces, we associate the con-
straint p ≥ 0 to any polynomial p in the polynomial cone C. Consider the basic
semi-algebraic set defined by the constraint system

ψ = {f1 = 0, . . . , fh = 0, g1 ≥ 0, . . . , gk ≥ 0} (2)

where, for each i = 1, . . . , h and j = 1, . . . , k, we have fi, gj ∈ R[x]. Then, the set
of polynomial inequalities that are consequences of ψ define a polynomial cone.
Indeed, ψ =⇒ (1 ≥ 0) trivially; and, if ψ =⇒ (p ≥ 0) and ψ =⇒ (q ≥ 0),
clearly ψ =⇒ (λp+ μq ≥ 0) for each λ, μ ∈ R+. As was the case for the vector
space of polynomials, this set of polynomials has infinite dimension. In order to
deal with objects of finite dimension, we again fix an upper bound for the degrees
of the polynomials. Moreover, to mitigate the precision loss due to linearization,
we close this cone with respect to degree-bounded product by polynomials. Thus,
the analog of pseudo-ideals in the basic semi-algebraic setting are product-closed
polynomial cones:

Definition 9. (Product-closed polynomial cone.) A product-closed poly-
nomial cone of degree d ∈ N is a polynomial cone C ⊆ Rd[x] satisfying:

(1) pq ∈ C whenever {p,−p} ⊆ C, q ∈ R[x] and deg(pq) ≤ d;
(2) pq ∈ C whenever p, q ∈ C and deg(pq) ≤ d.

For each Q ⊆ Rd[x], the product-closed polynomial cone of degree d generated
by Q, denoted by prodd(Q), is the least product-closed polynomial cone of degree
d containing Q.

Let ψ be a constraint system defining a basic semi-algebraic set. Then, once
the degree bound d ∈ N is fixed, ψ can be abstracted by the product-closed poly-
nomial cone prodd

(
poly(ψ) ∩ Rd[x]

)
. The approximation forgets those polyno-

mials occurring in ψ having a degree greater than d. Also note that the precision
of the approximation depends on the specific constraint system ψ.

The abstraction is clearly sound. For the linear case it is also complete. In
fact, consider any finite set of linear constraints ϕ = {p1 ≥ 0, . . . , pk ≥ 0}, which
we assume to be satisfiable. Then, the corresponding product-closed polynomial
cone of degree 1 is L = prod1

(
poly(ϕ)

)
= C

(
poly(ϕ)

)
, whose elements are the

nonnegative linear consequences of ϕ. On the other hand, if p ∈ R1[x] is a lin-
ear polynomial such that ϕ =⇒ (p ≥ 0), then by Farkas’ lemma there exists
μ = (μ0, . . . , μk) ∈ Rk+1

+ such that p = μ0 +
∑k

i=1 μipi; in other words, p ∈ L.
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In the general nonlinear setting, the abstraction constituted by product-closed
polynomial cones is not complete. Notice however that the set of all invari-
ant polynomial inequalities is not computable in basic semi-algebraic transition
systems. Worse, the set of all invariant linear equalities is not computable in
transition systems even if restricted to linear equality guards [24].

3.1 Representation

Given a finitely generated polynomial cone, by exploiting classical duality re-
sults [33], each polynomial generator p is interpreted as the constraint p ≥ 0;
these polynomial constraints are then linearized so as to define a convex polyhe-
dron on an extended ambient space. The linearization in the abstraction process
implies that all terms are considered as different variables. For instance, in Ex-
ample 1, the terms a, b, c, c2 are all regarded as different and potentially indepen-
dent variables, and the initial condition I(�0) = {a ≥ 0, b = 0, c ≥ 1, c2 ≥ a+ 1}
is interpreted as defining, by means of 4 constraints, a convex polyhedron in an
ambient space of dimension at least 4. In general, given a transition system on
an n-tuple x of variables and a degree bound d, the introduction of the auxiliary
variables, standing for all the nonlinear terms of degree at most d, yields an
m-tuple y of variables, where each yi corresponds to one of the m =

(
n+d

d

)
− 1

different terms xα ∈ Rd[x], where α �= 0. Thus, computation in the abstract
domain of cones of degree d is only feasible provided d is small, e.g., 2 or 3. In
the following, we will denote each yi by writing the corresponding term xα.

It remains to be seen how the linearized constraint system can be closed, ac-
cording to Definition 9, with respect to bounded-degree product by polynomials.
Rather than trying to obtain the exact product-closed polynomial cone by means
of a potentially expensive fixpoint computation, we actually approximate it as
follows. Consider the constraint system ψ as defined in (2). Let M(g1, . . . , gk)
be the multiplicative monoid generated by the gj ’s, i.e., the set of finite prod-
ucts of gj ’s including 1 (the empty product). Let us consider the polynomials
p =

∑h
i=1 rifi +

∑
j λjg

′
j, where for each i = 1, . . . , h, ri ∈ R[x] is such that

deg(rifi) ≤ d, and for each j, λj ∈ R+ and g′j ∈ M(g1, . . . , gk) ∩ Rd[x]. These
polynomials belong to prodd

(
poly(ψ) ∩ Rd[x]

)
, and thus soundly overapproxi-

mate the basic semi-algebraic set corresponding to ψ. Algorithm enrichd, given
in Figure 2, computes this approximation, which in practice provides comparable
precision to the product closure at much less computational cost.

Example 2. Consider Example 1. The application of procedure enrich2 to the
initial condition φ = I(�0) yields the system of constraints

φ′ = enrich2
(
φ ∩ R2[x]

)
= enrich2

(
{b = 0} ∪ {a ≥ 0, c ≥ 1, c2 ≥ a+ 1}

)
= {b = 0, ab = 0, b2 = 0, bc = 0}

∪ {a ≥ 0, c ≥ 1, c2 ≥ a+ 1, a2 ≥ 0, c2 ≥ 1, ac ≥ 0}.
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Require: A finite set of polynomial equalities ϕ = {f1 = 0, . . . , fh = 0} and a finite
set of polynomial inequalities ψ = {g1 ≥ 0, . . . , gk ≥ 0}.

Ensure: ϕ′ = {f ′
1 = 0, . . . , f ′

h′ = 0} and ψ′ = {g′
1 ≥ 0, . . . , g′

k′ ≥ 0} are finite sets of
polynomial equalities and inequalities, respectively, such that poly(ϕ′ ∪ ψ′) ⊆ Rd[x]
and C

(
poly(ϕ ∪ ψ) ∩ Rd[x]

)
⊆ C

(
poly(ϕ′ ∪ ψ′)

)
⊆ prodd

(
poly(ϕ ∪ ψ) ∩ Rd[x]

)
.

ϕ′ := ψ′ := ∅
for all (f = 0) ∈ ϕ do

if deg(f) ≤ d then
for all xα such that deg(xα) ≤ d− deg(f) do

ϕ′ := ϕ′ ∪ {xαf = 0}
for all finite product g′ of g’s such that (g ≥ 0) ∈ ψ do

if deg(g′) ≤ d then
ψ′ := ψ′ ∪ {g′ ≥ 0}

Fig. 2. Algorithm enrichd

In this case, C
(
poly(φ′)

)
= prod2

(
poly(φ) ∩ R2[x]

)
. In general, a precision loss

may occur; for instance, letting χ = {x ≥ 0, x2 ≥ 0, y− y2 ≥ 0, y2 ≥ 0}, we have
χ = enrich2(χ), but (xy ≥ 0) ∈ prod2

(
poly(χ)

)
\ C
(
poly(χ)

)
.

3.2 Abstract Semantics

In this section we review the operations required in order to perform abstract
interpretation of transition systems using polynomial cones as abstract values.

Union. Given two (finitely generated) polynomial cones C1 and C2 repre-
senting the polynomial constraint systems ψ1 and ψ2, respectively, we would like
to approximate the union of the corresponding basic semi-algebraic sets using
another basic semi-algebraic set. By duality, this amounts to computing the in-
tersection cone C1∩C2: for each p ∈ C1∩C2 and v ∈ Rn such that ψ1(v)∨ψ2(v),
either ψ1(v), so that p(v) ≥ 0 as p ∈ C1; or ψ2(v), so that p(v) ≥ 0 as p ∈ C2.
Thus, the approximation is sound. At the implementation level, since polynomial
cones are represented by means of their (linearized) duals, this intersection of
cones corresponds to the convex polyhedral hull operation.

Intersection. Given two (finitely generated) polynomial cones C1 = C(Q1)
and C2 = C(Q2), we would like to compute the intersection of the respective
basic semi-algebraic sets. Then a sound approximation is to compute the cone
spanned by the union of the generators, C(Q1 ∪ Q2). In order to reduce the
loss of precision due to linearization, we enrich this cone with respect to degree-
bounded product by polynomials as explained above. Thus, the polynomial cone
corresponding to the intersection is enrichd(Q1 ∪Q2).

Update. Each basic semi-algebraic update map ρ : Rn → ℘(Rn), defined over
the original n-tuple of variables x, is approximated by a linearized update map
ρ� : Rm → ℘(Rm), where m =

(
n+d

d

)
−1, defined over the extended m-tuple y of

terms. The new update map ρ� is obtained by composing a sequence of simpler
maps, each one approximating the effect of ρ on a single term. For the sake of
notation, if variable yi corresponds to term xα and p ∈ Rd[x], let xα �→ p denote
the deterministic update map such that, for each w ∈ Rm,
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(xα �→ p)(w) :=
{(
w1, . . . , wi−1, p(w), wi+1, . . . , wm

)}
⊆ Rm. (3)

Note that the (possibly nonlinear) polynomial p ∈ Rd[x] on the original tuple
of variables is interpreted as a linear polynomial p ∈ R1[y] on the extended
ambient space, so that Equation (3) indeed defines an affine map. Similarly,
xα �→ ? denotes the nondeterministic update map such that, for each w ∈ Rm,

(xα �→ ?)(w) :=
{

(w1, . . . , wi−1, u, wi+1, . . . , wm) ∈ Rm
∣∣ u ∈ R

}
.

By hypothesis, ρ is defined by k ≤ n polynomials p1, . . . , pk ∈ R[x] and
distinct indices i1, . . . , ik ∈ {1, . . . , n} such that, for each v ∈ Rn,

ρ(v) =
{

(v′1, . . . , v
′
n) ∈ Rn

∣∣ v′i1 = p1(v), . . . , v′ik
= pk(v)

}
.

Then, for each term xα ∈ Rd[x] where α �= 0, we distinguish the following cases:

– Suppose there exists j ∈ {1, . . . , n} such that αj > 0 and j �∈ {i1, . . . , ik}.
This means that ρ nondeterministically updates at least one of the relevant
factors of the term xα. Thus, we conservatively approximate the overall
effect of ρ on xα using xα �→ ?, as if it was a nondeterministic assignment.

– Suppose now that, for each j = 1, . . . , n, if αj > 0 then j ∈ {i1, . . . , ik}, i.e.,
all the relevant factors of xα are deterministically updated by ρ. Then:
• if the polynomial pα :=

∏{
p

αj

h (x)
∣∣ j ∈ {1, . . . , n}, αj > 0, j = ih

}
is

such that pα ∈ Rd[x], we apply the affine map xα �→ pα;
• otherwise, since we cannot represent the effect of ρ on xα, we (again)

conservatively overapproximate it as xα �→ ?.

Since ρ updates all terms simultaneously, these maps are ordered topologically
according to the dependencies of terms (possibly adding temporary copies of
some term variables, which are eliminated at the end).

Example 3. Consider the transitions of Example 1. For the transition τ0 we have
ρ0 ≡ (a′, b′, c′) = (a, b, c/2). This update is linearized by composing the affine
maps ac �→ ac/2, bc �→ bc/2, c2 �→ c2/4 and c �→ c/2, leading to ρ�

0 defined as(
a′, b′, c′, ab′, ac′, bc′, (a2)′, (b2)′, (c2)′

)
= (a, b, c/2, ab, ac/2, bc/2, a2, b2, c2/4).

Test for inclusion. The test for inclusion can be conservatively overapproxi-
mated by means of the test for inclusion for convex polyhedra.

Widening. Any widening for convex polyhedra, e.g., the standard widen-
ing [14] or the more sophisticated widenings proposed in [2,3], will serve the
purpose of guaranteeing termination, with different trade-offs between efficiency
and precision.

Example 4. For the transitions of Example 1, using the abstract semantics shown
above, we obtain the invariant

reach�0(S) =⇒
{
(b + c)2 ≥ a+ 1, a ≥ b2, b ≥ 0, c ≥ 1,

a2 ≥ 0, ab ≥ 0, ac ≥ 0, b2 ≥ bc, bc ≥ b, (c− 1)2 ≥ 0
}
.
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Notice that all the constraints appearing on the second line are in fact redun-
dant. Some of these, such as a2 ≥ 0 and (c − 1)2 ≥ 0, are trivially redundant
in themselves. Other ones are made redundant by the constraints appearing
on the first line (for instance, ab ≥ 0 is implied by a ≥ b2 and b ≥ 0). This
phenomenon is due to the interaction of the enrichd procedure, which adds re-
dundant constraints to polynomial cones, with the underlying linear inequalities
inference rules, which are treating different terms as independent variables and,
as a consequence, are only able to detect and remove some of the redundancies.

The two constraints (b + c)2 ≥ a + 1 and a ≥ b2 in the invariant above are
essential in a formal proof of the (partial) correctness of the program in Figure 1.
Note that the computed invariant assumes that the integer division c := c/2 is
correctly modeled by rational division. Such an assumption can be validated by
other analyses, e.g., by using a domain of numerical powers [21], which could
infer that c evaluates to a power of 2 at location �0. Since on termination c = 1
holds, the conjunction of these constraints implies (b+ 1)2 > a ≥ b2.

4 Experimental Evaluation

The approach described in this paper has been implemented in a prototype
analyzer that infers polynomial inequalities of degree not greater than d = 2.
The prototype, which is based on the Parma Polyhedra Library (PPL) [4], first
performs a rather standard linear relations analysis, then assumes the linear in-
variants so obtained for the analysis of (possibly) nonlinear invariants described
in the previous sections. We have observed that this preliminary linear anal-
ysis improves the results in a significant way. In fact: (1) it ensures that we
never obtain less information than is achievable with the linear analysis alone;
(2) the availability of “trusted” linear invariants increases the precision of the
nonlinear analysis considerably; and (3) the time spent in the linear analysis
phase is usually recovered in the quadratic analysis phase. The prototype uses
the sophisticate widening operator proposed in [2] enhanced with variations of
the “widening up to” technique described in [17] and with the “widening with
tokens” technique (a form of delayed widening application) described in [3].

Considering that, with the chosen degree bound d = 2, we are working on
an ambient space that has a dimension which is quadratic in the number of
variables of the transition system being analyzed, and considering that polyhedra
operations have exponential worst-case complexity, some care has to be taken in
order to analyze systems of realistic complexity. In our prototype, we exploit the
capability of the PPL concerning the support of time-bounded computations.
All polyhedra operations are subject to a timeout (5 seconds of CPU time in
the experimentation we are about to report); when a timeout expires, the PPL
abandons (without leaking memory) the current computation and gives control
back to the analyzer. This situation is handled by the analyzer by using a less
precise operation (such as replacing the precise convex polyhedral hull of two
polyhedra P1 and P2 by the polyhedron obtained by removing, from a system
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Table 1. A summary of the experimental results

Linear analysis Quadratic analysis
Program name Origin n |L| |T | CPU time vs StInG CPU time Improves

array 4 5 6 0.2 + 
= 
= 
= + 79.8 �
bakery [34] 2 9 24 18.6 = · · · = 0.2 �
barber FAST 8 1 12 18.7 − 2.7 �
berkeley FAST 4 1 3 0.0 + 0.1 �
cars StInG 7 1 2 18.5 
= 45.9 �
centralserver FAST 12 1 8 5.4 + 193.4
consistency FAST 11 1 7 2.5 = 10.0
consprodjava FAST 16 1 14 325.6 + 601.9
consprodjavaN FAST 16 1 14 308.0 + 611.6
cousot05vmcai [9] 4 1 1 0.0 = 0.1 �
csm FAST 14 1 13 29.3 = 219.5
dekker FAST 22 1 22 458.4 = 1218.1
dragon FAST 5 1 12 0.5 − 1.4 �
efm FAST 6 1 5 0.1 = 0.3
rfm05hscc [28] 4 1 2 0.1 
= 38.5
firefly FAST 4 1 8 0.1 = 0.2 �
fms FAST 22 1 20 893.2 = 2795.0
freire [16] 3 1 1 0.0 − 6.4
futurbus FAST 9 1 9 2.8 + 23.2 �
heap StInG 5 1 4 0.1 
= 10.9
illinois FAST 4 1 9 0.1 = 0.3 �
kanban FAST 16 1 16 60.5 = 340.4
lamport FAST 11 1 9 3.1 + 13.4
lifo StInG 7 1 10 1.4 + 14.8 �
lift FAST 4 1 5 0.1 = 22.1
mesi FAST 4 1 4 0.0 = 0.1 �
moesi FAST 5 1 4 0.1 − 0.3 �
multipoll FAST 18 1 17 116.3 = 476.8
peterson FAST 14 1 12 17.6 + 88.5
producer-consumer FAST 5 1 3 0.1 = 15.5
readwrit FAST 13 1 9 7.7 = 2147.3
rtp FAST 9 1 12 2.6 = 8.9
see-saw StInG 2 1 4 0.0 − 5.3
sqroot1 [15] 2 1 1 0.0 = 0.0 �
sqroot2 [15] 3 1 8 0.0 + 15.6 �
sqroot3 [15] 3 2 6 0.0 == 10.3 �
sqroot4 [15] 4 2 6 10.3 =+ 8.2 �
sqroot5 [8] 4 1 1 0.0 + 6.1 �
sqroot6 [18] 5 1 2 0.0 = 15.5 �
swim-pool StInG 9 1 6 1.5 + 46.5
synapse FAST 3 1 3 0.0 + 0.0 �
ticket2i FAST 6 1 6 0.3 + 5.8
ticket3i FAST 8 1 9 9.5 + 82.6
train-beacon StInG 3 4 12 0.1 = −− = 20.5
train-one-loc StInG 3 1 6 0.0 − 0.4
ttp FAST 9 4 17 9.3 ++++ 126.9
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of constraints defining P1, all constraints that are not satisfied by P2) or by
simplifying the involved polyhedra resorting to a domain of bounded differences.
With this technique we are able to obtain results that are generally quite precise
in reasonable time (note that the prototype was not coded with speed in mind).

We have run the prototype analyzer on a benchmark suite constituted by
all the programs from the FAST suite [5] (http://www.lsv.ens-cachan.fr/fast/),
programs taken from the StInG suite [29] (http://www.stanford.edu/ sri-
rams/Software/sting.html), all square root algorithms in [15], programs from
[9,18,28,34], and a program, array, written by the authors. From the StInG suite
wehave only omitted those programswithnondeterministic assignmentswhere the
rvalue is bounded by linear expressions (like 0 ≥ x′ ≥ x+ y), since they do not fall
into the programming model used here.

A summary of the experimental results is presented in Table 1. Besides the
program name, its origin and the number of variables, locations and transitions
(columns from 1 to 5, respectively), the table indicates: (1) the CPU time, in
seconds, taken to compute our linear invariants (column 6) and how they com-
pare with the ones computed by StInG (column 7: ‘+’ means ours are better, ‘−’
means ours are worse, ‘=’ means they are equal, ‘ �=’ means they are not compa-
rable); and (2) the time taken to generate quadratic invariants (column 8) and
whether these invariants improve upon (that is, are not implied by) the linear
ones, taking into account both our linear invariants as well as those generated
by StInG (column 9: ‘�’ means we improve the precision). The measurements
were performed on a PC with an Intel R© XeonTM CPU clocked at 1.80 GHz,
equipped with 1 GB of RAM and running GNU/Linux. Notice that for about
80% of the locations, our linear invariants are at least as strong as the ones
produced by StInG, and that, in fact, for one third ours are stronger. Most
importantly, for about half of the programs, the obtained quadratic invariants
improve the precision of the linear analysis.

5 Conclusion

We have presented a technique for generating invariant polynomial inequalities
of bounded degree. The technique, which is based on the abstract interpretation
framework, consists in overapproximating basic semi-algebraic sets by means of
convex polyhedra, and can thus take advantage of all the work done in that field
(e.g., refined widening operators, devices able to throttle the complexity of the
analysis such as restricted classes of polyhedra, ways of partitioning the vector
space and so forth). The application of our prototype implementation to a num-
ber of benchmark programs shows that the method can produce non-trivial and
useful quadratic invariant inequalities in reasonable time, thus proving the fea-
sibility of the automatic inference of nonlinear invariant inequalities (something
that was previously unclear).

For future work, we want to generalize our definition of basic semi-algebraic
transition system so as to capture a form of nondeterministic assignments where
the rvalue is bounded by means of polynomial inequalities, rather than being
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completely unknown. We would also like to increase the precision of the ap-
proach by incorporating, in the enrichd algorithm, other forms of inference, such
as relational arithmetic [1,32]. This technique allows to infer constraints on the
qualitative relationship of an expression to its arguments and can be expressed by
a number of axiom schemata such as (x > 0∧y > 0) =⇒

(
x �� 1 =⇒ xy �� y

)
,

which is valid for each �� ∈ {=, �=,≤, <,≥, >}. Finally, there is much room for
improving the prototype implementation. To start with, we believe its perfor-
mance can be greatly enhanced (there are a number of well-known techniques
that we are not currently using); this may even bring us to the successful infer-
ence of cubic invariants for simple programs. The simplification of the analysis
results is another natural candidate for this line of work.

Acknowledgments. The authors are grateful to Deepak Kapur and Alessandro
Zaccagnini for their help and comments.
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34. A. Tiwari, H. Rueß, H. Säıdi, and N. Shankar. A technique for invariant generation.
In Proc. TACAS 2001, vol. 2031 of LNCS, pp. 113–127, Genova, Italy.



Inference of Well-Typings for Logic Programs

with Application to Termination Analysis

Maurice Bruynooghe1,�, John Gallagher2,��, and Wouter Van Humbeeck1

1 Katholieke Universiteit Leuven, Department of Computer Science,
Celestijnenlaan 200A, B-3001 Heverlee, Belgium

Maurice.Bruynooghe@cs.kuleuven.ac.be
2 Roskilde University, Computer Science, Building 42.1

DK-4000 Roskilde, Denmark
jpg@ruc.dk

Abstract. A method is developed to infer a polymorphic well-typing
for a logic program. Our motivation is to improve the automation of ter-
mination analysis by deriving types from which norms can automatically
be constructed. Previous work on type-based termination analysis used
either types declared by the user, or automatically generated monomor-
phic types describing the success set of predicates. The latter types are
less precise and result in weaker termination conditions than those ob-
tained from declared types. Our type inference procedure involves solving
set constraints generated from the program and derives a well-typing in
contrast to a success-set approximation. Experiments so far show that
our automatically inferred well-typings are close to the declared types
and result in termination conditions that are as strong as those obtained
with declared types. We describe the method, its implementation and
experiments with termination analysis based on the inferred types.

1 Introduction and Motivation

For a long time, the selection of the right norm was a barrier to progress to-
wards the full automation of termination analysis of logic programs. Recently,
type-based norms have been introduced [23] as well as a technique to perform
an analysis based on several norms [8]. There is evidence that the combination
of both techniques solves in many cases the problem of norm selection [13,1].
However, most logic programs are untyped. Hence, obtaining type information
is a new barrier to full automation. Systems for the automated inference of types
do exist [7,24]. They derive monomorphic types that approximate the success-set
of the program, and such inferred types are used to generate norms in a system
for termination analysis [13]. Success types cannot in general be used directly by
methods that require a well-typing [1]. In any case, inferred types obtained by
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current methods are often less precise than declared types, which are not neces-
sarily over-approximations of the success set. The derived termination conditions
are thus weaker than those obtained with declared types. The type inference de-
scribed in this paper yields well-typings rather than success-set approximations
and in all experiments so far yield types – and hence termination conditions –
comparable to user-declared types.

We start by sketching an example of type-based termination analysis [1].

Example 1. Consider the append/3 predicate and its abstraction according to
the type signature append(list(T),list(T),list(T)). Each argument is ab-
stracted by the type-based list(T) norm that abstracts a term by the number
of subterms of type list(T) and the type-based T norm that abstracts a term by
the number of subterms of type T (subscripts l and e for abstracted variables).

append([ ],L,L).

append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).

append(1,0, 1+Ll,Le, 1+Ll,Le).

append(1+1+Xsl,1+Xe+Xse, 1+Ysl,Yse, 1+1+Zsl,1+Xe+Zse):-

append(1+Xsl,Xse, 1+Ysl,Yse, 1+Zsl,Zse).

This suffices to infer that a call to append/3 terminates if it is list(T)-rigid1

in either the first or the last argument. A goal independent type inference [7,24]
infers the type append(list(any),any,any), giving rise to the abstract program:

append(1,0, 1+La, 1+La).

append(1+1+Xsl,1+Xa+Xsa, 1+Ysa, 1+1+Xa+1+Zsa):-

append(1+Xsl,Xsa, 1+Ysa, 1+Zsa).

The subscripts l and a of abstracted variables correspond to respectively the
list(any) and any-norm; a term of type any has only subterms of type any, so
the second and third argument have only an any-abstraction. The termination
condition for the third argument is weaker than with the declared type as it
requires any-rigidity and this corresponds to groundness.

In this paper, the signature append(a1(T),a2(T),a2(T)) is inferred, with
the types defined as a1(T) −→ [ ]; [T|a1(T)] and a2(T) −→ [T|a2(T)].
The type a1(T) is equivalent to list(T); the type a2(T) may look odd as it lacks
a “base case” but it gives a well-typing. Calls such as append([a],[b|X],Y)
are well-typed, and give rise to well-typed calls in their computations. In short
“well-typed programs do not go wrong” even with such peculiar types. Now, the
abstracted program is:

append(1,0, 1+La2,LT , 1+La2,LT ).

append(1+1+Xsa1,1+XT +XsT , 1+Ysa2,YsT , 1+1+Zsa2,1+XT +ZsT ):-

append(1+Xsa1,XsT , 1+Ysa2,YsT , 1+Zsa2,ZsT ).

Hence calls terminate when a1-rigid in the first or a2-rigid in the third argu-
ment.
1 Rigid: all instances have the same size under the norm.
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As the next example shows, a call from outside can extend the type of a
predicate.

Example 2. The naive reverse procedure is given by the clauses

rev([ ],[ ]).

rev([X|Xs],Zs) :- rev(Xs,Ys),append(Ys,[X],Zs]).

together with the clauses for append. The inferred signatures and types are

t1(T) --> [T|t1(T)]; [] rev(t2(T),t1(T)).

t2(T) --> [T|t2(T)]; [] app(t1(T),t1(T),t1(T))

Note that the two types denote the same set of terms. The analysis derives
two distinct types because the cons-functors of both do not interact with each
other.

Example 3. A program to transpose a matrix represented as a list of rows [1]:

transpose(A,B) :- transpose aux(A,[ ],B).

transpose aux([ ], W, W).

transpose aux([R|Rs],Z,[C|Cs]) :-

row2col(R,[C|Cs],Cls1,[ ],Acc), transpose aux(Rs,Acc,Cls1).

row2col([ ],[ ],[ ],A,A).

row2col([X|Xs],[[X|Ys]|Cols],[Ys|Cols1],B,C) :-

row2col(Xs,Cols,Cols1,[[ ]|B],C).

The inferred signature and type definitions are as follows:

t1(T) −→ []; [t4(T)|t1(T)] transpose(t1(T),t2(T))

t2(T) −→ []; [t3(T)|t2(T)] transpose aux(t1(T),t2(T),t2(T))

t3(T) −→ []; [T|t3(T)] row2col(t3(T),t2(T),t2(T),t2(T),t2(T))

t4(T) −→ []; [T|t4(T)]

The types t3(T) and t4(T) are equivalent and denote a row of elements T.
Also t1(T) and t2(T) are equivalent; they denote a list of rows of T. These
types are equivalent to what a programmer would declare: the first argument
of row2col/5 is a row and all others are lists of rows. Types inferred by over-
approximation of success sets using current techniques, even when using a goal-
directed analysis with the goal transpose(X,Y) are less accurate.

We define the basic notions of types and set constraints in Section 2; we
present the type inference procedure in Section 3. The implementation, com-
plexity and some experiments in both type inference and the use of the types in
termination analysis are described in Section 4. An extension for obtaining more
polymorphism is given in Section 5. Finally we discuss related work in Section 6
and future research in Section 7.
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2 Preliminaries

2.1 Types

For type definitions, we adopt the syntax of Mercury [19]. Type expressions
(types), elements of T , are constructed from an infinite set of type variables
(parameters) VT and an alphabet of ranked type symbols ΣT ; these are disjoint
from the set of variables V and alphabet of functors Σ used to construct terms.
Variable free types are called monomorphic; the others polymorphic. Type sub-
stitutions of the form {T1/τ1, . . . , Tn/τn} with the Ti parameters and the τi
types define mappings from types to types by the simultaneous replacement of
the parameters Ti by the corresponding types τi.

Definition 1 (Type definition). A type rule for a type symbol h/n ∈ ΣT is
of the form h(T̄ ) −→ f1(τ̄1); . . . ; fk(τ̄k); (k ≥ 1) where T̄ is a n-tuple of distinct
type variables, f1, . . . , fk are distinct function symbols from Σ, τ̄i (1 ≤ i ≤ k)
are tuples of corresponding arity from T , and type variables in the right hand
side, if any, are from T̄ 2. A type definition is a finite set of type rules where no
two rules contain the same type symbol on the left hand side, and there is a rule
for each type symbol occurring in the type rules.

A predicate signature is of the form p(τ̄ ) and declares a type τi for each
argument of the predicate p/n. The mapping τ̄i → h(T̄ ) can be considered the
type signature of the function symbol fi. As in Mercury [19], a function symbol
can occur in several type rules, hence can have several type signatures.

A typed logic program consists of a logic program, a type definition and
a predicate signature for each predicate of the program. Given a typed logic
program, a type checker can verify whether the program is well-typed, i.e., that
the types of the actual parameters passed to a predicate are an instance of
the predicate’s type signature. To formalize the well-typing, we first inductively
define the well-typing of a term.

Definition 2. A variable typing is a mapping from variables to types. A term
t has type h(τ̄ ) (notation t : h(τ̄ )) under a variable typing μ iff either t is a
variable X and μ(X) = h(τ̄ ) or t is of the form f(t1, . . . , tn), the type rule for
h(T̄ ) has an alternative f(τ1, . . . , τn) and, for all i, ti has type τi{T̄ /τ̄}.

Definition 3 (Well-typing). A typed program P has a well-typing if each
clause p(t1, . . . , tn) ← B1, . . . , Bm ∈ P has a variable typing μ that satisfies:

1. Let p(τ1, . . . , τn) be the predicate signature of p/n. Then ti has the type τi
under the variable typing μ (1 ≤ i ≤ n).

2. For 1 ≤ j ≤ m, let Bj = q(s1, . . . , sl) and q(τ1, . . . , τl) be the predicate
signature of q/l. Then there is a type substitution θ such that, for all k, sk

has type τkθ under the variable typing μ.
2 The last condition is known as transparency and is necessary to ensure that well-

typed programs cannot go wrong [17,10].
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Example 4. Given a type definition list(T) −→ [ ]; [T | list(T)] the sig-
nature append(list(T),list(T),list(T)) gives a well-typing of the program
of Example 1. The variable typing of the first clause is {L/list(T)} and that of
the second clause is {X/T,Xs/list(T),Ys/list(T),Zs/list(T)}.

To establish the connection with set constraints (Section 2.2) we formalize the
denotation of a type. Let D : VT → 2TermΣ be a mapping from parameters to sets
of ground terms. Let h(τ̄ ) be defined by the type rule h(T̄ ) −→ f1(τ̄1); . . . ; fk(τ̄k).
Using ej to denote the jth element in a sequence ē, the denotation of h(τ̄ ) with
respect to D, written DenD(h(τ̄ )) is inductively defined as:

1. For all T ∈ VT , DenD(T ) = D(T ).
2. DenD(h(τ̄ )) = {fi(s̄) | 1 ≤ i ≤ k, sj ∈ DenD(τij {T̄ /τ̄}) for all j}.

Proposition 1. Let t[X̄] denote a term with variables X̄; μ a variable typ-
ing and D : VT → 2TermΣ a mapping from type variables to sets of ground
terms. Then t[X̄] has type h(τ̄ ) under μ iff DenD(h(τ̄ )) ⊇ {t[X̄]{X̄/s̄} | si ∈
DenD(μ(Xi))}.

2.2 Set Constraints for Well-Typings

Set Constraints and Their Solutions. Set expressions are terms constructed
from an infinite set of set variables VS and the same alphabet of functors Σ
as used for constructing terms. Given a mapping V : VS → 2TermΣ from set
variables to sets of ground terms, one can inductively define the denotation for
set expressions e with respect to V , written DenV (e), as follows:

1. For all s ∈ VS , DenV (s) = V (s).
2. DenV (f(e1, . . . , en)) = {f(s1, . . . , sn) | si ∈ DenV (ei), 1 ≤ i ≤ n}.

The set constraints that we consider are of two kinds, namely t1 = t2 where
t1, t2 ∈ VS and t1 ⊇ f(e1, . . . , en) where t1 ∈ VS and f(e1, . . . , en) is a set
expression. We call set constraints of the first kind equality constraints and those
of the second kind containment constraints.

Let S be a set of set constraints (or constraint system). A solution for S is
any mapping S : VS → 2TermΣ such that for each constraint the following holds.

1. For all t1 = t2 ∈ S, DenS(t1) = DenS(t2).
2. For all t1 ⊇ f(e1, . . . , en) ∈ S, DenS(t1) ⊇ DenS(f(e1, . . . , en)).

Solved Form and Normal Form. A constraint system S is in solved form if,
for each equality constraint t1 = t2, t1 has no other occurrences in S.

Given a constraint system, one can derive an equivalent solved form by re-
peatedly taking an equality constraint t1 = t2 where t1 has other occurrences
and substituting t1 by t2 (or alternatively, replacing the equation by t2 = t1 and
substituting t2 by t1) throughout the other constraints. Any resulting equalities
t = t are removed. As each such step reduces the number of set variables on the
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left hand side of an equality with other occurrences, and no new variables are
introduced, the process terminates and yields a solved form.

Let S be a constraint system in solved form, and let t ∈ VS be a set variable.
Then t is constrained in S if t appears on the left hand side of a constraint,
otherwise t is unconstrained in S. Note that a constrained set variable in a solved
form occurs either in the left hand side of one equality constraint or in the left
hand side of one or more containment constraints. In constructing a solution for
a constraint system S in solved form, one can freely choose a denotation for its
unconstrained variables. We denote a solution for the unconstrained variables in
S by U . Denote by S[U ] any solution of S that extends U .

Definition 4 (Minimal solution). A solution S[U ] of S is minimal with
respect to U iff for each solution S′[U ], it holds that for all set variables s,
S[U ](s) ⊆ S′[U ](s).

We often omit U when it is not relevant and denote a solution by S.

Proposition 2. Let S be a minimal solution of a constraint system S in solved
form and t a set variable constrained by containment constraints. f(s̄) ∈ DenS(t)
iff there is a containment constraint t ⊇ f(ē) such that f(s̄) ∈ DenS(f(ē)).

Definition 5 (Normal form). A constraint system is in normal form if it is
in solved form and additionally the following conditions are satisfied.

1. It does not contain two distinct containment constraints t ⊇ f(e1, . . . , en)
and t ⊇ f(e′1, . . . , e

′
n).

2. All ei in containment constraints t ⊇ f(e1, . . . , en) are set variables.

Note that 1 corresponds to the requirement that functions symbols are dis-
tinct in the right hand side of a type rule. A constraint system S can be nor-
malised by applying the following operations until a fixpoint is reached.

1. If S contains t ⊇ f(e1, . . . , en) and t ⊇ f(e′1, . . . , e′n) with e1, . . . , en, e
′
1, . . . , e

′
n

set variables then replace the latter by the constraints e1 = e′1, . . . , en = e′n.
2. If S contains t ⊇ f(e1, . . . , ej , . . . , en) where ej is not a set variable, then

replace it by t ⊇ f(e1, . . . , s, . . . , en) and s ⊇ ej with s a fresh set variable.
3. Apply the rules for deriving a solved form.

Proposition 3. The reduction to normal form terminates. Moreover, if S is a
constraint system and S′ is the normal form obtained by applying the procedure
above, then every solution of S′ is also a solution of S.

Given a normalised constraint system with a set variable t, we define type(t)
as a type that has the same denotation as the minimal solution of t as follows.

First, define a directed graph with the set variables as nodes. For each con-
straint t ⊇ f(s1, . . . sn) add, for all i, the arc (t, si); for each constraint t = s
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add the arc (t, s). Note that unconstrained variables have no out-arcs. For each
constrained set variable t, define params(t) to be the set of unconstrained vari-
ables reachable from t in the graph. For each unconstrained variable s define
a unique type parameter Ts. For each variable t constrained by containment
constraints, define a unique type symbol τt/n where n = |params(t)|.

Now, for each set variable t define type(t) as Tt if t is unconstrained, as
type(s) if t is constrained by an equality constraint t = s, and as τt(T1, . . . , Tn)
if t is constrained by containment constraints where T1, . . . , Tn are the type pa-
rameters corresponding to params(t) (enumerated in some order). To construct
the type rules, let t be a constrained variable, and t ⊇ f1(t̄1), . . . , t ⊇ fm(t̄m)
the containment constraints having t on the left. Then construct a type rule
type(t) −→ f1(τ̄1); . . . ; fm(τ̄m) where τ̄1, . . . , τ̄m are obtained from t̄1, . . . , t̄m by
substituting each set variable ti,j by type(ti,j).

Example 5. Consider the set variables a1, a2, a3 and the solved form a1 ⊇ [ ],
a1 ⊇ [x|a1], a3 ⊇ [x|a3], a2 = a3.

The associated directed graph is {(a1, x), (a1, a1), (a2, a3), (a3, x), (a3, a3)}
The set variable x is unconstrained; let type(x) = X. We have params(a1)
= {x} and params(a3) = {x}. We use τai

= ai, so type(a1) = a1(X) and
type(a3) = a3(X). Hence the derived type rules are a3(X) −→ [X| a3(X)]
and a1(X) −→ [ ]; [X | a1(X)]. Finally, type(a2) = a3(X) because a2 = a3.

From Proposition 2 and the way the types are derived the following propo-
sition follows immediately.

Proposition 4. Let S be a constraint system in normal form and let S[U ] be
a minimal solution. Let type(s) be as defined above and let ρ denote the type
definition derived from S. For all u ∈ domain(U) define D(type(u)) = U(u).
Then, for each set variable s it holds that DenD(type(s)) = DenS [U ](s).

3 Inference of a Well-Typing

The purpose of type inferencing is to derive a typed program, that is, a type
definition and a set of predicate signatures such that the program is well-typed.
Whereas well-typing allows the type of a call to be an instance of the declared
type, we will derive types such that they are equal. In Section 5 we outline a
method for deriving truly polymorphic well-typings. Here, the approach is to
associate a set variable with each type in the signatures of the predicates and
one with each variable in the program code and to formulate a constraint system
whose solution denotes a well typing. Then the constraint system is reduced
to normal form. According to Proposition 3, its solutions are solutions of the
original system, hence well-typings. From the normal form, the type definition is
extracted as described in Section 2.2 and the predicate signatures are obtained
by taking the types type(s) of the corresponding set variables.
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3.1 Generation of Constraints

Let P be a program. We introduce fresh set variables p1, . . . , pn for each predicate
p/n of P and a fresh set variable tx for each variable x of P 3. In concrete
examples we reuse the program variables as set variables in the constraints (that
is, tx = x), since there can be no confusion between them. The constraint system
for a program is the union of the constraint systems generated for each atom in
the program. The constraints generated from an atom p(u1, . . . , un) are:

{pj ⊇ uj | if uj is not a variable} ∪ {pj = uj | if uj is a variable}

Example 6. Consider the append/3 program of Example 1. Using the set vari-
ables ap1, ap2 and ap3 for the append/3 predicate, we obtain:

– From append([],L,L): ap1 ⊇ [ ], ap2 = L, ap3 = L.
– From append([X|Xs],Ys,[X|Zs]): ap1⊇[X|Xs], ap2 = Ys, ap3⊇[X|Zs].
– From append(Xs,Ys,Zs): ap1 = Xs, ap2 = Ys, ap3 = Zs.

A normal form of this system consists of the constraints

ap1 ⊇ [ ] ap1 ⊇ [X|ap1] ap3 ⊇ [X|ap3]

Ys = ap3 L = ap3 Xs = ap1 ap2 = ap3 Zs = ap3

As shown in Example 5, we obtain the following types and signature:

ap1(X) −→ [ ]; [X | ap1(X)] append(ap1(X),ap3(X),ap3(X))

ap3(X) −→ [X | ap3(X)]

While the type of the first argument is isomorphic to the list(T) type, that of
the second and third argument is not as the [ ] alternative is not included. Inter-
estingly, this type is accepted by Mercury [19]. It is only when append/3 is called
from elsewhere in the program as e.g. in the rev program of Example 2 that our
type inference extends the type ap3(X) with a base case. The type inference
on the rev program still results in two distinct (although equivalent) types. Al-
though we are used to a signature append(list(T),list(T),list(T)), nothing
in the code of append/3 imposes this; append(list(T),mylist(T),mylist(T))
where mylist(T) −→ mynil; [X | mylist(X)] is an equally good signature.
In fact, unless there is a call that imposes a base case, the choice of the base
case is open, so one can argue that ap3(X), a type without a base case is the
most general and the most natural one.

Theorem 1. The type signatures and the type rules derived from the normal
form of the constraints generated from a program P are a well-typing for P .

The proof follows immediately from Propositions 1, 3 and 4 (see [3]).

3 We assume program clauses do not share variables and predicates p/n and p/m with
n 
= m do not occur.
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4 Implementation and Experiments

The algorithm for type inference system consists of four main stages: (i) gener-
ation of the constraints from the program text, (ii) realisation of a solved form,
(iii) normalisation and (iv) generation of the parameterised type definitions. Of
these, normalisation is the only stage whose implementation requires careful
consideration in order to be able to apply the system to larger programs.

Constraint Generation. One constraint is generated for each argument of each
atom (see Section 3.1). This is achieved in a single pass over the program.

Solved Form. Constraint generation implies that the number of constraints is
linear in the size of the program. Collecting the set of all the equalities, we
compute the set of equivalence classes such that all members of an equivalence
class are equal to each other. This can be done in time linear in the number
of equality constraints. An element of each class is selected; denote by rep(s)
the selected element of s’s class. The constraints of the solved form then consist
of (i) the set of equalities {s = rep(s) | s is different from rep(s)} and (ii) the
containment constraints with each variable s replaced by rep(s). Given a suitable
representation of the equivalence classes (see the discussion on union-find below)
the substitution can be done in time proportional to the number of containment
constraints. The resulting system is in solved form. Thus reduction to solved
form can be achieved in linear time (with respect to the size of the program).

Normal Form. Normalisation is achieved starting from the containment con-
straints of the solved form. As described in Section 2.2, normalisation causes
new constraints to be added, which can destroy solved form.

We focus on the removal of non-normal constraints t ⊇ f(s̄1), t ⊇ f(s̄2); the
other case of non-normal constraints is trivial and can be removed in one pass.
The algorithm for producing normal form is as follows, in outline.

Initialise equivalence classes, one class per variable;

while (not in normal form) {
Pick a pair of constraints t1 ⊇ f(...) and t2 ⊇ f(...),

where t1 and t2 are in the same equivalence class;

Generate the appropriate constraints to remove the violation;

Adjust equivalence classes using the generated equalities;

endwhile

The adjustment of the equivalence classes is essentially merging; when a constraint
s = t is generated we merge the equivalence classes of which s and t respectively
are members. All the containment constraints whose left-hand-sides are in the
same equivalence class are stored with the representative element of that class.
The management of the equivalence classes uses the well-known union-find algo-
rithms [21], so that the adjustment of the equivalence classes, and the location of
the representative for a given class, can be done in close to constant time.

Thus the time taken to normalise is roughly linear in the number of con-
straints generated during normalisation. This is not directly determined by the
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size of the program, since it depends on the distribution of variables in the pro-
gram, the number of clauses for each predicate, and so on. However for typical
programs the number of generated constraints is roughly proportional to the size
of the program.

Conversion to parametrised type definitions. The procedure for finding the pa-
rameters involves constructing the dependency graph and finding the reachable
unconstrained variables from each constrained variable, as described in Section
3. The time required for reachability computation is proportional to the number
of normalised constraints, for each constrained variable.

In summary, each stage can be achieved efficiently in time roughly proportional
to the size of the program. In our Prolog implementation, the elements of the
equivalence classes in the union-find algorithm are stored in a balanced tree,
thus giving logarithmic-time rather than constant-time execution of the find
operation. Our experiments confirm that the running time of the type inference
is roughly O(n.log(n)) where n is the size of the program.

4.1 Inference Experiments

We applied the procedure to a range of programs from the termination analysis
literature as well as many other programs (including the implementation of the
procedure itself). The procedure shows reasonable scalability: space does not
permit a detailed table of statistics so we quote a few timings to give an impres-
sion. The largest program we attempted is the Aquarius compiler benchmark
(4,192 clauses, 19,976 generated constraints, 18,168 normalisation constraints)
for which type inference takes approximately 100 seconds on a Macintosh Power-
book G4. The Chat parser (515 clauses, 2,010 generated constraints, 1,613 nor-
malisation constraints) requires 4.5 seconds. Programs of 100 clauses or less are
analysed in fractions of a second. The software runs in Ciao or SICStus Prolog
and can be downloaded from http://www.ruc.dk/~jpg/Software/. A sample
of derived types can be found in [3].

4.2 Termination Analysis Experiments

We took a set of 45 small programs from [1] (most of them in turn are from the
experiments in [13]) which included declared types. We compared the termina-
tion conditions obtained from the inferred types with those obtained from the
declared types. We did so using the TerminWeb analyser [20]. On all examples,
the termination conditions were equivalent.

In a second experiment, we inferred regular types [6] that approximate the
success set of the program and used them for type-based termination analysis.
Regular types are not always well-typings. As TerminWeb expects well-typings,
we used the cTI termination analyser [13] for this experiment. The system is
weaker than TerminWeb and cannot prove termination for 4 of the programs.
For 3 programs, termination conditions are obtained with the well-typing but
not with the regular types. For 14 programs, the termination conditions are
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equivalent. For the remaining 24 programs, the well-typing results in stronger
termination conditions. Typically, using the regular types, some argument is
required to be ground while rigidity of some type constituent suffices when using
the well-typing.

It is interesting to compare the inferred types with the declared types. For
27 of the 45 programs the inferred type is equivalent to the declared types
in the sense that there is a simple renaming of type symbols that maps the
inferred types to the declared types. The reverse mapping is not always pos-
sible, because sometimes distinct types are inferred that are a renaming of
each other (and hence of a single declared type). Moreover, in most remain-
ing cases one can say that the inferred type is more precise in the sense that
the type allows fewer cases. Typically, a base case is missing as in the type
ap3(X) −→ [X | ap3(X)] of the third argument of append. For two programs,
der and parse, the analysis distinguishes somewhere two types whereas the
declared type has a single type that is the union of both. For the program
minimum shown in Example 9 of Section 5 there is a more substantial differ-
ence. The declared type signature is minimum(t(X),X) with type rule t(X)
−→ void; tree(X,t(X),t(X)). The code in question does not access the right
branch of the tree, hence there is no reason to infer it is a tree; the type in-
ference derives the signature minimum(t1(X,Y),X) with t1(X,Y) −→ void;
tree(X,t1(X,Y),Y). This difference is irrelevant when analysing termination.
In this case one can observe that the declared type is an instance of the inferred
type, since the denotations of t(X) and t1(X,t(X)) are the same.

This experiment suggests that the types we infer are comparable to those one
would declare. Often they are identical, and in the remaining cases, the most
frequent situation is that the solved form that corresponds to the declared types
is an extension of the solved form derived by our analysis.

5 Towards Inference of a Polymorphic Well-Typing

So far we derive a single signature for a predicate p that is valid for all its
occurrences. While we do derive parametric types, our types are not truly poly-
morphic, because we insist that the type of a call is identical to the signature
of the predicate rather than being an instance of it. When using the types for
type-based termination analysis, polymorphic types are potentially more useful
since the norms are more simple and more reuse of results is feasible [2,13]. We
develop an extension where the type of calls can be different instances of the
predicates signatures. First we illustrate the difficulty of achieving this.

Example 7. Consider the artificial program P consisting of the clause p :-
append([a],[b],M), append([M],[M],R). together with Papp, the definition
of append. The relevant part of the normal form of the constraint system gen-
erated from Papp and the extracted well-typing are respectively

ap1 ⊇ [ ] ap1 ⊇ [X|ap1] ap3 ⊇ [X|ap3] ap2 = ap3

ap1(X) −→ [ ]; [X | ap1(X)] append(ap1(X),ap3(X),ap3(X))

ap3(X) −→ [X | ap3(X)]
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The extra constraints on append coming from the p clause are ap1 ⊇ [a], ap2 ⊇
[b], ap3= M, ap1⊇ [M], ap2⊇ [M], and ap3= R. The constraints on ap1 and ap2
give rise to M = X, X ⊇ a, X ⊇ b and ap3 ⊇ [ ]. Finally, ap3 = M enforces the same
type for X and ap3; hence we obtain the signature append(ap1,ap3,ap3) with
the types ap1 −→ [ ]; [ap3 | ap1] and ap3 −→ [ ]; a; b; [ap3 | ap3].

Note that one cannot obtain types equivalent to the latter signature by in-
stantiating the type parameter of the former. Moreover, we obtain an imprecise
type for ap3 that includes a and b as alternatives because the constraints imply
that all calls to append have the same type.

Procedure for Deriving Polymorphic Types. We first introduce some con-
cepts and notations. A predicate p depends directly on a predicate q when q occurs
in the right hand side of a clause with p in the head. A set variable s depends
directly on a set variable t when t occurs in the right hand side of a constraint
with s in the left hand side. In both cases, the depends relation is the transitive
closure of the directly depends relation. With Pp, we denote the part of a pro-
gram defining predicate p and the predicates p depends on. With SP , we denote
the constraint system generated by program P . With S p̄, we denote the part of
the normal form of S that contains all constraints with on the left hand side
either one of the pi or a set variable on which one of the pi depends, i.e., the
part of the normal form needed to construct the complete type definitions of the
types type(pi). With ρi(S) we denote a renaming of S where each set variable s
is replaced by si. Finally, when using s≡ in the context of S, we mean either s
itself or a t such that s = t belongs to the normal form of S.

Now consider the partitioning of a program in two parts P and Q such that
if P has a clause with head p, then it has all clauses with as head either p
or predicates on which p depends4. Our goal is to derive a well-typing for all
predicates such that the variable typing in Q of calls to P are instances of the
(polymorphic) signatures of the predicates in P . As shown in Example 7, this
is not straightforward to achieve. For each call p(t̄) in Q to a predicate in P ,
we assume that the function id(p(t̄)) returns an index that is unique for the
call. From P we generate the constraint system SP as described in Section 3.1.
When generating SQ, calls p(t̄) to predicates in P are treated differently. Instead
of the constraints pj rel tj (with rel ∈ {=,⊇}), we generate ρid(p(t̄))(pj) rel tj
(the left hand side is renamed); moreover we add to SQ the constraint system
ρid(p(t̄))(S p̄

P ), a renaming of the constraints relevant for type(pj) (for all j). Cre-
ating a different instance for each call ensures that each call can have a distinct
well-typing. Note that SP and SQ do not share any set variables.

Next, the following operations are exhaustively applied on (the normal form
of) SP and SQ.

1. Let q be a set variable from SP with type(q) not a type parameter. If, for
some i, qi

≡ ⊇ f(t̄) ∈ SQ and there is no s̄ such that q≡ ⊇ f(s̄) ∈ SP (i.e., q
contributes to the type signature of one or more predicates in P and type(q)
has no case for functor f while type(qi) of the signature of the call with

4 More generally, one could consider a partition of strongly connected components.
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identifier i does) then add q ⊇ f(r̄) to SP with r̄ new set variables5 and, for
all j such that qj exists in Q, add ρj(q ⊇ f(r̄)) to SQ (all copies in Q are
updated).

2. Let s and t be different set variables in SP such that s depends on t or t on
s. If, for some i, si

≡ = ti≡ ∈ SQ and s≡ = t≡ /∈ SP , then add s = t to SP

and, for all j �= i such that sj exists in Q, add ρj(s = t) to SQ. This rule
is needed because, if type(s) is different from type(t), then there is no way
—because of the dependency— that their instances can be equal.

Finally the (polymorphic) type signatures for the predicates defined in P are
extracted from SP . The extraction of the types from SQ needs a small adjust-
ment. For a predicate p defined in P , the type of its jth argument type(pi

j) is
type(pj){s1/type(si

1), . . . , sk/type(si
k)} with {s1, . . . , sk} = params(type(pj)).

Example 8. We reconsider Example 7. P consists of the append clauses. Sapp
P ;

the relevant part of the solved form is as follows:

ap1 ⊇ [ ] ap1 ⊇ [X|ap1] ap2 = ap3 ap3 ⊇ [X|ap3]

SQ consists of

ap1
1 ⊇ [ ] ap1

1 ⊇ [X1|ap1
1] ap1

2 = ap1
3 ap1

3 ⊇ [X1|ap1
3]

ap1
1 ⊇ [a] ap1

2 ⊇ [b] ap1
3 = M

ap2
1 ⊇ [ ] ap2

1 ⊇ [X2|ap2
1] ap2

2 = ap2
3 ap2

3 ⊇ [X2|ap2
3]

ap2
1 ⊇ [M] ap2

2 ⊇ [M] ap2
3 = R

The normal form is:

ap1
1 ⊇ [ ] ap1

2 = ap31 ap1
3 ⊇ [ ] X1 ⊇ a M = ap1

3

ap1
1 ⊇ [X1|ap1

1] ap1
3 ⊇ [X1|ap1

3] X1 ⊇ b

ap2
1 ⊇ [ ] ap2

2 = ap2
3 ap2

3 ⊇ [ ] X2 = ap1
3 R = ap2

3

ap2
1 ⊇ [X2|ap2

1] ap2
1 ⊇ [X2|ap2

3]

Rule 1 applies on ap3, the constraint ap3 ⊇ [ ] is added to SP (ap1
3 ⊇ [ ]

and ap2
3 ⊇ [ ] are already in SQ) and the extracted types are:

ap1(X) −→ [ ]; [X | ap1(X)] append(ap1(X),ap3(X),ap3(X))

ap3(X) −→ [ ]; [X | ap3(X)]

The signature of the first call is append(type(ap1
1),type(ap

1
2),type(ap

1
3))

which is an instance of the above; the instance of the type parameter X is given by
type(X1) which is t1 −→ a; b. Similarly, in the second call, the type parameter
is instantiated into type(X2) = type(ap1

3) which is the type ap3(t1).

Example 9. This example illustrates the need for the second rule.

minimum(tree(X, void, Y), X).

minimum(tree(U, Left, V), W) :- minimum(Left, W).

p(S,M) :- minimum(tree(a,S,S),M).

5 They are unconstrained, hence type(rk) are new type parameters in the type signa-
ture of p.
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Let P consist of the first two clauses; the solved form of SP is:

min1 ⊇ tree(X,min1,Y) min2 = X U = X W = X

min1 ⊇ void Left = min1 V = Y

This gives a signature with two parameters, namely minimum(tr(X,Y),X)
with tr(X,Y) −→ void; tree(X,tr(X,Y),Y). The solved form of SQ is

min1
1 ⊇ tree(X1,min1

1,min
1
1) min1

2 = X1 Y1 = X1 S = X1

min1
1 ⊇ void M = X1 p1 = min1

1 p2 = X1 X1 ⊇ a

This system implies the constraint Y1 = min1
1 while min1 depends on Y in

SP . Hence Y = min1 has to be added to SP . For min1, this gives the constraints
min1 ⊇ tree(X,min1,min1) and min1 ⊇ void hence we obtain the signature
minimum(tr(X),X)with tr(X) −→ void; tree(X,tr(X),tr(X)). For p/2 the
signature is p(tr(t),t) with t −→ a.

6 Related Work

We can contrast this work to previous work on inferring types for logic programs
in which a regular approximation of the success set (minimal Herbrand model) of
a program is computed [16,25,5,11,6,22]. We derive a well-typing, which may or
may not be a safe approximation of the success set. As a result our approach is
not based directly on abstract interpretation, and the inference algorithm has a
different structure, based on solving constraints rather than computing a fixpoint.

Our procedure resembles in some ways the set constraint approximations of
logic programsdeveloped by Heintze and Jaffar [9], as well as earlier work on deriv-
ing regular types from functional programs [18,12].Wealso generate set constraints
and solve them, but again, our constraints do not represent an over-approximation
of the success set in contrast to the cited works. Because we aim at well-typing in-
stead of approximating the success set, our set constraints are much simpler than
those ofHeintze andJaffar. In particular there areno intersections in our set expres-
sions, and this allows an efficient solution procedure. Marlow and Wadler [15] de-
scribe the automatic derivationof types forErlangusinga similar approach, namely
the generation of set constraints capturing the well-typing requirements followed
by a constraint solving procedure. Their type system is somewhat more expressive
than ours, including a limited form of type complement, and the constraints gen-
erated require a more complex solution procedure. However their approach yields
truly polymorphic types such that the calls are subtypes of the type signature, and
thus their constraint solutions methods could be applicable in our future work in
extending Section 5. Christiansen [4] also describes a method of generating type
declarations that give a well-typing, using a constraint-solving approach, but his
method requires some given types.

Finally we note that unlike classical type inference for ML and other typed
languages, we assume no basic types. In part of [14], the authors describe (poly-
morphic) type reconstruction for logic programs: given a set of types and a type
for each functor, they derive types for the predicates and the variables of the
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program. It is noteworthy that they point out that it has been shown that the
problem is undecidable unless the type of body occurrences of a recursive poly-
morphic predicate is identical to the type of the predicate (we impose this too).
The main difference with our approach is that we do not provide any type defini-
tions in advance but construct new definitions during the analysis. We share the
latter property with the work in [25]; however, to our understanding, the authors
do not infer parametric types - type variables are merely names for types that
are defined by their own type rules - and their types are less precise than ours,
since they are success set approximations.

7 Conclusion

We have presented a method for automatically deriving polymorphic well-typings
for logic programs, along with its implementation and the results of some experi-
ments. Distinguishing features of our approach are: (1) No types are assumed, the
analysis constructs its own types; (2) recursive calls to a predicate are assumed
to have the same type as the original call to the predicate; (3) set constraints
impose only conditions for well-typing, not conditions for approximating the suc-
cess set; (4) the same function symbol can be used in different type rules, i.e.,
a function symbol can have several type signatures. The experiments show that
the inferred types are useful for termination analysis; indeed we may claim to
have solved the problem of type inference for deriving norms, since we could not
find any example where a user-declared type gave better termination conditions
than our automatically derived types.

Future work will focus on two aspects. Firstly, we will develop the approach to
polymorphism described in Section 5. Secondly we will investigate to what extent
the inferred types could be used for error detection. As the procedure derives a
well-typing for every program, it may seem that the possibilities are limited, but
there are clear caseswhen the call constraints for a predicate are not consistentwith
any intended solution of the constraints derived from the predicate definition, and
in such cases an error is indicated. For example, any call to append in which the
first argument contains a function other than [] or [.|.] is erroneous. The exact
conditions for such errors are the subject of future research.
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Abstract. Soft errors, a form of transient errors that cause bit flips in memory
and other hardware components, are a growing concern for embedded systems
as technology scales down. While hardware-based approaches to detect/correct
soft errors are important, software-based techniques can be much more flexible.
One simple software-based strategy would be full duplication of computations
and data, and comparing the results of the corresponding original and duplicate
computations. However, while the performance overhead of this strategy can be
hidden during execution if there are idle hardware resources, the memory demand
increase due to data duplication can be dramatic, particularly for array-based ap-
plications that process large amounts of data.

Focusing on array-based embedded computing, this paper presents a mem-
ory space conscious loop iteration duplication approach that can reduce mem-
ory requirements of full duplication (of array data), without decreasing the level
of reliability the latter provides. Our “in-place duplication” approach reuses the
memory locations from the same array to store the duplicates of the elements of
a given array. Consequently, the memory overhead brought by the duplicates can
be reduced. Further, we extend this approach to incorporate “global duplication”,
which reuses memory locations from other arrays to store duplicates of the ele-
ments of a given array. This paper also discusses how our approach operates un-
der a memory size constraint. The experimental results from our implementation
show that the proposed approach is successful in reducing memory requirements
of the full duplication scheme for twelve array-based applications.

1 Introduction

Soft errors, a certain type of transient errors, generally result from random electric dis-
charges caused by background radiation, including alpha particles, cosmic rays, and
nearby human sources [18,25]. The impact of a soft error on a computer system is a
bit flip in memory components and computational logic. With the scaling of technology
down into the deep-submicron range, digital circuits are even more susceptible to ran-
dom failure than previous generations. If not addressed properly, soft errors can lead to
dramatic problems in embedded applications from a variety of domains. For example,
in safety-critical applications, unpredictable reliability can result in significant cost in
terms of human and equipment loss. Similarly, in commercial consumer applications
where high-volume, low-margin production is the norm, high levels of product failures

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 52–69, 2005.
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may necessitate the costly management of warranty support or expensive field mainte-
nance, eventually affecting brand reputation.

Recent research has focused on the soft error problem from both architecture and
software perspectives. We will discuss the related efforts in Section 6. One of the tech-
niques that have been proposed is based on executing duplicates of instructions and
comparing the results of the primary copy and duplicate to check correctness. It must
be observed, however, that embedded environments typically operate under multiple
constraints such as power consumption, memory size, performance and mean time to
failure, and maintaining a required level of reliability against soft errors should be care-
fully balanced with other constraints. More specifically, one needs to consider the extra
memory consumption, execution cycles, and power consumption due to duplicated in-
structions and data. In particular, limiting extra memory space demand of an application
due to enhanced reliability is extremely important in many embedded environments. In
embedded environments that execute a single application, the memory demand of the
application directly determines the size of the memory to be employed, which means
that an increase in memory demands can increase the overall cost of the embedded sys-
tem and its area (form factor). Also, in multi-programmed embedded environments, in-
creasing memory consumption of an application can reduce the number of applications
that can execute simultaneously, thereby impacting overall performance of the system.
Therefore, when increasing the number of instructions and size of data for reliability
reasons, one must be careful in limiting the required extra memory space.

Motivated by this observation, this paper presents a memory space conscious loop
iteration duplication scheme for reliability. The idea is to execute a copy (duplicate) of
an original loop iteration (along with the original) and compare their results for cor-
rectness. In storing the results of the duplicates, we try to reuse some of the memory
locations that originally store the data manipulated by the program. In other words, we
recycle the memory locations as much as possible to reduce the extra memory demand
due to duplicate executions. This is expected to bring two benefits. First, memory space
consumption is reduced, which is very important for memory-constrained systems. Sec-
ond, performance can be improved due to improved data cache behavior. Targeting
array-intensive embedded applications, this paper makes the following contributions:

• We present a compiler-based approach to memory conscious loop iteration duplica-
tion. Our “in-place duplication” approach reuses memory locations from the same
array to store the duplicates of its elements. Specifically, it reuses the locations of
dead array elements to store the duplicates of the actively-used array elements. As
a result, the memory overhead brought by duplicates is reduced.

• We discuss a “global duplication” scheme, which allows us reuse memory locations
from other arrays to store the duplicates of the elements of a given array.

• We present experimental evidence demonstrating the effectiveness of the proposed
approaches. Both in-place duplication and global duplication are automated within
an optimizing compiler. We test our approaches using twelve array-based applica-
tions and show that in-place duplication can reduce the extra memory consumption
of a duplication based scheme that does not consider memory space consumption
by about 33.2%, and that the global duplication scheme brings up this figure to
42.1%.
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• We demonstrate how our approach can be made to work when a limited extra mem-
ory consumption is permissible. In this scenario, our approach tries to reuse as many
memory locations as possible under the specified memory constraint.

It must be emphasized that array-based codes are very important for embedded sys-
tems. This is because many embedded image and video processing programs/applicat-
ions are array intensive [4], and they are usually in the form of loop nests operating on
arrays of signal data.

There are several reasons why our approach is better than a hardware-based scheme,
e.g., a combination of redundant instruction execution and ECC memory (i.e., memory
protected by error correction code). First, if some applications (or some portions of an
application) require greater reliability than others, software will be able to selectively
apply duplication, instead of incurring the fixed ECC overhead on all of the memory
accesses. Second, if an application needs a high level of reliability on existing hardware
without ECC, a software technique would be needed. Third, our scheme can use what-
ever memory is available to increase reliability, i.e., we are able to decrease failure rate
under a given memory space constraint.

The rest of this paper is structured as follows. In Section 1, we describe the repre-
sentation used for loop iterations and array data. Section 3 discusses our assumptions,
and presents our approach to in-place duplication. In the same section, we discuss our
approach to duplication under a memory constraint as well. Section 4 discusses ex-
tensions to our base approach when some of our assumptions are relaxed. Section 5

Table 1. Notations

n Number of enclosing loops for an array reference.
w Number of arrays in a loop nest.
I Iteration space.
I = [i1 i2 · · · in]T . An iteration point.
I+ = I + [0 0 · · · 0 1]T .
� I � J means I is lexically less than or equal to J .
Xk An array.
Mk Number of read references to Xk .
Dk Number of dimensions of Xk .
Nk,i Size of the ith dimension of Xk .
Nk = [Nk,1 Nk,2 · · · Nk,Dk

]T . Size of Xk .
x Index of an array element.
Fk,l(I) lth reference to Xk . Fk,l(I) = Fk,l · I + fk,l .
R Set of all read references in the loop body.
Gk(R) Right hand side of the kth statement.
dk,l Dependence distance from Xk(Fk,0(I)) to

Xk(Fk,l(I)); that is, Xk(Fk,0(I)) =
Xk(Fk,l(I + dk,l))

dk,lmax max1≤l≤Mk
dk,l ; that is, the maximum reuse

distance (in terms of lexicographical order) from
Xk(Fk,0(I)) to Xk(Fk,l(I)).

Lk Iteration offset for duplicates. The duplicate of
Xk(Fk,0(I)) is stored in Xk(Fk,0(I + Lk)).

Pk = [pk,1 pk,2 · · · pk,Dk
]T . Space offset for

duplicates. The duplicate of Xk(x) is stored in
Xk(x + Pk).

|pk,i| Absolute value of pk,i .
INCk Array size expansion of Xk .

gives our experimental results that
show memory savings when using
our approaches. In Section 6, we de-
scribe related work. Finally, in Sec-
tion 7, we draw conclusions.

2 Representation for Loop
Iterations, Data Space,
and Array Accesses

Table 1 presents the notation used
in this paper. The domain of our
approach is the set of sequential
array-intensive embedded programs
consisting of nested loops. We as-
sume that the loop bounds and
the array indices (subscript func-
tions) are affine functions of enclos-
ing loop indices and loop-invariant
constants. We handle other con-
structs such as non-affine array ac-
cesses and conditional statements
conservatively.
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for i = 0,N-1
for j = 1,N-1

A(i,j) = 2*A(i,j-1) + 1;

Fig. 1. An example nested loop

In a given loop nest with n loops, iterators surrounding any statement can be rep-
resented as an n-entry vector I = [i1 i2 · · · in]T . The iteration space I consists of
all the iterations of a loop nest. We use I+ as a shorthand for I + [0 0 · · · 0 1]T .
The index domain of an m-dimensional array Xk is a rectilinear polyhedron, in which
each element can be represented as an m-entry vector xk = [a1 a2 · · · am]T . We
use Fk,l(I) to represent the access function of the lth reference to array Xk. Fk,l(I)
can also be defined in a matrix/vector form as: Fk,l(I) = Fk,l · I + fk,l, where Fk,l is
an m × n matrix and fk,l is an m-entry vector. As an example, for the two references
shown in Fig. 1, we have:

F1,0(I) =
[
1 0
0 1

] [
i
j

]
+
[

0
0

]
and F1,1(I) =

[
1 0
0 1

] [
i
j

]
+
[

0
−1

]
.

A data reuse is said to exist from an array reference Fk,l1 to an array reference Fk,l2

if: ∃I1∈I, I2∈I : I1 � I2 and Fk,l1(I1)=Fk,l2(I2). In this case, I2−I1 is defined
as the reuse distance between Fk,l1 and Fk,l2 . For example, in Fig. 1, data reuse exists
from Fk,0 to Fk,1 since Fk,0(I) = Fk,1(I+), and the reuse distance between them is
[0 1]T .

3 Array Duplication

A simple approach to enhance reliability is to create a duplicated copy for each array,
duplicate the execution of each iteration, and compare the result of the primary with that
of the duplicate. We refer to this approach as full duplication in this paper. An impor-
tant problem with this approach is that it doubles the memory space consumption (as
each array is duplicated). Our objective is to improve the reliability of the computation
in the loop, and keep the incurred memory cost at minimum. We achieve this by not
duplicating the array fully, but reusing some memory locations (that are used to store
other elements) for duplicates.

3.1 Assumptions

Our algorithm works on a per-loop basis. We assume that all the loops are normalized,
i.e., the loop index variable of each loop nest increases by 1 at each step. Loop normal-
ization [1] is a standard code modification technique that can be used to ensure this. In
this section, we consider “in-place duplication”, which means reusing array elements
(i.e., their memory locations) for storing the duplicates of the elements of the same ar-
ray. That is, for an array element, its duplicate can be stored only within the same array.
In Section 4.2 we present the algorithm that allows “global duplication”, i.e., reusing
array locations for storing the duplicates of the elements from other arrays. Our algo-
rithm operates on one array at a time. For an array Xk to be considered as a candidate
by our algorithm, the following assumptions must be satisfied:
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• Assumption 1: For every pair of array references to Xk, the reuse distance be-
tween them is a constant vector. Note that if two array references do not have any
data reuse between them, they are also assumed to have a constant reuse distance
vector. Most existing compiler optimizations for array-based codes operate under
this assumption.

• Assumption 2: If an array element ofXk is written in the loop nest, all the reads to
this array element retrieve the value stored by some write reference in the loop nest
(that is, none of the reads to this element retrieves a value stored before the loop
nest).

• Assumption 3: There is only one write reference to Xk in the loop body.

Whether an array satisfies Assumption 1 and Assumption 2 can be checked using
data reuse analysis [23] and value dependence test [11]. Checking Assumption 3 is
straightforward. In Section 4, we discuss the cases where we relax these assumptions.
In in-place duplication, if an array does not satisfy all of the above assumptions, we fall
back to the full duplication strategy for that array. For now, let us assume that all the
arrays in the loop satisfy these assumptions. Based on the assumptions above, a loop
body with w arrays can be represented as:

X1(F1,0(I)) = G1(R);
X2(F2,0(I)) = G2(R);

...
Xw(Fw,0(I)) = Gw(R).

R is the set of all read array references in the loop body, and Gi (1 ≤ i ≤ w) represents
a function of these read references. In mathematical terms:

R = { X1(F1,1(I)), X1(F1,2(I)), · · · , X1(F1,M1(I)),
X2(F2,1(I)), X2(F2,2(I)), · · · , X2(F2,M2(I)),

...
Xw(Fw,1(I)),Xw(Fw,2(I)), · · · , Xw(Fw,Mw (I)) }.

Fk,0 is the write reference to array Xk, and Mk is the number of read references to Xk.
Based on these assumptions, we can determine that there is a reuse from Fk,0 to

each read reference Fk,l , and the corresponding reuse distance is a constant vector,
which we denote using dk,l. This means that the array element Xk(Fk,0(I)), which is
written at iteration I , will be used at iterations I +dk,1, I +dk,2, . . . , I +dk,Mk . This
can be also expressed as:

Fk,l(I + dk,l) = Fk,0(I).

Let us assume that Fk,lmax is the one with the maximum reuse distance (in terms of
lexicographical order) from Fk,0; that is, dk,lmax = max1≤l≤Mk

(dk,l). Therefore,
Xk(Fk,0(I)) written at iteration I is last-used at iteration I + dk,lmax by array refer-
ence Fk,lmax .

3.2 In-place Duplication

Approach and Algorithm. For the execution of a statement to be reliable, we need to
duplicate its input data, duplicate its execution, and compare the results of the original
and duplicated executions. For example, the reliable version of a statement “A(i)=
“A(i-1)+1;” would be:
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A(i) = A(i-1) + 1;
A’(i) = A’(i-1) + 1;
if A(i) != A’(i)
error();

We assume that, A’ is a duplicate for array A in the above statement. In this section,
we discuss how we reduce the memory space overhead brought by duplicates without
compromising reliability.

A memory location can be in two different states: active or inactive. At a given
time, a memory location is “active” if the value stored in it will be used in the future.
On the other hand, a memory location is “inactive” if there is not any future read op-
eration on it, or its value is updated before any read operation on it takes place. As an
example, Fig. 2 gives the states of three variables, a, b and c, at different points of time
during execution. At any given time, we need to provide a duplicate for an active array
element, so that any soft error that occurs in its location can be detected by comparing
this array element and its duplicate. It is to be noted that, we can modify the value in
an inactive location without affecting the correctness of the program. Therefore, the
inactive memory locations are good candidates for storing the duplicates of the active
memory locations. For example, in Fig. 2, we can use variable c to store the duplicate of
a, because variable c is inactive from t1 to t2 and from t4 to t6, during which a is active,
and needs to be duplicated if it is to be protected against soft errors. In this section, we
focus on “in-place duplication”, which means reusing inactive array elements (i.e., their
locations) for storing the duplicates of the elements of the same array.

Let us consider an array Xk. Fig. 3 illustrates a scenario for selecting the loca-
tion to store the duplicate for an element updated at loop iteration I . At iteration I ,
Xk(Fk,0(I)) is updated, and the same array element is last-used at iteration J . Conse-
quently, the array element Xk(Fk,0(I)) is active between iterations I and J , and we
need to keep a duplicate for it during this period. To save memory space, we want to find
an element in Xk, which is inactive during this period. Recall that Assumption 2 pre-
sented in Section 3.1 says that all the read references to an array element are executed
after the corresponding write reference (if such a write reference exists). Therefore, if
an element is written in some loop iteration, it is inactive before that iteration. Con-
sequently, if an array element is written after iteration J , the last iteration at which
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Fig. 2. States of memory locations during Fig. 3. Determining a memory location to store
execution the duplicate for element Xk(Fk,0(I))
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Xk(Fk,0(I)) is used, this element can be used to store the duplicate of Xk(Fk,0(I)),
since it is inactive between I and J . Our approach uses the array element written at
iteration J + Vk, which is Fk,0(J + Vk), to store the duplicate of the array element
written at iteration I . Here, Vk is a constant vector and [0 0 · · · 0 0]T ≺ Vk so
that iteration J + Vk is executed after iteration J . A possible choice for Vk will be
discussed shortly.

Based on the discussion in Section 3.1, we know that J = I +dk,lmax . We use Lk

to represent the distance between I and J + Vk. Hence, we have:

Lk = J + Vk − I = dk,lmax + Vk .

Thus, the duplicate of Xk(Fk,0(I)) is stored in Xk(Fk,0(I + Lk)). Consequently,
the memory space distance between these two elements, denoted as Pk, can be calcu-
lated as:

Pk = Fk,0(I + Lk)− Fk,0(I)
= (Fk,0 · (I + Lk) + fk,0)− (Fk,0 · I + fk,0)
= Fk,0 · (I + Lk)− Fk,0 · I
= Fk,0 · Lk .

Note that Pk is a constant vector since both Fk,0 and Lk are constant vectors. Conse-
quently, for an arbitrary array element Xk(x), its duplicate can reside in Xk(x + Pk),
and this process can be carried out for every array used in the loop nest.

It should be observed that if x is near the array boundary, x + Pk may exceed
the original array boundary. In this case, we need to expand array Xk so that x + Pk

remains within the boundary. Assuming that Pk = [pk,1 pk,2 · · · pk,Dk
]T and that

the original size of the ith dimension of Xk is Nk,i, the ith dimension of Xk needs
to be expanded by |pk,i|, units (i.e., array elements) to Nk,i + |pk,i| (we use |pk,i| to
denote the absolute value of pk,i). Therefore, the total memory expansion for array Xk,
denoted as INCk, can be calculated as:

INCk =

Dk∏
i=1

(Nk,i + |pk,i|) −
Dk∏
i=1

Nk,i (1)

Note that we expect INCk to be much smaller than
∏Dk

i=1 Nk,i, the total size of the
array. Let us now look at the problem of how to select a suitable Vk. Since our objective
is to minimize the memory consumption due to duplication, we want to select a Vk so
that INCk can be minimized. Although an optimum Vk can be calculated by exhaustive
enumeration or other sophisticated methods, we use a simple heuristic here that sets Vk

to [0 0 · · · 0 1]T . The rationale behind this choice is that by minimizing Vk, we can
minimize Pk, and, thus, we can minimize INCk. More specifically, in this case, we
obtain:

Lk = dk,lmax + [0 0 · · · 0 1]T = dk,lmax

+.

A potential problem is that pk,i could be negative for some i, which means that xi +pk,i

can be a negative number, where xi is the array index of the original array reference for
the ith dimension. Such a case can arise if the array is accessed from upper to lower
index along the ith dimension. If this is the case, we use “(xi +pk,i +Nk,i) mod Nk,i”
as the array index for this dimension. That is, we use the additional (upper) elements
for placeholders of the duplicates of the lower elements.

Our algorithm for in-place duplication is given in Fig. 4. Assume that there are K
arrays in the loop body, the average number of references to each array isM , the average
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Algorithm I:

foreach array Xk do
check the following three assumptions:

there is only one write reference to Xk ;
each read reference has a data reuse from the write

reference;
the reuse distances are constant vectors;

if all assumptions are satisfied
dk,lmax = max1≤l≤Mk

dk,l;
Lk = dk,lmax + [0 0 · · · 0 1]T

Pk = Fk,0 · Lk;
foreach dimension i of array Xk do

Nk,i += |pk,i|;
endfor
foreach reference Xk(Fk,l(I)) do

its duplicate is stored in
Xk(Fk,l(I) + Pk);

endfor
else use full duplication for Xk;
endif

endfor

Fig. 4. Algorithm I: The algorithm for in-place
duplication

Algorithm II:

foreach array Xk do
calculate INCk;

endfor
sort the arrays as Xk1 , Xk2 , . . . , Xkw ,
so that INCk1 ≤ INCk2 ≤ · · · ≤ INCkw ;
h = 1;
Mem = 0;
while h ≤ w do

if (Mem + INCkh
) ≤ U do

Mem += INCkh
;

h++;
else goto LoopExit;
endif

endwhile
LoopExit:
h = h - 1;
for i = 1, h do

duplicate Xki
;

endfor

Fig. 5. Algorithm II: The algorithm for
selecting the arrays to duplicate under memory
constraint (U )

int A(N);
for i=0,N-2

A(i+1)=A(i)+a;

(a) Original program

int A(N),A’(N);
for i=0,N-2 {

A(i+1)=A(i)+a;
A’(i+1)=A’(i)+a;
if A(i+1)!=A’(i+1)
error();

}

(b) Full duplication

int A(N+2);
for i=0,N-2 {

A(i+1)=A(i)+a;
A(i+3)=A(i+2)+a;
if A(i+1)!=A(i+3)

error();
}

(c) In-place duplication

Fig. 6. Example application of in-place duplication

number of dimensions of each array is D, and the number of enclosing loops is n. Apart
from checking our three assumptions, for each array Xk, the time to calculate dk,l and
dk,lmax is O(MD). It takes O(nD) time to calculate Pk. Therefore, the complexity
of our algorithm, without taking into account the complexity of checking assumptions,
is O((M + n)DK). The time for checking our three assumptions is determined by the
algorithm used for value dependence testing.

Example. We now discuss an example to illustrate our in-place duplication algorithm.
Fig. 6 gives the example for our algorithm written in a pseudo-language syntax. In this
figure, a and N are constants. In Fig. 6, we have:

F1,0 = [1]; F1,0(I) = i + 1; F1,1 = [1]; F1,1(I) = i.

It is easy to determine that array A satisfies the three assumptions in Algorithm I, and
we have d1,1 = [1]. Therefore, we can obtain d1,lmax as:

d1,lmax = d1,1 = [1].

Based on this, we can calculate L1 and P1 as follows:

L1 = d1,lmax + [1] = [2] and P1 = F1,0 ·L1 = [2].
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Thus, we determine that we need to expand the original memory space allocated for
array A by 2 elements. As a result, the duplicate of A(i+1) is in A(i+1+2), which
is A(i+3), and the duplicate of A(i) is in A(i+2). Using full duplication shown in
Fig. 6(b), the total size of memory is increased by 100% over the original case with
no duplication. In comparison, using our in-place duplication version in Fig. 6(c), the
percentage memory increase over the original case is 2/N, which is less than 2% when
N > 100.

3.3 Duplication Under Memory Constraint

Approach and Algorithm. There exist cases where one may want to limit the memory
consumption brought by duplication to a certain value. In this part, we discuss how our
approach can be made to work under such a memory size constraint.

We assume that all the array elements are of equal importance (as far as improving
reliability against soft errors is concerned), and our objective is to have duplicates for
as many array elements as possible. Let us assume that we cannot reserve more than
U units (array elements) of memory space to store duplicates. From Algorithm I and
Equation (1), we can calculate the memory expansion for arrays that can make use of
in-place duplication. On the other hand, for an array that needs to be fully duplicated,
the incurred extra memory expansion is equal to its original size. In either case, we
are able to determine INCk for each array Xk. Next, we sort our arrays according to
non-decreasing INCk values, that is:

Xk1 , Xk2 , . . . , Xkw , where INCk1 ≤ INCk2 ≤ · · · ≤ INCkw.

After that, we determine a maximum h such that h ≤ w and
∑h

i=1 INCki ≤ U .
That is, we choose the candidate arrays for duplication in the increasing order of INCk,
until all the arrays are duplicated or duplicating more arrays would exceed the allowable
memory size constraint. Here, h is the number of arrays that we choose during this
process. Fig. 5 (on page 59) gives the algorithm (named Algorithm II) that selects the
arrays to duplicate. After the selection is performed, we use the algorithm in Fig. 4 to
duplicate the selected arrays.

Example. An example of duplication under memory constraint is shown in Fig. 7.
By checking array A and array B, in Fig. 7(a) against our assumptions, we can deter-
mine that A can use in-place duplication and B needs to be fully duplicated. If there is
no memory constraint, the original program could be transformed to the one given in

int A(100),B(100);
for i=0,98

A(i+1)=A(i)+a;
B(i+1)=B(i+1)+B(i);

(a) Original program

int A(102),B(100),B’(100);
for i=0,98

A(i+1)=A(i)+a;
A(i+3)=A(i+2)+a;
if A(i+1)!=A(i+3)
error();

B(i+1)=B(i+1)+B(i);
B’(i+1)=B’(i+1)+B’(i);
if B(i+1)!=B’(i+1);
error();

(b) Without memory constraint

int A(102),B(100);
for i=0,98

A(i+1)=A(i)+a;
A(i+3)=A(i+2)+a;
if A(i+1)!=A(i+3)

error();
B(i+1)=B(i+1)+B(i);

(c) With an allowable increase
of 10 array locations

Fig. 7. Example for duplication under memory constraint
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Fig. 7(b). Now let us assume that we impose a memory constraint such that we cannot
use more than 10 extra array locations for storing the duplicates. We useX1 to represent
array A and X2 to represent array B. To determine the memory expansion due to array
A, we proceed as follows:

F1,0 = [1]; F1,0(I) = i + 1; F1,1 = [1]; F1,1(I) = i; d1,1 = [1]; d1,lmax = d1,1 = [1];
L1 = d1,lmax + [1] = [2]; P1 = F1,0 · L1 = [2]; INC1 = (100 + 2)− 100 = 2.

On the other hand, B needs to be fully duplicated. Thus, we have INC2 = 100. Since
INC1 < INC2, we first consider duplicating A, which is possible since INC1 <
10. However, we cannot add B to the list of arrays to be duplicated since INC1 +
INC2 > 10. To sum up, A is duplicated, whereas B is not duplicated. Fig. 7(c) gives
the transformed code.

4 Extensions

Recall that, in Section 3.1, we listed three assumptions so that our in-place duplication
could be used. In this section, we discuss the needed extensions to our base approach if
some of these assumptions are to be relaxed. Note that Assumption 1 cannot be relaxed,
since our approach would not work on an array that does not satisfy this assumption
(i.e., if this assumption fails, we cannot put an upper bound on the extra memory space
required). On the other hand, our approach can be extended to work on arrays that do
not satisfy Assumption 2 or Assumption 3 (instead of just using full duplication for
them).

4.1 Relaxing Assumption 3

Assumption 3 presented in Section 3.1 requires that there is only one write reference to
the array being considered. Let us now consider the case where there are two write ref-
erences, Fk,0 and Fk,1, for the arrayXk being considered, andXk satisfies Assumption
1 and Assumption 2. In this case, there are two possible scenarios for these two write
references: either there is a data reuse between them, or there is no data reuse between
them.

If there is a data reuse between these two write references, our algorithm can deal
with this case with little modification. Without loss of generality, we assume that there is
a data reuse from Fk,0 to Fk,1, and the reuse distance vector is dk,1. That is, Fk,1(I +
dk,1) = Fk,0(I) (dk,1 � [0 0 · · · 0]T ). This scenario is illustrated in Fig. 8.
Comparing Fig. 2 and Fig. 8, we see that one can use the same strategy in determining
the location to store the duplicate for Xk(Fk,0(I)). In fact, we can treat Fk,1 the same
way as we treat read references. This is because we are certain that Xk(Fk,0(J+)) is
not touched in the original loop until iteration J+ executes.

On the other hand, if there is no data reuse between these two write references, one
can treat them as two different arrays. In this case, the references to Xk can be divided
into two groups, based on to which write reference they have data reuse:

F1
k,0, F1

k,1, . . . , F1
k,M1

k
;

F2
k,0, F2

k,1, . . . , F2
k,M2

k
.
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store the duplicate for Xk(Fk,0(I)) when to store the duplicate for Xk(Fk,0(I)) in
there are two write references to Xk another array Xh

int A(N),B(N);
for i=0,N-2

A(i+1)=A(i)+a;
B(i+1)=A(i+1)+B(i);
A(i)=B(i+1)/2;

(a) Original program

int A(N),A’(N),B(N),B’(N);
for i=0,N-2 {

A(i+1)=A(i)+a;
A’(i+1)=A’(i)+a;
if A(i+1)!=A’(i+1)
error();

B(i+1)=A(i+1)+B(i);
B’(i+1)=A’(i+1)+B’(i);
if B(i+1)!=B’(i+1)
error();

A(i)=B(i+1)/2;
A’(i)=B’(i+1)/2;
if A(i)!=A’(i)
error();

}

(b) Full duplication

int A(N+2),B(N+2);
for i=0,N-2 {
A(i+1)=A(i)+a;
A(i+3)=A(i+2)+a;
if A(i+1)!=A(i+3)

error();
B(i+1)=A(i+1)+B(i);
B(i+3)=A(i+3)+B(i+2);
if B(i+1)!=B(i+3)

error();
A(i)=B(i+1)/2;
A(i+2)=B(i+3)/2;
if A(i)!=A(i+2)

error();

(c) In-place duplication

Fig. 10. Example for multiple write references to the same array

Notice that there is a data reuse from F i
k,0 to F i

k,l for i = 1, 2. The array elements
accessed by these two groups do not overlap (since, otherwise, F1

k,0 and F2
k,0 would

have data reuse); therefore, choosing an array element within one group as the loca-
tion of a duplicate does not affect any access in the other group. This essentially means
that we can treat the two groups as two different arrays, and select the locations for
duplicates independently. The only modification to Algorithm I would be combining
the array expansion results from these two groups together. For example, if our ap-
proach requires expanding the ith dimension of Xk by |p1

k,i| for the first group, and
by |p2

k,i| for the second group, the final result is that the ith dimension is expanded by
max(|p1

k,i|, |p2
k,i|).

If there are more than two write references to arrayXk in the loop, we can deal with
them in a similar fashion. Specifically, we first divide the references into groups such
that the references (in the same group) have data reuses between them, and the refer-
ences in different groups are independent from each other. Then, we process each group
separately as if it is a different array. Specifically, for each group X i

k, we determine the
write reference that have data reuse to all other references in its group and the reuse
distances are non-negative. We represent such write reference as F i

k,0. This can also be
expressed as ∀0 ≤ l ≤ M i

k : F i
k,l(I + di

k,l) = F i
k,0(I) and dk,l � [0 0 · · · 0]T .

After this, we can process this group using Algorithm I. Fig. 10 gives an example of
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how in-place duplication works when there are two write references in the same loop
to the same array. There are two different arrays accessed in the code. Fig. 10(b) gives
the full duplication version. Assume that X1 represents A and X2 represents B. Array
B satisfies all the assumptions, and we can apply in-place duplication to it using Algo-
rithm I. On the other hand, Array A satisfies Assumption 1 and Assumption 2, but does
not satisfy Assumption 3 since there are two write references to it (A(i+1) and A(i)).
Consequently, we need to use the strategy discussed above for in-place duplication for
array A.

For the two write references to array A, namely, A(i+1) and A(i), we can deter-
mine that A(i) has data reuse with A(i+1) based on data reuse analysis. Therefore,
we represent A(i+1) as X1(F1,0(I)). Now, we can apply Algorithm I to A:

F1,0 = [1]; F1,0(I) = i + 1; F1,1 = [1]; F1,1(I) = i; F1,2 = [1]; F1,2(I) = i + 1;
F1,3 = [1]; F1,3(I) = i; d1,1 = [1]; d1,2 = [0]; d1,3 = [1];

d1,lmax = max(d1,1, d1,2, d1,3) = d1,1 = [1].

Based on this, we can calculate L1 and P1 as follows:

L1 = d1,lmax + [1] = [2] and P1 = F1,0 ·L1 = [2].

Therefore, we find that the duplicate of A(i+1) is stored in A(i+3), and the duplicate
of A(i) is stored in A(i+2). Fig. 10(c) gives the transformed code when both A and
B are duplicated using in-place duplication.

4.2 Relaxing Assumption 2: Global Duplication

If an array Xk does not satisfy Assumption 2, this means that there exist some array
elements that are used before they are written in the loop. Such locations need to be
considered active from the beginning of the loop, and we cannot use them as duplicates
for other array elements. Therefore, we are not able to use in-place duplication for such
an array. However, as long as Xk satisfies Assumption 1, it is still possible to avoid
full duplication using a different approach, which we discuss in this subsection. This
approach reuses the locations in some other array (Xh) to store the duplicates for Xk,
and is referred to as “global duplication”.

For an array Xh to be used to store the duplicates for Xk, it needs to satisfy the
following two conditions:
1. Xh should have the same number of dimensions as Xk.
2. Xh should satisfy all the three assumptions listed in Section 3.1.

Note that such an array Xh itself can benefit from in-place duplication, and in our
approach, we always apply in-place duplication first. Therefore, when we try to use
the locations in Xh to store duplicates of the elements of Xk, we need to take Xh’s
in-place duplication into account as well. Fig. 9 illustrates an example scenario. After
Xh’s in-place duplication, the references to Xh are doubled due to references to dupli-
cates. We use Fnew

h,l to denote both the original references and the references created by
duplication. We have:

Fh,l(I) + Ph = Fnew
h,l (I), for duplicated references;

Fh,l(I) = Fnew
h,l+Mh

(I), for original references;
Mnew

h = 2Mh.
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int A(N),B(N);
for i=0,N-2

A(i+1)=A(i)+a;
B(i+1)=B(i+1)+B(i);

(a) Original program

int A(N+2),B(N),B’(N);
for i=0,N-2 {

A(i+1)=A(i)+a;
A(i+3)=A(i+2)+a;
if A(i+1)!=A(i+3)
error();

B(i+1)=B(i+1)+B(i);
B’(i+1)=B’(i+1)+B’(i);
if B(i+1)!=B’(i+1)
error();

}

(b) In-place duplication

int A(N+4),B(N);
for i=0,N-2 {

A(i+1)=A(i)+a;
A(i+3)=A(i+2)+a;
if A(i+1)!=A(i+3)

error();
B(i+1)=B(i+1)+B(i);
A(i+5)=A(i+5)+A(i+4);
if B(i+1)!=A(i+5)

error();
}

(c) Global duplication

Fig. 11. Example application of global duplication

For simplicity, we assume that all references toXk have data reuses with each other.
(if this assumption is not satisfied, we use the strategy discussed in Section 4.1 by
dividing references into groups). In this case, we can find a reference, denoted as Fk,0,
from which all otherXk references have data reuses. We follow the approach described
in Algorithm I to calculate dk,lmax and Lk. We know at this point that the array element
Xk(Fk,0(I)) will not be used from iteration I+Lk onwards. Therefore, we can use the
Xh array elementXh(Fnew

h,0 (I +Lk)), which is written at iteration I +Lk for the first
time in the loop, to store the duplicate for Xk(Fk,0(I)). To calculate the location of the
duplicate for Xk(Fk,i(I)), we first represent it as Xk(Fk,0(I − dk,i)). Therefore, the
duplicate of Xk(Fk,i(I)) is stored in Xh(Fnew

h,0 (I − dk,i + Lk)).
In order to determine how much Xh needs to be expanded, we calculate Pk, i.e.,

the difference between Fnew
h,0 (I + Lk) and Fnew

h,0 (I):

Pk = Fnew
h,0 (I + Lk)− Fnew

h,0 (I) = F new
h,0 ·Lk .

Assuming that Pk = [pk,1 pk,2 · · · pk,Dk
]T and the original size of the ith dimension

of Xk is Nk,i, the ith dimension of Xk needs to be expanded by |pk,i| units to Nk,i +
|pk,i|.

Fig. 11 gives an example application of global duplication. In this example, we use
in-place duplication for array A. Without the use of global duplication, array B needs to
be fully duplicated as shown in Fig. 11(b). In the case of global duplication, array B uses
the available space in array A to store its duplicates, and Fig. 11(c) gives the transformed
code. If N = 100, by using in-place duplication, we can reduce the extra memory space
from 100% (in the full duplication case) to 51%. By using global duplication, on the
other hand, this number is further reduced to 2%.

5 Experimental Evaluation

5.1 Setup

In this section, we present an experimental evaluation of the approach discussed in
this paper. To evaluate the effectiveness of our approach, we implemented it within an
optimizing compiler [22] and performed experiments with several array based bench-
marks. The average increase due to our approach in compilation times of the original
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Table 2. Benchmarks used in this study

SpecFP2000
Benchmark Brief Description Input
171.swim Shallow Water Modeling Ref. Input
172.grid Multi-Grid Solver Ref. Input
177.mesa 3D Graphic Library Ref. Input
179.art Image Recognition/Neural Networks Ref. Input
183.equake Seismic Wave Propagation Simulation Ref. Input
188.ammp Computational Chemistry Ref. Input

Embedded Applications
Benchmark Brief Description Input
atr Network Address Translation 1.47MB
bss Signal Deconvolution 3.07MB
encr Digital Signature for Security 1.88MB
img-seg6 Embedded Image Segregation 2.61MB
usonic Feature-Based Area Estimation 4.36MB
wood04 Color-Based Surface Inspection 5.28MB

programs was about 220%. Table 2 lists the benchmarks used in this study. Our bench-
marks are divided into two groups. The first group contains the C benchmarks from
the SpecFP2000 suite [17] (plus two FORTRAN benchmarks, of which we were able
to generate the C versions by hand), whereas the second group are representative ap-
plications from the domain of embedded computing. We collected the applications in
the second group from different sources. For each group of benchmarks in Table 2, the
second column gives a brief description of each benchmark and the last column shows
the size of the total data manipulated by each benchmark.

5.2 Results
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Fig. 12. Memory requirements of our duplication schemes

Fig. 12 shows the effective-
ness of in-place and global
duplication in reducing the
memory requirements due
to enhanced reliability. Each
bar in this figure represents
the extra memory demand of
the corresponding approach
(in-place or global), as a
fraction of the extra mem-
ory demand of a scheme that
duplicates all the array data
in the application (i.e., full
duplication). As can be seen
from this bar-chart, our ap-
proaches save significant memory space with respect to the full duplication of all ar-
ray data. The average savings brought by the in-place duplication scheme are 30.2%
and 36.4% for the SpecFP2000 benchmarks and the embedded applications, respec-
tively. The corresponding savings with the global duplication scheme are 39.3% and
44.2%. We see that, except for two benchmarks (177.mesa and atr), the global duplica-
tion scheme brings savings over the in-place duplication scheme, as the former has the
flexibility of using other arrays for creating duplicates of the elements of a given array.

Note that, in the results presented above, all array elements have been duplicated
(some recycling the memory locations of the elements that passed their last uses). Our
next set of experiments measure the success of the in-place duplication approach that
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operates with memory constraints (see Section 3.3). The results are given in Fig. 13 with
different memory constraints. Specifically, each point on the x-axis gives the maximum
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Fig. 13. Duplication under memory constraints

allowable increase in the size of the
data manipulated by the original pro-
grams. The y-axis, on the other hand,
gives the percentage of array ele-
ments duplicated by our approach.
We see from these results that, our ap-
proach is successful in utilizing avail-
able extra memory space for duplica-
tion. In fact, even with an extra 5%
memory space, it is able to dupli-
cate about 16% of the array elements
on the average. When we increase
the extra available memory space re-
served for duplicates to 40%, the av-
erage percentage of duplication be-
comes 76%.

Although our focus in this paper is on memory space savings and reliability, it is
also important to consider the impact of our approach on execution cycles. To determine
the execution cycles taken by our approach, we simulated the benchmark codes using
SimpleScalar [15]. The simulated architecture is a two-issue embedded processors with
16KB instruction and data caches. The access latencies for both the caches are 1 cycle,
and a miss penalty of 100 cycles is assumed. The graph in Fig. 14 gives execution cycles
for our two schemes as a fraction of the execution cycles taken by the full duplication
strategy. Note that the full duplication scheme almost doubles the execution cycles of
the original codes (i.e., those without any protection). Two observations can be made
from this graph. First, both the schemes perform better than the full duplication based
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Fig. 14. Performance of our duplication schemes

approach in terms of execu-
tion cycles. The main reason
for this is that the reduction
in data space requirements re-
duces capacity misses and this
in turn reduces execution cy-
cles. Second, the difference
between our two schemes is
less than one would expect,
given the fact that global
can reuse (and save) more
memory space than in-place.
The reason for the small dif-
ference between the two is
the increased number of con-
flict misses with the global
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scheme, due to the additional irregularity created by reusing different locations in the
same loop iteration.

6 Related Work

6.1 Memory Reuse

There exist several prior studies that reduce the memory footprint of array-based pro-
grams. Wolfe [24] presented a technique called array contraction to optimize programs
for a vector architecture. Lefebvre and Feautrier [8] proposed a method for reducing
the memory overhead brought by full data expansion in automatic parallelization of
loop-based static control programs. Song et al [16] proposed an algorithm that com-
bines loop shifting, loop fusion, and array contraction to reduce memory usage and
improve data locality. Wilde and Rajopadhye [21] studied memory reuse using a poly-
hedral model that performs static lifetime computations of variables. Strout et al [19]
presented a schedule-independent storage mapping technique that reduces data space
consumption but introduces no dependences other than those implied by flow depen-
dences. Unnikrishnan et al [20] used a loop-based program transformation technique
to reduce lifetimes of array elements. Their objective is to reduce the cases where the
lifetimes of array elements overlap so that the storage requirement can be reduced. The
common point between our approach and these prior studies is that all of them exploit
variable lifetime information extracted by the compiler. The main difference is that we
use this information for reducing the additional memory space demand due to enhanced
reliability against soft errors, rather than reducing the original memory demand of the
application. Also, most of these prior studies optimize for a single array at a time and
operate under some additional constraints such as maintaining a certain degree of par-
allelism. In comparison, our global duplication scheme can reuse the space available in
other arrays for storing the duplicates of the elements of a given array.

6.2 Software Approach to Transient/Permanent Errors

Software techniques for fault detection and recovery have been studied by prior re-
search. Huang and Abraham [7] proposed Algorithm-Based Fault Tolerance (ABFT) to
ensure the reliability of matrix operations. Roy-Chowdhury [13] extended the ABFT
framework to a parallel processing environment. Oh and McCluskey [10] proposed Se-
lective Procedure Call Duplication (SPCD) to improve system reliability. SPCD ana-
lyzes the procedure-call behavior of the program, and determines whether to duplicate
the statements of a procedure or duplicate the procedure call. Rebaudengo et al [12]
and Nicolescu et al [9] proposed systematic approaches for introducing redundancy into
programs to detect errors in both data and code. Their approach demonstrated good er-
ror detection capabilities, but it also introduced considerable memory overheads due to
full duplication for all variables. Our approach, in contrast, tries to minimize the mem-
ory overhead and retains the same degree of reliability that would be provided by full
duplication. Audet et al [2] presented an approach for reducing a program’s sensitivity
to transient errors by modifying the program structure, without introducing redundancy
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into the program. Although this approach introduces almost no extra memory overhead,
it cannot provide the same degree of reliability that would be provided by full duplica-
tion. Benso et al [3] presented a similar work that improves the reliability of a C code by
code reordering. They do not consider memory optimization through array reuse. Shir-
vani et al [14] used software-implemented error detection and correction (EDAC) code
to provide protection against transient errors. Several prior studies targeted at specific
platforms. Gong et al [5,6] proposed a compiler-assisted approach to fault detection in
regular loops for distributed-memory systems. Their approach focuses on performance
issues, and does not consider memory consumption. In comparison, our objective in
this work is to reduce memory overheads.

7 Concluding Remarks

Many embedded systems operate under multiple constraints such as limited memory
size, limited battery power, real-time performance, reliability, and security.
Consequently, in optimizing for one constraint, one should be very careful in controlling
the impact of doing so on other constraints. Motivated by this observation, this paper
presents a memory space conscious compiler-based approach that targets improving re-
liability of array-based programs against soft errors, a form of transient errors. The idea
is to reuse the memory locations of inactive array elements (i.e., the elements that have
reached their last uses) as placeholders for the duplicates of the actively used array
elements. We present two specific algorithms based on this idea, and test their effec-
tiveness using a set of twelve array-based applications. Our experimental evaluation
demonstrates that our approach is successful in reducing the extra memory demand due
to improved reliability.
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Abstract. We present a new type system for an object-oriented (OO) language
that characterizes the sizes of data structures and the amount of heap memory
required to successfully execute methods that operate on these data structures.
Key components of this type system include type assertions that use symbolic
Presburger arithmetic expressions to capture data structure sizes, the effect of
methods on the data structures that they manipulate, and the amount of memory
that methods allocate and deallocate. For each method, we conservatively capture
the amount of memory required to execute the method as a function of the sizes
of the method’s inputs. The safety guarantee is that the method will never attempt
to use more memory than its type expressions specify. We have implemented a
type checker to verify memory usages of OO programs. Our experience is that
the type system can precisely and effectively capture memory bounds for a wide
range of programs.

1 Introduction

Memory management is a key concern for many applications. Over the years researchers
have developed a range of memory management approaches; examples include explicit
allocation and deallocation, copying garbage collection, and region-based memory al-
location. However, an important aspect that has been largely ignored in past work is
the safe estimation of memory space required for program execution. Overallocation of
memory may cause inefficiency, while underallocation may cause software failure. In
this paper, we attempt to make memory usage more predictable by static verification on
the memory usage of each program.

We present a new type system, based on dependent type[21], that characterizes the
amount of memory required to execute each program component. The key components
of this type system include:

– Data Structure Sizes and Size Constraints: The type of each data structure in-
cludes index parameters to characterize its size properties, which are expressed in
terms of the sizes of data structures that it contains. In many cases the sizes of these
data structures are correlated; our approach uses size constraints expressed using
symbolic Presburger arithmetic terms to precisely capture these correlations.
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– Heap Recovery: Our type system captures the distinction between shared and un-
aliased objects and supports explicit deallocation of unaliased objects.

– Preconditions and Postconditions: Each method comes with a precondition that
captures both the expected sizes of the data structures on which it operates and any
correlations between these sizes. The method’s postcondition expresses the new
size and correlations of these data structures after the method executes as a function
of the original sizes when the method was invoked.

– Heap Usage Effects: Each method comes with two memory effects. These effects
use symbolic values (present in method precondition) to capture (i) memory re-
quirement which specify the maximum heap space that the method may consume,
(ii) memory release which specify the minimum heap space that the method will
recover. Heap effects are expressed at the granularity of classes and can capture the
net change in the number of instances of each class.

Our paper makes several new technical contributions. Firstly, we design a formal
verification system in the form of a type system, that can formally and statically capture
memory usage for the object-oriented (OO) paradigm. We believe that ours is the first
such formal type system for OO paradigm. Secondly, we advocate for explicit heap re-
covery to provide more timely reclamation of dead objects in support of tighter bounds
on memory usage. We show how such recovery commands may be automatically in-
serted. Thirdly, we have proven the soundness of our type checking rules. Each well-
typed program is guaranteed to meet its memory usage specification, and will never
fail due to insufficient memory whenever its memory precondition is met. Lastly, we
have implemented a type checker (with an inference mechanism) and have shown that
it is fairly precise and can handle a reasonably large class of programs. Runtime stack
space to hold methods’ parameters and local variables is another aspect of memory
needed. For simplicity, we omit its consideration in this paper.

2 Overview

Memory usage occurs primarily in the heap to hold dynamically created objects. In our
model, heap space is consumed via the new operation for newly created objects, while
unused objects may be recovered via an explicit deallocation primitive, called dispose.
Memory usage (based on consumption and recovery) should be calculated over the
entire computation of each program. This calculation is done in a safe manner to help
identify the high watermark on memory space needed. We achieve this through the use
of a conservative upper bound on memory consumed, and a conservative lower bound
on memory recovered for each expression (and method).

To safely predict the memory usage of each program, we propose a size-polymorphic
type system for object-oriented programs with support for interprocedural size analysis.
In this type system, size properties of both user-defined types and primitive types are
captured. In the case of primitive integer type int〈v〉, the size variable v captures its in-
teger value, while for boolean type bool〈b〉, the size variable b is either 0 or 1 denoting
false or true, respectively. (Note that size variables capture some integer-based prop-
erties of the data structure. For simple types, the values are directly captured.) For user-
defined class types, we use c〈n1, . . . , np〉 where φ ; φI with size variables n1, . . . , np to
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denote size properties that are defined in size relation φ, and invariant constraint φI . As
an example, consider a user-defined stack class, that is implemented with a linked list,
and a binary tree class as shown below.

class List〈n〉 where n=m+1 ; n≥0 { Object〈〉@S val; List〈m〉@U next; · · · }
class Stack〈n〉 where n=m ; n≥0 { List〈m〉@U head; · · · }
class BTree〈s, d〉 where s=1+s1+s2∧d=1+max(d1, d2) ; s≥0∧d≥0 {
Object〈〉@S val; BTree〈s1, d1〉@U left; BTree〈s2, d2〉@U right; · · · }

List〈n〉 denotes a linked-list data structure of size n, and similarly for Stack〈n〉. The
size relations n=m+1 and n=m define some size properties of the objects in terms of
the sizes of their components, while the constraint n≥0 signifies an invariant associated
with the class type. Class BTree〈s, d〉 represents a binary tree with size variables s and
d denoting the total number of nodes and the depth of the tree, respectively. Due to
the need to track the states of mutable objects, our type system requires the support of
alias controls of the form A=U | S | R | L. We use U and S to mark each reference that
is (definitely) unaliased and (possibly) shared, respectively. We use R to mark read-
only fields which must never be updated after object initialization. We use L to mark
unique references that are temporarily borrowed by a parameter for the duration of
its method’s execution. Our alias annotation mechanism are adapted from [5, 8, 1] and
reported in [9]. Briefly, they allow us to track unique objects from mutable fields, as
well as shareable objects from read-only fields.

To specify memory usage, we decorate each method with the following declaration:

t mn(t1v1, . . . , tnvn) where φpr; φpo; εc; εr {e}

where φpr and φpo denote the precondition and postcondition of the method, expressed
in terms of constraints/formulae on the size variables of the method’s parameters and
result. Precondition φpr denotes an applicability condition of the method in terms of
the sizes of its parameters. Postcondition φpo can provide a precise size relation for the
parameters and result of the declared method. The memory effect is captured by εc and
εr. Note that εc denotes memory requirement, i.e., the maximum memory space that
may be consumed, while εr denotes net release, i.e., the minimum memory space that
will be recovered at the end of method invocation. Memory effects (consumption and
recovery) are expressed using a bag notation of the form {(ci, αi)}m

i=1, where ci denotes
a class type, while αi denotes its symbolic count.

class Stack〈n〉 where n=m ; n≥0 { List〈m〉@U head;
L || void〈〉@S push(Object〈〉@S o) where true; n′=n+1; {(List, 1)}; {}
{ List〈〉@U tmp=this.head; this.head=new List(o, tmp)}

L || void〈〉@S pop() where n>0; n′=n−1; {}; {(List, 1)}
{ List〈〉@U t1 = this.head; List〈〉@U t2 = t1.next; t1.dispose(); this.head = t2}

L || bool〈b〉@S isEmpty() where n≥0; n′=n ∧ (n=0∧b=1 ∨ n>0∧b=0); {}; {}
{ List〈〉@U t = this.head; bool〈〉@S v = isNull(t); this.head = t; v}

L || void〈〉@S emptyStack() where n≥0∧d=n; n′=0; {}; {(List, d)}
{ bool〈〉@S v = this.isEmpty(); if v then () else {this.pop(); this.emptyStack()}}

L || void〈〉@S push3pop2(Object〈〉@S o) where true; n′=n+1; {(List, 2)}; {(List, 1)}
{ this.push(o); this.push(o); this.pop(); this.push(o); this.pop()}}

Fig. 1. Methods for the Stack Class
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Examples of method declarations for the Stack class are given in Fig 1. The nota-
tion (A || ) prior to each method captures the alias annotation of the current this param-
eter. Note our use of the primed notation, advocated in [13, 17], to capture imperative
changes on size properties. For the push method, n′=n+1 captures the fact that the size
of the stack object has increased by 1; similarly, the postcondition for the pop method,
n′=n−1, denotes that the size of the stack is decreased by 1 after the operation. The
memory requirement for the push method, εr={(List, 1)}, captures the fact that one
List node will be consumed. For the pop method, εr={(List, 1)} indicates that one
List node will be recovered.

{Mem.
Req.

Net
Release}

push push pushpop pop
tim e

Fig. 2. push3pop2: Heap Consumption and Recovery

For the isEmpty method,
n′=n captures the fact that
the size of the receiver ob-
ject (this) is not changed by
the method. Furthermore, its
output of type bool〈b〉@S is
related to the object’s size
through a disjunctive con-
straint n=0∧b=1∨n>0∧b=0.

Primitive types are annotated with alias S because their values are immutable and can
be freely shared and yet remain trackable. The emptyStack method releases all List
nodes of the Stack object. For push3pop2 method, the memory consumed (or required)
from the heap is {(List, 2)}, while the net release is {(List, 1)}, as illustrated in Fig. 2.

Size variables and their constraints are specified at method boundary, and need not
be specified for local variables. Hence, we may use bool〈〉@S instead of bool〈v〉@S for
the type of a local variable.

3 Language and Annotations

We focus on a core object-oriented language, called MEMJ, with size, alias, and mem-
ory annotations in Fig 3. MEMJ is designed to be an intermediate language for Java
with either supplied or inferred annotations. A suffix notation y∗ denotes a list of zero
or more distinct syntactic terms that are suitably separated. For example, (t v)∗ denotes
(t1 v1, . . . , tn vn) where n≥0. Local variable declarations are supported by block struc-
ture of the form: (t v = e1; e2) with e2 denoting the result. We assume a call-by-value
semantics for MEMJ, where values (primitives or references) are passed as arguments
to parameters of methods. For simplicity, we do not allow the parameters to be updated
(or re-assigned) with different values. There is no loss of generality, as we can always
copy such parameters to local variables for updating.

The MEMJ language is deliberately kept simple to facilitate the formulation of static
and dynamic semantics. Typical language constructs, such as multi-declaration block,
sequence, calls with complex arguments, etc. can be automatically translated to con-
structs in MEMJ. Also, loops can be viewed as syntactic abbreviations for tail-recursive
methods, and are supported by our analysis. Several other language features, includ-
ing downcast and a field-binding construct are also supported in our implementation.
For simplicity, we omit them in this paper, as they play supporting roles and are not
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P ::= def∗ meth∗

def ::= class c1〈n1..p〉 [ extends c2〈n1..q〉 ]where φ ; φI { fd∗ (A || meth)∗ }
meth ::= t mn((t v)∗) where φpr; φpo; εc; εr {e}

fd ::= t f t ::= τ 〈n∗〉@A A ::= U | L | S | R
τ ::= c | pr w ::= v | v.f pr ::= int | bool | void
e ::=(c) null | k | w | w = e | t v = e1 ; e2 | new c (v∗)

| v.mn(v∗) | mn(v∗) | if v then e1 else e2 | v.dispose()

ε = {(c, α)∗} (Memory Space Abstraction)

φ ∈ F (Presburger Size Constraint)

::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | ∃n · φ | ∀n · φ
b ∈ BExp (Boolean Expression)

::= true | false | α1 =α2 | α1 <α2 | α1≤α2

α ∈ AExp (Arithmetic Expression)

::= kint | n | kint ∗ α | α1+α2 | −α | max(α1,α2) | min(α1,α2)

where kint ∈ Z is an integer constant; n ∈ SV is a size variable

f ∈ Fd is a field name; v ∈ Var is an object variable

Fig. 3. Syntax for the MEMJ Language

core to the main ideas proposed here. The interested reader may refer to our companion
technical report[10] for more information.

To support sized typing, our programs are augmented with size variables and con-
straints. For size constraints, we restrict to Presburger form, as decidable (and practical)
constraint solvers exist, e.g. [19]. We are primarily interested in tracking size properties
of objects.We therefore restrict the relation φ in each class declaration of c1〈n1, .., np〉
which extends c2〈n1, .., nq〉 to the form

∧p
i=q+1 ni=αi whereby V(αi) ∩ {n1, .., np} = ∅.

Note that V(αi) returns the set of size variables that appeared in αi. This restricts size
properties to depend solely on the components of their objects.

Note that each class declaration has a set of instance methods whose main purpose
is to manipulate objects of the declared class. For convenience, we also provide a set
of static methods with the same syntax as instance methods, except for its access to the
this object. One important feature of MEMJ is that memory recovery is done safely
(without creating dangling references) through a v.dispose() primitive.

4 Heap Usage Specification

To allow memory usage to be precisely specified, we propose a bag abstraction of
the form {(ci, αi)}n

i=1 where ci denotes its classification, while αi is its cardinality. In
this paper, we shall use ci ∈ CN where CN denotes all class types. For instance, Υ1 =
{(c1, 2), (c2, 4), (c3, x + 3)} denotes a bag with c1 occurring twice, c2 four times and c3

x + 3 times. We provide the following two basic operations for bag abstraction to cap-
ture both the domain and the count of its element, as follows:
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dom(Υ ) =df {c | (c, n) ∈ Υ} Υ (c) =df

{n, if (c, n) ∈ Υ
0, otherwise

We define union, difference, exclusion over bags as:

Υ1 � Υ2 =df {(c, Υ1(c)+Υ2(c)) | c ∈ dom(Υ1) ∪ dom(Υ2)}
Υ1 − Υ2 =df {(c, Υ1(c)−Υ2(c)) | c ∈ dom(Υ1) ∪ dom(Υ2)}
Υ \ X =df {(c, Υ (c)) | c ∈ dom(Υ )− X}

To check for adequacy of memory, we provide a bag comparator operation under a
size constraint Δ, as follows:

Δ � Υ1 � Υ2 =df (Δ⇒ (∀c ∈ Z · Υ1(c) ≥ Υ2(c))) where Z = dom(Υ1) ∪ dom(Υ2)

The bag abstraction notation for memory is quite general and can be made more
precise by refining its operations. For example, some class types are of the same size
and could replace each other to increase memory reuse. To achieve this we can use a
bag abstraction that is grouped by size(ci) instead of class type ci.

4.1 Heap Consumption

Heap space is consumed when objects are created by the new primitive, and also by
method calls, except that the latter is aggregated to include recovery prior to consump-
tion. Our aggregation (of recovery prior to consumption) is designed to identify a high
watermark of maximum memory needed for safe program execution. For each expres-
sion, we predict a conservative upper bound on the memory that the expression may
consume, and also a conservative lower bound on the memory that the expression will
release. If the expression releases some memory before consumption, we will use the
released memory to obtain a lower memory requirement. Such aggregated calculations
on both consumption and recovery can help capture both a net change in the level of
memory, as well as the high watermark of memory needed for safe execution.

For example, consider a recursive function which does p pops from one stack object,
followed by the same number of pushes on another stack.

void〈〉@S moverec(Stack〈a〉@L s, Stack〈b〉@L t, int〈p〉@S i)
where a≥p≥0; a′=a−p∧b′=b+p; {} ; {}
{ if i<1 then ()
else {Object〈〉@S o = s.top(); s.pop(); moverec(s, t, i−1); t.push(o)} }

Due to aggregation (involving recovery before consumption), the heap space that
may be consumed is zero. For each recursive call, the space for a List node is released
by s.pop() before it is reused by t.push(o). Aggregated over the recursive calls, we will
have p number of List nodes that have been released before the same number of nodes
are consumed. Hence, no new heap space is needed. Such aggregation is sensitive to
the order of the operations.

Consider now a different function which performs p pushes on t, followed by the
same number of pops from s.

void〈〉@S moverec2(Stack〈a〉@L s, Stack〈b〉@L t, int〈p〉@S i)
where a≥p≥0; a′=a−p∧b′=b+p; {(List, p)}; {(List, p)}
{ if i<1 then ()
else {Object〈〉@S o = s.top(); t.push(o); moverec2(s, t, i−1); s.pop()} }
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Though the net change in memory usage is also zero, the memory effect for this
function is different as we require p number of List nodes to be consumed on entry,
before the same number of List nodes are recovered. This new memory effect has the
potential to push up the high watermark of memory needed by p List nodes.

4.2 Heap Recovery

Explicit heap space recovery via dispose has several advantages. It facilitates the timely
recovery of dead objects, which allows memory usage to be predicted more accurately
(with tighter bounds). It also permits the use of more efficient custom allocators[4],
where desired. Moreover, we shall provide an automatic technique to insert dispose
primitives with the help of alias annotation. With such a technique, we only need to
ensure that objects that are being disposed are non-null. This non-nullness property can
be captured by a non-nullness analyser, such as [12]. This property is required as we
always recover memory space for each dispose primitive.

Memory recovery via dispose should occur when unique references that are still
alive (not in dead-set) are being discarded. This could occur at four places1 : (i) end
of local block, (ii) end of method block, (iii) prior to assignment operation, and (iv)
at conditional expression. We would like to recover the memory space for each non-
null reference that is about to become dead. For example, consider the pop method’s
definition:

L | void〈〉@S pop() where · · · { List〈〉@U t1 = this.head; head = t1.next}

The object pointed to by head is about to become dead prior to the operation,
head = t1.next. To recover this dead object, we insert a dispose command to obtain
head = (t1.next <; head.dispose()) where e1<;e2≡(t v = e1;e2;v). Consider the defi-
nition of the destroy method which calls emptyStack with an L-mode parameter.

void〈〉@S destroy(Stack〈n〉@U s) where · · · {emptyStack(s)}

A unique s object is about to become dead at the end of the destroy method. To
recover this space, we can insert s.dispose() prior to the method’s exit.

Let us formalise an automatic technique for the explicit recovery of dead objects
that are known at compile-time. Given an expression e, we utilize the alias annotation
to obtain a new expression e1 where suitable explicit heap dispose operations have been
safely inserted. This is achieved by a translation below with Γ to denote a type environ-
ment mapping program variables to their annotated types, and Θ(Θ1) to denote the set
of dead references (of the form v or v.f) before (after) the evaluation of expression e.

Γ ;Θ � e ↪→H e1 :: t, Θ1

Most rules are structure-preserving (or identity) rewritings, except for four rules given
in Fig 4. A sequence of disposals can be effected through dispose(D), with D containing
a set of variable/field references that are about to be dead at the end of expression e.

For the assignment rule [H:ASSIGN], we add w to the disposal set if it is unique and
is not yet in dead-set using D = {w | ann(t)=U}−Θ1. The function isParam(w) returns

1 Note that unique reference cannot escape through e1 in e1; e2 as we require e1 to be of the
void type.
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[H:ASSIGN]

¬ isParam(w) Γ (w) = t
D = {w | ann(t) = U} −Θ1

Γ ; Θ � e ↪→H e1 :: t1, Θ1

� t1 <: t
e2 = (e1 � D=∅� e1<; dispose(D))

Γ ; Θ � w = e ↪→H

w = e2 :: void@S, Θ1\w

[H:IF]

Γ (v) = bool〈b〉@S
Γ ;Θ � ei ↪→H êi :: ti, Θi i = 1, 2
t = msst(t1, t2) Θ3 = Θ1 ∪Θ2

Di = Θ3−Θi i = 1, 2
Ei = (êi � Di=∅� êi<; dispose(D)) i = 1, 2

Γ ; Θ � if v then e1 else e2 ↪→H

if v then E1 else E2 :: t, Θ3

[H:METH]

Γ1 = Γ + {v1 :: t1, .., vp :: tp}
Γ1; ∅ � e ↪→H e1 :: t, Θ
� t <: t0 ann(t0) 
= L

∀i∈1..p·(ann(ti)=L)⇒(∀f ·vi.f 
∈Θ)
D = {w | (w :: t) ∈ Γ1, ann(t)=U}−Θ
e2 = (e1 � D=∅� e1<; dispose(D))

Γ �meth t0 mn((ti vi)i:1..p){e}
↪→H t0 mn((ti vi)i:1..p) {e2}

[H:LOCAL]

Γ ; Θ � e1 ↪→H e3 :: t1, Θ1

� t1 <: t
ann(t) 
∈ {L, R}

Γ+{v :: t}; Θ1 � e2 ↪→H e4 :: t2, Θ2

D = {v | ann(t) = U} −Θ2

e5 = (e4 � D=∅� e4<; dispose(D))

Γ ; Θ � (t v = e1 ; e2) ↪→H

(t v = e3 ; e5) :: t2, Θ2\v

Fig. 4. Automatic Insertion of dispose operation

true if w is a parameter variable, otherwise it returns false (for fields and local vari-
ables). The function ann extracts the alias of an annotated type, ann(τ 〈v∗〉@A) = A. A

conditional is expressed as ξ1 � b � ξ2 =df

{ ξ1, if b;
ξ2, otherwise.

Furthermore, we have:

Θ\v =df Θ − {v, v.f∗} Θ\v.f =df Θ − {v.f}

For the method declaration rule [H:METH], we add to the disposal set those parame-
ters which are unique but not yet dead using {w | (w :: t) ∈ Γ1, ann(t) = U} −Θ. For the
local declaration rule [H:LOCAL], we add v to the disposal set if it is unique but not yet
dead using {v | ann(t) = U} −Θ2. For the [H:IF] rule, the uniqueness that are consumed
in one branch may have their heap spaces recovered in the other branch. This is cap-
tured by Di = Θ3−Θi , i = 1, 2. Notice that msst(t1, t2) returns the minimal supertype of
both t1 and t2, as follows:

τ1 <: τ τ2 <: τ ∀τ3 · (τ1, τ2 <: τ3⇒τ <: τ3)

A1≤aA A2≤aA ∀A3 · (A1, A2≤aA3⇒A≤aA3)

msst(τ1@A1, τ2@A2) =df τ@A

Note that τ1 <: τ2 denotes the subtype relation for underlying types (without anno-
tations). Alias subtyping rules (shown below) allow unique references to be passed to
shared and lent-once locations (in addition to other unique locations), but not vice-versa.

A ≤a A U≤a L U ≤a S

In the rest of this paper, we shall present a new static type system for verifying
memory heap usage, followed by a set of safety theorems on the type rules.
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5 Rules for Memory Checking

We present type judgements for expressions, method declarations, class declarations
and programs to check for adequacy of memory, using relations of the form:

Γ ; Δ; Υ � e :: t, Δ1, Υ1 Γ �meth meth �class def � P

Note that Γ is the type environment as explained earlier; Δ(Δ1) denotes the size
constraint, which holds for the size variables associated with Γ (Γ and t) for expression
e before (after) its evaluation; t is an annotated type. Also, Υ (Υ1) is used to denote the
available memory space in terms of bag abstraction before (after) the evaluation.

We present a few key syntax-directed type rules in Fig 5, with the rest of the rules in
the technical report. Before that, let us describe some notations used by the type rules.

[ASSIGN]

Γ ; Δ; Υ � e :: t1, Δ1, Υ1 Γ � w :: t, φ, Y

� t1<:t, ρ X=V(t1)∪V(t) Δ2=∃X·(Δ1◦Yρφ)

Γ ; Δ; Υ � w = e :: void〈〉@S, Δ2, Υ1

[DISPOSE]
Γ (v) = c〈n∗〉@U Υ1 = Υ � {(c, 1)}

Γ ; Δ; Υ � v.dispose() :: void〈〉@S, Δ, Υ1

[NEW]
fdList(c〈n∗〉) = ([(t̂i fi)]

p
i=1, φ′)

r∗ = fresh() ti = prime(Γ (vi))
� ti <: [R �→ S]t̂i, ρi i∈1..p
ρ = [n∗ �→ r∗]∪

⋃p
i=1ρi

Δ � Υ � {(c, 1)} X =
⋃p

i=1 V(t̂i)
Δ1 = Δ∧(∃X·ρφ′) Υ1 = Υ−{(c, 1)}

Γ ;Δ; Υ � new c(v1..p) :: c〈r∗〉@U, Δ1, Υ1

[IF]
Γ (v) = bool〈b〉@S

Γ ; Δ ∧ b′ = 1; Υ � e1 :: t1, Δ1, Υ1

Γ ; Δ ∧ b′ = 0; Υ � e2 :: t2, Δ2, Υ2

(t, Υ3, Δ3) = unify(t1, t2, Υ1, Υ2, Δ1, Δ2)

Γ ; Δ; Υ � if v then e1 else e2 :: t, Δ3, Υ3

[OVERRIDE]
methk = t mn((ti vi)i:1..p) where

φprk; φpok; εkm; εkn {· · · }, k = 1, 2
φpr1⇒φpr2 φpo2⇒φpo1

φpr1 � ε1m�ε2m φpr1 � ε2n�ε1n

� OverridesOK(meth1, meth2)

[IMI]
� (A || t̂ mn((t̂i v̂i)i:1..p) where φpr; φpo; εc; εr{e})∈c〈n∗〉

t = fresh(t̂) t0 = c〈n∗〉@A Γ (vi) = ti i∈0..p � ti <: t̂i, ρi i∈1..p
ρp =

⋃p
i=1 ρi Δ1 � Υ�εc ρ=rename(t̂, t)∪ρp∪prime(ρp)

Δ≈>V(Γ ) ∃V(εc)∪V(εr)·ρ φpr Δ1 = Δ ◦L ∃Y · ρ(φpr∧φpo)
Υ1 = Υ−εc�εr X =

⋃p
i=1 V(t̂i) Y = X ∪ prime(X) L =

⋃p
i=0 V(ti)

Γ ; Δ; Υ � v0.mn(v1..p) :: t, Δ1, Υ1

[METH]

Γ1 = Γ ∪ {v1 :: t̂1, .., vp :: t̂p} Δ = noX (Γ1)∧φpr∧inv(Γ1) Δ�εc�∅
Γ1; Δ;εc � e :: t, Δ1, Υ1 φpr∧Δ1�Υ1 � εr Δ�εr�∅ � t <: t̂, ρ

( , , Ni) = Vfield(t̂i), i∈1..p Y =
⋃p

i=1 Ni (∃ prime(Y)·Δ1)⇒ρ(φpo)

Γ �meth t̂ mn((t̂i vi)i:1..p) where φpr; φpo; εc; εr {e}

Fig. 5. Some Type Rules for Memory Checking
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5.1 Notations

We use function V to return size variables of a formula, e.g. V(x′=z+1∧y=2)={x′, y, z}.
We extend it to annotated type, type environment, and memory specification, e.g.,
V(τ 〈n∗〉@A)={n∗}, V({(c, 4×d+8)})={d}. The function prime takes a set of size vari-
ables and returns their primed version, e.g. prime({s1, . . . , sn})={s′1, . . . , s′n}. Note that
prime operation is idempotent, namely (v′)′=v′. We extend this to (annotated) type, type
environment,and even substitution. For example, prime(τ 〈n1, . . . , nk〉) = τ 〈n′

1, . . . , n
′
k〉,

and prime([x �→a, y �→b]) = [x′ �→a′, y′ �→b′]. Often, we need to express a no-change con-
dition on a set of size variables. We define a noX operation as follows which returns a
formula for which the original and primed variables are made equal.

noX ({}) =df true noX ({x}∪X) =df (x′=x)∧noX (X)

We extend this function to annotated types (and type environments), as follows:
noX (t) =df noX (V(t)). Also, we use n∗ = fresh() to generate new size variables n∗. We
extend it to annotated type, so that t̂ = fresh(t) will return a new type t̂ with the same
underlying type as t but with fresh size variables instead. Function rename(t1, t2) returns
an equality substitution, e.g. rename(Int〈r〉,Int〈s′〉)=[r �→s′]. The operator ∪ combines
two domain disjoint substitutions into one.

The function fdList is used to retrieve a full list of fields for a given class, together
with its size relation. The function inv is used to retrieve the size invariant that is asso-
ciated with each type. This function shall also be extended to type environment and list
of types. The function Vfield classifies size variables from each field into three groups :
(i) immutable, (ii) mutable but unique, (iii) otherwise (non-trackable).

To effect a change φ to an existing poststate Δ, we provide an operator, ◦Y , with
Y = {s∗} to denote the set of size variables that is to be updated, as follows:

Δ ◦Y φ =df ∃ r1 · · · rn · ρ2(Δ) ∧ ρ1(φ)
where Y = {s1, . . . , sn} ; {r1, . . . , rn} = fresh() ; ρ1 = [si �→ ri]

n
i=1 ; ρ2 = [s′i �→ ri]

n
i=1

5.2 Assignment

The [ASSIGN] rule captures imperative updates (to object fields and variables) by mod-
ifying the current size constraint to a new updated state with changes to the imperative
size variables from the LHS. From the rule, note that Γ � w :: t, φ, Y is to identify Y as a
set of imperative size variables and also to gather a constraint φ for this set. The subtype
relation � t1 <: t, ρ will return a substitution that maps the size variables of supertype
to that of the subtype. This mapping ignores all non-trackable size variables that may
be globally aliased, but immutable and unique mutable size variables are captured.

5.3 Memory Operations

The heap space is directly changed by the new and dispose primitives. Their corre-
sponding type rules, [NEW] and [DISPOSE], would ensure that sufficient memory is
available for consumption by new and will credit back space relinquished by dispose.
The memory effect is accumulated according to the flow of computation. Consider:
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Δ�Υ�{(List, 1)} Δ1=Δ◦{x}x′=x+1

Γ ;Δ; Υ � x = new List(o, x) :: void〈〉@S, Δ1, Υ−{(List, 1)}
Υ1=(Υ−{(List, 1)})�{(List, 1)}

Γ ;Δ1; Υ−{(List, 1)} � y.dispose() :: void〈〉@S, Δ1, Υ1

Γ ;Δ; Υ � x = new List(o, x); y.dispose() :: void〈〉@S, Δ1, Υ

The new operation consumes a List node, while the dispose operation releases
back a List node. The net effect is that available memory Υ is unchanged. However,
due to the order of the two operations, we require Δ�Υ�{(List, 1)} which affects the
maximum memory required.

Another rule which has a direct effect on memory is the method invocation rule
[IMI]. Sufficient memory must be available for consumption prior to each call (as spec-
ified by Δ1 � Υ�εc), with the net memory release added back in the end (as specified
by Υ1 = Υ−εc�εr). Each method precondition must be met by the pre-state of its caller.
This is checked by Δ≈>V(Γ ) ∃V(εc)∪V(εr)·ρ φpr which uses a relation ≈>X , defined as:

Δ ≈>X φ =df (Δ ⇒ ρφ), where ρ = [s1 �→ s′1, .., sn �→ s′n] ∧ Vu(φ) ∩X = {s1, .., sn}.

Note that Vu returns size variables in unprimed form, e.g. Vu(x′=z+1∧y=2)

= {x, y, z}.

5.4 Conditional

Our type rule for conditional [IF] is able to track both the size-constraints and mem-
ory usages in a path-sensitive manner. Path-sensitivity is encoded by adding b′=1 and
b′=0 to the pre-states of the two branches, respectively. We achieve path-sensitivity for
memory usage specification by integrating it with relational size constraints derived.
Take note that the unify operation merges the post-state constraints and memory us-
ages from the two branches via a disjunction, a formal definition and an example can
be found in our report [10]. Path-sensitivity makes our analysis more accurate and is
critical for analysing the memory requirement of recursive methods.

5.5 Method Declaration

Each method declaration is checked to see if its definition is consistent with the mem-
ory usage specification given in its declaration header by the [METH] rule. The initial
memory is εc. The final available memory of the method body e is Υ1 which must not
be less than the declared net memory release (as specified by φpr∧Δ1 � Υ1 � εr).

Function subtyping for the OO paradigm is used to support method overriding. This
is captured by the [OVERRIDE] rule in Fig 5. Each method which overrides another
is expected to be contravariant on its precondition (and memory consumption) and
covariant on its postcondition (and memory releases).

6 Soundness of Type System

We have proposed a small-step operational semantics (denoted by ↪→ transitions) instru-
mented with alias and size notations[10], and have also formalised two safety theorems
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for our type rules. The first theorem states that each well-typed expression preserves
its type under reduction with a runtime environment Π and a store � that are consistent
with the compile-time counterparts, Γ (type environment) and Σ (store typing). Also,
final size constraint is consistent with the value obtained on termination.

Theorem 1 (Preservation).

(a) (Expression) If Γ ; Σ; Δ; Θ; Υ � e :: t, Δ1, Θ1, Υ1 Γ ; Σ; Δ; Θ; Υ |= 〈Π, �, σ〉
〈Π, �,σ〉 [e] ↪→ 〈Π1, �1, σ1〉 [e1]

then there exist Σα ⊇ Σ, Γα, Δα, Θα, and Υα, such that

Γ − diff(e, e1) = Γα − diff(e1, e) Γα; Σα; Δα; Θα; Υα � e1 :: t, Δ1, Θ1, Υ1

Γα; Σα; Δα; Θα; Υα |= 〈Π1, �1, σ1〉 .

(b) (Value) If Γ ;Σ; Δ; Θ; Υ � (A, δ) :: t, Δ1, Θ1; Υ1 Γ ;Σ; Δ; Θ; Υ |= 〈Π, �, σ〉
then the following hold:

Θ = Θ1 Γ + {x :: t}; Σ; Δ2; Θ1; Υ1 |= 〈Π + {x �→ (A, δ)}, �, σ〉

where x = fresh() , Δ2 = [v �→ v′]v∈V(t)Δ1.

Proof: By induction over the depth of type derivation for expression e. Details are given
in the technical report [10]. �

The second safety theorem on progress captures the fact that well-typed programs
cannot go wrong. Specifically, this theorem guarantees that no memory adequacy errors
are ever encountered for well-typed MEMJ programs, as follows:

Theorem 2 (Progress). If Γ ; Σ; Δ; Θ; Υ�e :: t, Δ1, Θ1, Υ1 and Γ ;Σ;Δ;Θ;Υ |= 〈Π,�, σ〉,
then either e is a value, or 〈Π, �, σ〉 [e] ↪→ Err-Null, or there exist Π1, �1, σ1, e1 such
that 〈Π,�, σ〉 [e] ↪→ 〈Π1, �1, σ1〉 [e1].

Proof: By induction over the depth of type derivation for expression e. Details are given
in the technical report [10]. �

7 Implementation

We have constructed a type checker for MEMJ, and have also built a preprocessor to
allow a more expressive language to be accepted. The entire prototype was built using
a Haskell compiler[18] where we have added a library (based on [19]) for Presburger
arithmetic constraint-solving.

The main objective of our initial experiments is to show that our memory usage
specification mechanism is expressive and that such an advanced form of type checking
is viable. We converted to MEMJ a set of programs from the Java version of the Olden
benchmark suite [7] and another set of smaller programs from the RegJava bench-
mark[11], before subjecting them to memory adequacy checking. Our initial experi-
mental results are encouraging; however this is a proof-of-concept implementation and
there is scope for optimization and more exhaustive experimentation.
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Programs Size (lines) Checking (in sec.) Verified
Source Ann. Alias Memory Methods

bisort 340 7 0.01 2.56 6/6
em3d 462 19 0.05 1.14 20/20
health 562 22 0.05 6.37 15/15
mst 473 31 0.02 1.26 22/22

power 765 24 0.06 4.28 19/19
treeadd 195 6 0.02 0.32 4/4

tsp 545 10 0.02 3.54 9/9
perimeter 745 12 0.02 21.81 8/8
n-body 1128 31 0.60 1.25 22/22
Voronoi 1000 45 0.03 3.51 39/40

stack 122 12 0.01 0.08 10/10
sieve 88 7 0.01 0.09 6/6

m-sort 183 13 0.01 0.36 12/12
life 164 9 0.02 2.95 7/7

Mandelbrot 194 11 0.01 1.72 10/10
Reynolds3 98 6 0.01 0.18 4/4

Fig. 6. Type Checking Experimental Results

Figure 6 summarises the statis-
tics obtained for each program
that we have verified via our type
checker. Column 3 illustrates the
size and memory annotation over-
heads which must be made in
the header declarations of each
class and method. Columns 4 and
5 highlight the CPU times used
(in seconds) for alias and mem-
ory checking, respectively. Our ex-
periments were done under Red-
hat Linux 9.0 platform on Pen-
tium 2.4 GHz with 768MB main
memory. Except for the perimeter
program (which has more condi-
tionals from using a quadtree data
structure), all programs take under
10 seconds to verify, despite them
being medium-sized programs and

the high complexity of Presburger solving. We attribute this to the fact that memory
declarations are verified in a summary-based fashion for each method definition.The
last column highlights the number of methods that have been successfully verified as
using memory spaces that are bounded by symbolic Presburger formulae.All methods’
heap usage could be statically bounded, except2 for a method in Voronoi that has an
allocation inside a loop, with a complex termination condition.

Program Input Size Prediction (a) Actual (b) Allocation (c) Reuse (b/c) Accuracy (b/a)
sieve 10000 10000 9999 10000 0.9999 0.9999

m-sort 10000 20000 20000 287232 0.0696 1.0000
life 1000 2 2 1000 0.0020 1.0000

Mandelbrot 100 4 4 83692 0.00005 1.0000
Reynolds 10000 20014 20014 40000 0.5004 1.0000

Fig. 7. Experimental Results on Memory Prediction and Recovery

We have also conducted a set of experimental results to evaluate on the effective-
ness of memory inference, in conjunction with our explicit memory recovery scheme.
We modified IBM’s Jikes RVM[2, 16] to provide support for explicit dispose operation
and instrumented its memory system to capture total allocation (c) and actual high wa-
termark (b). We then compare it against the predicted memory requirement (a) from our
memory inference. We count the number of objects created and reused. As can be seen
in Fig 7, our memory inference is accurate for the RegJava benchmark. Except for sieve,

2 For Olden programs which built tree-like data structure, we make a minor change to take total
nodes rather than heights as parameters. This avoids exponential formulae.
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most of the programs have high degree of memory reuse which were facilitated by our
use of the dispose operation for memory recovery.

8 Related Work

Past research on memory models for object-oriented paradigm have focused largely on
efficiencyand safety. We are unaware of any prior type-based work on analysing heap
memory usage by OO programs for the purpose of checking for memory adequacy. The
closest related work on memory adequacy are based on first-order functional paradigm,
where data structures are mostly immutable and thus easier to handle.

Hughes and Pareto [15] proposed a type and effect system on space usage estimation
for a first-order functional language, extended with region language constructs of Tofte
and Talpin’s[20].The use of region model facilitates recovery of heap space. However,
as each region is only deleted when all its objects become dead, more memory than
necessary may be used, as reported by [4].

Hofmann and Jost [14] proposed a solution to obtain linear bounds on the heap
space usage of first-order functional programs. A key feature of their solution is the use
of linear typing which allows the space of each last-use data constructor (or record) to
be directly recycled by a matching allocation. With this approach, memory recovery can
be supported within each function, but not across functions in general. Moreover, their
model does not track the symbolic sizes of data structures.Nevertheless,one significant
advance of their work is an inference mechanism through linear programming (LP)
technique.The main advantage of LP technique is that no fix-point analysis is required,
but it restricts the memory effects to a linear form without disjunction.

Apart from the above memory analysis work on high level languages, Aspinall and
Compagnoni [3] presented a first-order linearly typed assembly language to allow safe
reuse of heap space.Their system is a target for the compilation of a functional pro-
gramming language with a similar type systems (e.g. Hofmann’s LFPL). More recently,
Cachera et. al. [6] proposed a constraint-based memory analysis for Java Bytecode-like
languages. For a given program their loop-detecting algorithm can detect methods and
instructions that execute an unbounded number of times, thus can be used to check
whether the memory usage is bounded or not. However, their analysis cannot check
whether a given amount of memory is adequate or not, while our system does.

9 Concluding Remarks

We have proposed a memory usage type system for a non-trivial object-oriented core
language. We have designed a flexible specification mechanism to allow memory needs
of user programs to be declared abstractly, and then verifies if memory adequacy prop-
erty holds for the given definitions. Our approach requires heap space to be explicitly
deallocated, which can be handled automatically. We have also built a prototype type
checker to confirm the viability and practicality of our approach. We envision our frame-
work to be useful for embedded system, where memory is considered to be a critical
resource. We also envision the synergy of predicable memory bounds with region-based
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memory management systems. In particular, bounded memory regions can result in bet-
ter performance. Synergistically, region-based system can provide timely recovery for
shared objects that are dead, providing us with tighter memory bounds.

Acknowledgement. The authors would like to acknowledge the invaluable help of
Florin Craciun with the evaluation of a set of the benchmark programs.
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A Alias Checking

We introduce four alias control mechanisms U | S | R | L adopted from [5, 8, 1]. These
alias mechanisms shall be used to support precise size tracking in the presence of mu-
table objects, and also for the automatic recovery of dead unique objects. For size-
tracking, we introduce R-mode fields to allow size-immutable properties to be accu-
rately tracked for all objects. For example, an alternative class declaration for the list
data type is given below, where its next field is marked as read-only (or immutable).
Note that the val field remains mutable.

class RList〈n〉 where n=m+1 ; n≥0 { Object〈〉@S val; RList〈m〉@R next; · · · }

The size property of such an RList type can be analysed at compile-time, while
allowing its objects to be freely shared. However, this comes at the cost of losing both
mutability and uniqueness.

We make use of L-mode parameters, with the limited unique (or lent-once) property
[8], to capture unique references that are temporarily lent out to method calls. They
allow the preservation of uniqueness together with precise size-tracking across methods.
Consider the following method with two List parameters.

void〈〉@S join(List〈m〉@L x, List〈n〉@U y) where n > 0; m′=n+m; · · ·
{ if isNull(x.next) then x.next = y else join(x.next, y) }

The first parameter is annotated as lent-once and can thus be tracked for size proper-
ties without loss of uniqueness. However, the second parameter is marked unique as its
reference escapes the method body (into the tail of the List from the first parameter). In
other words, the parameter y can have its uniqueness consumed but not x, as reflected
in the body of the above method declaration. Given two unique lists, a and b, the call
join(a, b) would consume the uniqueness of b but not that of a. Our lent-once policy is
more restrictive than normal lending [1] as we require each lent-once parameter to be
unaliased within the scope of its method. For example, join(a, a) is allowed by the type
rules of [1], but disallowed by our lent-once’s policy.

In our alias type system, uniqueness may be transferredfrom one location (variable,
field or parameter) to another location. Consider a type environment {x::Object〈〉@U,
y::Object〈〉@U, z::Object〈〉@S} where variables x and y are unique, while z is shared. In
the following code, {x = y; z = x}, the uniqueness of y is first transferred to location x,
followed by the consumption of uniqueness of x that is lost to the shared variable z. In
our type judgement, we track variables/fields that have become dead using:

Γ ; Θ � e :: t, Θ1
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Here, each dead-set Θ(Θ1) captures the set of references with consumed uniqueness
before(after) the evaluation of expression e. Γ is a type enviroment which maps vari-
ables to their annotated types. Other type judgements for methods, classes and programs
have the following forms.

Γ �meth meth �def def �P defi:1..p methi:1..q

The full set of alias checking rules are givenin our technical report [10]).
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Abstract. Abstraction can often lead to spurious counter-
examples. Counterexample-guided abstraction refinement is a method
of strengthening abstractions based on the analysis of these spurious
counterexamples. For invariance properties, a counterexample is a finite
trace that violates the invariant; it is spurious if it is possible in the ab-
straction but not in the original system. When proving termination or
other liveness properties of infinite-state systems, a useful notion of spu-
rious counterexamples has remained an open problem. For this reason,
no counterexample-guided abstraction refinement algorithm was known
for termination. In this paper, we address this problem and present the
first known automatic counterexample-guided abstraction refinement al-
gorithm for termination proofs. We exploit recent results on transition in-
variants and transition predicate abstraction. We identify two reasons for
spuriousness: abstractions that are too coarse, and candidate transition
invariants that are too strong. Our counterexample-guided abstraction
refinement algorithm successively weakens candidate transition invari-
ants and refines the abstraction.

1 Introduction

The correctness argument for a program can sometimes be based on a small
fraction of the original program code. However, it is often hard to extract this
core automatically if the program is large and complex.

Automated abstraction refinement [6,19] is designed to solve precisely this
problem. It automatically extracts just the information that is needed to prove
the correctness property. Such algorithms are known for safety and invariance
properties [2,5,6,13,14,15,16,17,19]. However, no such algorithm is known for
termination proofs of infinite-state systems.

Abstraction refinement is based on the notion of spurious counterexamples.
For invariance properties, a counterexample is a finite trace that violates the
invariant. The counterexample is spurious if the trace is possible in the abstract
system, but infeasible in the concrete system. The proof of the infeasibility of
the trace provides guidance for adding more precision to the abstraction (and
thus refining it).

For termination and liveness properties of infinite-state programs, a useful
notion of spurious counterexamples has been an open problem. In this paper,
we address this problem and present the first known counterexample-guided
abstraction refinement algorithm for termination.
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We follow a recent approach to temporal verification of infinite-state sys-
tems that is based on transition invariants [21] and transition predicate abstrac-
tion [22]. This approach is a promising starting point for the development of our
refinement method because of its connection with abstraction methods [11]. Let
T be the transition relation of the infinite-state system. Transition invariant is
the least fixed point of an operator F (defined as F(Q) = Q ◦ T ), or rather its
abstraction wrt. a set of transition predicates. The least fixed point construc-
tion is in analogy with abstract proofs for invariance properties, but the analogy
stops here. Let us explain this point in detail.

Let I be an invariant and F be an operator such that

F (X) = {s′ | s ∈ X and (s, s′) ∈ T } .

To prove that the invariant I holds we can search for an abstraction F#
P

based on a set of predicates P such that the least fixed point of F#
P is contained

in I:

∃P. lfp(F#
P ) ⊆ I .

The termination property does not come with an a priori fixed transition
invariant. Any transition invariant is sufficient. Again, let F be F(Q) = Q ◦ T .
In addition to finding an abstraction F#

P of F , we need to find a transition
invariant R such that the least fixed point of F#

P is contained in R:

∃R ∃P . lfp(F#
P ) ⊆ R . (1)

The existence of the transition invariant R implies termination if R satisfies an
additional property that we will explain later.

Thus, an automated termination checker that implements counterexample-
guided abstraction refinement must not only construct an appropriate set of
transition predicates P , but also an assertion R that is an appropriate transition
invariant. When the inclusion (1) does not hold, we do not know whether the
left side is too big or the right side is not big enough. Thus, our refinement
algorithm analyzes the reason why lfp(F#

P ) is not included in R. Then, it chooses
accordingly one of two possible actions. Either it decides that the abstraction is
too coarse and it refines the abstraction by adding more transition predicates to
P and thus makes lfp(F#

P ) smaller, or it decides that the candidate transition
invariant R is too strong and weakens it.

This leads to a notion of counterexample that reflects both aspects of spuri-
ousness: A counterexample is spurious if either the abstraction is too coarse or
the candidate transition invariant is too strong. It is this new notion of spurious
counterexamples that leads to the first known counterexample-guided abstrac-
tion refinement for the automation of termination proofs.

2 Related Work

Our work builds upon and benefits from the previous research on abstrac-
tion refinement (e.g. [2,5,6,13,14,15,16,17,19]) and automatic termination proofs
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(e.g [4,8,10,12,20]) for infinite-state systems. A short way to distinguish our work
from the existing literature in those two research areas is that we are the first to
discover a method of abstraction refinement for termination analysis of infinite-
state systems.

For the comparison with existing abstraction refinement tools: none of those
tools can automatically prove termination, except for in trivial cases. This limi-
tation is inherent to predicate abstraction (see [22] for an explanation).

The approach in [1] is to encode ranking functions into fairness assumptions
for a finite model obtained by predicate abstraction; in contrast with our work,
the actual termination arguments are ranking functions (which are found man-
ually or by the above-mentioned tools without abstraction refinement).

The work in [22] presents an algorithm that, for a given set of transition
predicates, constructs an abstraction of a program for the verification of liveness
properties. This work does not, however, provide any guidance on how to refine
the abstraction if it fails to prove the property.

Other proof methods for liveness properties have been proposed that are
limited to only finite-state systems. For example the work in [3] exploits the fact
that a non-terminating finite-state system must visit the same state infinitely
many times.

3 Preliminaries

Programs. Following [18], we abstract away from the syntax of a concrete pro-
gramming language such as C and represent a program P by a set of transitions.
Each transition τ (to be thought of as the label of a program statement) refers
to a transition constraint ρτ , which is an assertion over the program variables
and their primed versions.

We use V and V ′ to represent the set of variables of the program and the set
of their primed versions, respectively. The intended semantics of V ′ is to refer
to the values of the variables V after executing a transition. The set V includes
the variable pc (the program counter) which ranges over the program locations.

Each transition τ refers to a pair (�, �′) of pre and post locations, respectively.
These locations appear in the transition constraint ρτ in the form of the con-
juncts pc = � and pc′ = �′. The program has an initial location �0 and an initial
condition Θ, which is an assertion over program variables. The initial location
�0 appears in Θ as the conjunct of the form pc = �0.

We assume that the program P is fixed from now on.

Program Semantics. A program state s is a valuation of the program vari-
ables, including the program counter pc.

We identify an assertion over program variables with the set of states that it
denotes. For example, Θ is the the set of initial states. We also identify an asser-
tion over primed and unprimed program variables with the set of pairs of states
that it denotes. For example, ρτ is the transition relation of the transition τ .

A computation s0, s1, s2, . . . is a possibly infinite sequence of states that starts
in an initial state (s0 ∈ Θ) and that is consecutive, i.e., each pair of successive
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states belongs to the transition relation of some transition. Formally, for each
i ≥ 0 there exists a transition τ such that (si, si+1) ∈ ρτ .

Paths and Cyclic Paths. A path π = τ1 . . . τn is a (finite) sequence of tran-
sitions with consecutive locations (the post location of τi is the pre location of
τi+1). A cyclic path π = τ1 . . . τn is a special case of a path with the same start
and end location (the pre location of its first transition τ1 is equal to the post
location of its last transition τn).1

We define the composition of relations ρ1 ◦ ρ2 as usual:

ρ1 ◦ ρ2 ≡ {(s, s′) | (s, s′′) ∈ ρ1 and (s′′, s′) ∈ ρ2} .

It can be implemented by logical operations over transition constraints.
A path π denotes a transition relation ρπ that is naturally obtained by com-

posing the transition relations of the transitions along the path. Formally, for a
path π = τ1 . . . τn we have:

ρπ ≡ ρτ1 ◦ · · · ◦ ρτn .

Termination. A program is terminating if it does not admit any infinite com-
putation. A binary relation R is well-founded if there exists no infinite se-
quence s0, s1, s2, . . . that is consecutive wrt. R (formally, for each i ≥ 0 we
have (si, si+1) ∈ R).

The following fact is a consequence of Theorem 1 in [21] (by the fact that the
transition relation of each path π with different start and end locations � and �′

is contained in the well-founded relation R�,�′ ≡ pc = � ∧ pc′ = �′).

Theorem 1 (Termination Condition [21]). The program is terminating if
there exists a finite set of well-founded relations R = {R1, . . . , Rm} such that
the transition relation ρπ of each cyclic path π = τ1 . . . τn is included in one of
the relations from R.

The termination condition in the theorem above is formally:

for each cyclic path π = τ1 . . . τn : ρπ ⊆ R1 or . . . or ρπ ⊆ Rm . (2)

Transition Predicates. We use transition predicate abstraction [22] in order to
obtain a termination condition that is stronger than (2), and that can be checked
effectively. A transition predicate p is an assertion over program variables and
their primed version, i.e., p is a binary relation over states. In contrast, a (plain)
predicate is an assertion over program variables, i.e., a set of states. We use P
to refer to a finite set of transition predicates. Transition predicate abstraction
is similar to predicate abstraction if one replaces the set of program variables V
by the set V ∪ V ′.
1 Note that a cyclic path with end location � may have numerous other steps that

pass through �.
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An abstraction function αP maps a binary relation ρ over states to a superset
expressed by a conjunction of transition predicates. We assume that one can
automatically construct the abstraction function αP for a given finite set of
transition predicates P . A possible definition is the abstraction of a relation ρ
by the conjunction of all transition predicates p ∈ P weaker than ρ (and test
the ‘weaker-than’ relation ρ |= p with a theorem prover).

For our formal treatment in Theorem 3, we will use one basic fact about
the abstraction function αP : the abstraction of a relation ρ is the relation itself
(i.e. there is no loss of precision during abstraction) if ρ can be expressed by a
conjunction of transition predicates (see Theorem 13 in [9]). Formally,

αP(ρ) = ρ if ρ = p1 ∧ . . . ∧ pn for p1, . . . , pn ∈ P . (3)

Abstraction of Paths. We can construct an abstraction α̂P(π) for each path
π = τ1 . . . τn according to the following inductive definition.

α̂P (τ1 . . . τn) ≡ αP(ρτ1 ◦ ρ) where ρ = α̂P(τ2 . . . τn)
α̂P(τn) ≡ αP(ρτn)

The abstraction of the path π is always a superset of the transition relation of π,
formally

ρπ ⊆ α̂P(π) .

We obtain a termination condition that is effective in the sense that one can
compute an abstraction α̂P(π) of each possible (cyclic) path π.

Theorem 2 (Termination Condition with Abstraction [22]). The pro-
gram is terminating if there exists a finite set of well-founded relations R =
{R1, . . . , Rm} such that the abstraction αP(π) of the transition relation of each
cyclic path π = τ1 . . . τn is included in one of the relations from R.

This ‘effective’ termination condition is formally:

for each cyclic path π = τ1 . . . τn : α̂P(π) ⊆ R1 or . . . or α̂P(π) ⊆ Rm . (4)

For notational convenience, we overload the symbol αP . We will use αP not only
as a function on relations ρ, but also as a function α̂P over paths π. We need to
distinguish the two functions. The abstraction of the transition relation ρπ is in
general a subset of the abstraction of the path π, formally,

αP(ρπ) ⊆ αP(π) .

For example, given the transition relations

ρτ1 ≡ x′ = x− 2,
ρτ2 ≡ x′ = x+ 1,

and a singleton set of transition predicates

P = {x′ ≤ x} ,
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we have
αP(ρτ1τ2) = αP(ρτ1 ◦ ρτ2)

= αP(x′ = x− 1)
= x′ ≤ x ,

whereas

αP(τ1τ2) = αP(ρτ1 ◦ αP(τ2))
= αP(ρτ1 ◦ true)
= αP(true)
= true .

Thus, we have αP(ρτ1τ2) � αP (τ1τ2).

4 Refinement for Termination

The termination condition (4) suggests that, given a set of well-founded rela-
tions R = {R1, . . . , Rm}, the problem of refinement is to find the ‘right’ set of
transition predicates P . The set P is ‘right’ if the induced abstraction αP is
sufficiently precise to infer an inclusion of the form αP(π) ⊆ Rj for every cyclic
path π, see (4).

Our algorithm must, however, also find the ‘right’ set of well-founded rela-
tions R = {R1, . . . , Rm}. The set R is ‘right’ if the inclusion ρπ ⊆ Rj holds ‘in
the concrete’ for every path π, see (2).

Counterexamples. Distinction between the two cases above complicates the
notion of a spurious counterexample. Namely, if the abstract check (4) does not
succeed for a cyclic path π, then this may be spurious for one of two reasons:
either the set of transition predicates P was not yet ‘right’ or the set of well-
founded relations R was not yet ‘right’.

Definition 1 (Spurious Counterexample). Given a set of transition pred-
icates P and a set of well-founded relations R = {R1, . . . , Rm}, a cyclic path
π = τ1 . . . τn is a counterexample wrt. P and R if its abstraction αP(π) is not
contained in any relation in R. Formally,

αP(π) �⊆ Rj for each j ∈ {1, . . . ,m} .
The counterexample π is spurious if either its relation ρπ is contained in some
relation Rj of R or its relation ρπ is well-founded. Formally,

ρπ ⊆ Rj for some j ∈ {1, . . . ,m} or ρπ well-founded.

The Algorithm. Figure 1 shows our counterexample-guided abstraction refine-
ment for termination. For each new set of well-founded relations R and for each
new set of transition predicates P , the algorithm checks whether there exists a
counterexample wrt. R and P . It does so by going through all cyclic paths π until
no more new abstract values αP(π) can be computed. Although the number of
cyclic paths is infinite, the search converges because the range of the abstraction
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1 input
2 Program P
3 begin
4 R := ∅ (∗ set of well-founded relations ∗)
5 P := ∅ (∗ set of transition predicates ∗)
6 repeat
7 if exists π = τ1 . . . τn s.t. αP (π) 
⊆ R for any R ∈ R then
8 if exists R ∈ R such that ρπ ⊆ R then
9 (∗ refinement step ∗)
10 Ppath :=

⋃
i∈1..n Preds(ρτi ◦ · · · ◦ ρτn)

11 Ploop := Preds(R) ∪
⋃

i∈1..n Preds(ρτi ◦ · · · ◦ ρτn ◦R)
12 P := P ∪ Ppath ∪ Ploop

13 else
14 if π is well-founded by the ranking relation R then
15 (∗ weakening step ∗)
16 R := R∪ {R}
17 else
18 return “Counterexample cyclic path τ1 . . . τn”
19 else
20 return “Program P terminates”
21 end.

Fig. 1. Counterexample-guided abstraction refinement for termination. In line 7, we

investigate abstractions αP (π) of cyclic paths by exploring the paths in a breadth-

first way. The exploration converges since the range of the abstraction function αP is

finite. In line 10, Preds(T ) symbolically evaluates T and then extracts the set of atomic

formulas from the reduced expression.

function αP is finite (and determined by the number of transition predicates
in P).

If the algorithm finds no counterexample, it has succeeded in proving the
termination property and it stops. If the algorithm finds a counterexample π,
there are three possibilities.

1. The counterexample π is spurious because the set of transition predicates
was not yet ‘right’. Formally, the inclusion between ρπ and some R ∈ R does
not hold in the abstract, i.e. αP(π) �⊆ R, but it does hold in the concrete,
i.e. ρπ ⊆ R. The refinement step adds a set of transition predicates Ppath
from the transition relation of every suffix of the path π = τ1 . . . τn to the
set P . These predicates will eliminate this particular counterexample in the
next iteration of the algorithm. The set of predicates Ploop guarantees that
the refinement will not get ‘stuck in a loop’ discovering an infinite sequence
of counterexamples π, ππ, . . . , πi, . . . . We will provide a formal statement
describing the progress of refinement in Theorem 3.

2. The counterexample π is spurious because the set of well-founded relations
R was not yet ‘right’. This means that for any R ∈ R the inclusion ρπ ⊆ R
does not hold neither in the abstract nor in the concrete, but the transi-
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tion relation ρπ of the cyclic path π is well-founded. This means that the
candidate set R is not yet ‘right’. In that case a well-founded relation R
containing ρπ is added to R. In the next iteration of the algorithm, the same
counterexample π may be found again, but then we will be in Case 1.

3. The counterexample π is not spurious: the transition relation ρπ of the cyclic
path π is not well-founded. In that case, the algorithm has failed to prove the
termination property and it stops. In this case πω may be a feasible infinite
trace.

Well-Foundedness and Ranking Relations. A ranking function for a (ter-
minating) program is defined by an expression rank over the program variables.
Its value for each reachable program state is a non-negative integer that decreases
during each computation step.

We write rank(V ) for the expression in the program variables and rank(V ′)
for the expression in the primed version of the program variables. A ranking
function defined by the expression rank induces a well-founded relation (a ranking
relation) R in the following way:

R ≡ rank(V ) ≥ 0 ∧ rank(V ′) ≤ rank(V ) − 1 .

We note the following observation.

Remark 1. A ranking relation R is transitive. Formally,

R ◦R ⊆ R .

A cyclic path π = τ1 . . . τn defines a program fragment of a very specific
form: it consists of one program location � and one transition from � to � with
the transition relation ρπ. There exist several automatic methods and tools for
the computation of ranking functions for such programs, e.g. [4,7,20,24]. These
tools can be used for implementing line 14 of the algorithm.

Progress of Refinement. A newly detected spurious counterexample gives rise
to a new refinement step and a new iteration of the algorithm. The refinement
algorithm makes progress if for each newly detected spurious counterexample
π the cyclic path π is no longer a counterexample after the next iteration or
the next two iterations of the algorithm. Our algorithm enjoys the property of
eliminating the infinite set of spurious counterexamples π, ππ, . . . in a single step.
We formalize this property in Theorem 3.

Theorem 3 (Progress of Refinement). If π is a spurious counterexample
wrt. the sets R and P, then none of the cyclic paths π1, π2, . . . obtained by con-
catenating π with itself repeatedly (π1 = π, π2 = ππ, etc.) is a counterexample
wrt. the sets R′ and P ′ obtained by refinement in one or possibly two more
iterations of the algorithm in Figure 1.

Proof. Given a spurious counterexample π = τ1 . . . τn, there are two cases that
we need to consider. In the first case, the relation ρπ is included in some R ∈ R
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(at line 8 on Figure 1). Hence, the refinement step (at lines 10, 11, and 12)
updates the abstraction function. Now we consider the next iteration of the
algorithm. Let P ′ be the current set of transition predicates, which define the
abstraction function.

We prove that αP′(πj) ⊆ R by induction over j.2 For the base case j = 1, we
prove αP′(π) ⊆ R. By Theorem 13 in [9], an abstraction function is precise for
some input if the input is expressible by the predicates defining the abstraction.
Hence, for each i ∈ {1, . . . , n} we have αP′(τi . . . τn) = ρτi ◦ · · · ◦ ρτn . Thus, we
have αP′(π) ⊆ R.

For the induction step, we assume αP′(πj) ⊆ R for some j > 1. By Theo-
rem 13 in [9], we have αP′(τi . . . τnπj) ⊆ ρτi ◦ · · ·◦ρτn ◦R for each i ∈ {1, . . . , n}.
Hence, we have αP(ππj) = ρπ ◦R. Since ρπ ⊆ R and by the assumption that R
is a transitive relation, we have αP(πj+1) ⊆ R ◦R ⊆ R.

If ρπ is not contained in any R ∈ R, then after the weakening step at line 16
using a ranking relation R we have ρπ ⊆ R, and the above case applies. ��

5 Example

In this section we execute the algorithm contained in Figure 1 on a sample
program fragment. Refer to left-hand side of Figure 2 for the example program.
We represent the program as a control-flow graph on the right-hand side, where
each node is the start of a basic-block, and each transition (labeled τ1, τ1, and
τ3) is decorated with a relation that represents the conditions and assignments
of the basic block. We have the following transition relations ρτi :

ρτ1 ≡ x ≥ 0 ∧ x′ = x+ 1 ∧ y′ = 1 ∧ pc = �0 ∧ pc′ = �1 ,

ρτ2 ≡ y > x ∧ x′ = x− 2 ∧ y′ = y ∧ pc = �1 ∧ pc′ = �0 ,

ρτ3 ≡ y ≤ x ∧ x′ = x ∧ y′ = y + 1 ∧ pc = �1 ∧ pc′ = �1 .

To simplify the presentation, we assume an implicit treatment of the program
counter. This means that we do not show any predicates involving pc in the
exposition below.

We summarize the intermediate steps of our example execution in Table 1,
and give a detailed explanation below. Line numbers refer to the algorithm shown
on Figure 1.

Step I/Line 4 and 5: We start with the empty set of well-founded relations
R = ∅ and the empty set of transition predicates P = ∅.

Step II/Lines 7, 8, 10, 11, and 12: We start enumerating cyclic paths and
computing their abstractions. Because R is empty, we find that for the cyclic
path π = τ1τ2 the abstract relation αP(π) does not entail any relations in R.
This means that π is a counterexample. We do not know yet whether it is
spurious. We therefore move to line 8. For the same reason there does not
2 Note that we abstract wrt. a refined set of transition predicates P ′.
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Fragment of program text Control-flow graph representation

�0 : while x ≥ 0 begin
x := x + 1
y := 1

�1 : while y ≤ x begin
y := y + 1

end
x := x− 2

end

�0 �1

τ1

x ≥ 0
x′ = x + 1

y′ = 1

τ2

y > x
x′ = x− 2

y′ = y

τ3

y ≤ x
x′ = x

y′ = y + 1

Fig. 2. Example program fragment with nested loops

Table 1. The states of the algorithm in Figure 1 while analyzing the example in

Figure 2

Step Path π ∀R ∈ R Action

I - - Initialization with R = ∅ and P = ∅
II τ1τ2 ρπ 
⊆ R Weakening with

R1 = false
III τ1τ2 αP(π) 
⊆ R Refinement by

Preds(ρτ2) = {y > x, x′ = x− 2, y′ = y},
Preds(ρτ1 ◦ ρτ2) = ∅,
Preds(. . . R1) = ∅.

IV τ3 ρπ 
⊆ R Weakening with
R2 = x− y ≥ 0 ∧ x′ − y′ ≤ x− y − 1

V τ3 αP(π) 
⊆ R Refinement by
Preds(ρτ3) = {y ≤ x, x′ = x, y′ = y + 1},
Preds(R2) = {x− y ≥ 0, x′ − y′ ≤ x− y − 1},
Preds(ρτ3 ◦ R2) = {y ≤ x− 1, x′ − y′ ≤ x− y − 2}.

VI τ2τ1 ρπ 
⊆ R Weakening with
R3 = x ≥ 2 ∧ x′ ≤ x− 1

VII τ2τ1 αP(π) 
⊆ R Refinement by
Preds(ρτ1) = {x ≥ 0, x′ = x + 1, y′ = 1},
Preds(ρτ2 ◦ ρτ1) = {y > x, x ≥ 2, x′ = x− 1, y′ = 1},
Preds(R2) = {x ≥ 2, x′ ≤ x− 1},
Preds(ρτ1 ◦ R2) = {x ≥ 1, x′ ≤ x},
Preds(ρτ2 ◦ ρτ1 ◦R2) = {y > x, x ≥ 3, x′ ≤ x− 3}.

VIII τ1τ3τ2 ρπ 
⊆ R Weakening with
R4 = x ≥ 0 ∧ x′ ≤ x− 1
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exist a relation R in R such that ρπ ⊆ R. We therefore move to line 14. The
composition ρτ1 ◦ ρτ2 equals

ρτ1 ◦ ρτ2 = ∃x′′. x ≥ 0 ∧ x′′ = x+ 1 ∧ y′′ = 1 ∧
y′′ > x′′ ∧ x′ = x′′ − 2 ∧ y′ = y′′

= x ≥ 0 ∧ 1 > x+ 1 ∧ x′ = x− 1 ∧ y′ = 1
= x ≥ 0 ∧ 1 > x+ 1
= x ≥ 0 ∧ 0 > x

= false .

Since false is well-founded, the counterexample π is spurious because the can-
didate set R is too strong. The ranking relation that provides the evidence of
ρπ’s well-foundedness is the empty relation. Hence, we go to line 16, and add
the empty relation R1 ≡ ∅ to R.

Step III/Lines 7, 8, 10, 11, and 12: We observe that the cyclic path π =
τ1τ2 is still a spurious counterexample, since

αP(π) = αP(ρτ1 ◦ αP(τ2))
= αP(ρτ1 ◦ αP(y > x ∧ x′ = x− 2 ∧ y′ = y))
= αP(ρτ1 ◦ true)
= αP(true)
= true ,

and because true does not entail R1. We go to line 8. Recall that ρτ1 ◦ ρτ2 =
false. Because false ⊆ R1, we detect that the counterexample π is spurious due
to imprecise abstraction. Hence, we go to line 10, and we collect the sets of
predicates Preds(ρτ2) and Preds(ρτ1 ◦ ρτ2), see Table 1. The later set is empty,
since ρτ1 ◦ρτ2 = false. The set of predicates collected at line 11 is empty because
R1 is empty. Therefore, we finish this step with the following set of transition
predicates:

P = {y > x, x′ = x− 2, y′ = y} .

Step IV/Lines 7, 8, 14, and 16: We note that τ1τ2 is no longer a counterex-
ample, because αP(τ1τ2) ⊆ R1. We find that for the cyclic path π = τ3 the ab-
stract relation αP(π) does not entail any relations in R. This means that π is a
counterexample. We do not know yet whether it is spurious. We therefore move
to line 8. There does not exist a relation R in R such that ρπ ⊆ R. We therefore
move to line 14. Recall that ρτ3 ≡ y ≤ x ∧ x′ = x ∧ y′ = y + 1. Using the
techniques described in [20], we prove that ρτ3 is well-founded. We also compute
a witness of ρτ3 ’s well-foundedness. The witness is a ranking relation R2 such
that ρτ3 ⊆ R2. We have

R2 ≡ x− y ≥ 0 ∧ x′ − y′ ≤ x− y − 1 .

Hence, π is a spurious counterexample. We weaken R by adding R2, at line 16.
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Step V/Lines 7, 8, 10, 11, and 12: For π = τ3 we have αP(π) = true.
Therefore αP(π) does not entail R2. We know that ρπ ⊆ R2 (see Step IV).
This means that τ3 is still a (spurious) counterexample wrt. the current ab-
straction. We refine the abstraction. The condition at line 8 succeeds, and we
move to line 10. We collect the predicates from Preds(ρτ3). At line 11, we collect
the predicates from Preds(R2), and Preds(ρτ3 ◦R2). After executing line 11, we
have

P = {y > x, x′ = x− 2, y′ = y, y ≤ x, x′ = x, y′ = y + 1,
x′ − y′ ≤ x− y − 1, y ≤ x− 1, x′ − y′ ≤ x− y − 2} .

Step VI/Lines 7, 8, 14, and 16: We observe that τ3 is no longer a coun-
terexample, since αP(τ3) ⊆ R2. We consider the abstraction of the cyclic path
π = τ2τ1. We have that αP(π) does not entail neither R1 nor R2. The relation
ρπ such that

ρπ = y > x ∧ x ≥ 2 ∧ x′ = x− 1 ∧ y′ = 1

is well-founded, but is not contained in any R ∈ R. Hence, π is a spurious
counterexample. Therefore we execute lines 14, and 16 of the algorithm, which
weaken R. A witness to the well-foundedness of ρπ is a ranking relation R3 such
that

R3 ≡ x ≥ 2 ∧ x′ ≤ x− 1 .

After executing line 16, we have R = {R1, R2, R3}.
Step VII/Lines 7, 8, 10, 11, and 12: Although ρτ2 ◦ ρτ1 ⊆ R3 we have
αP (τ2◦τ1) �⊆ R3. This means that the abstraction is too coarse. Therefore, we ex-
ecute lines 10, 11, and 12. At line 10, we collect the sets of predicates Preds(ρτ1)
and Preds(ρτ2 ◦ ρτ1). At line 11, we collect the sets Preds(R3), Preds(ρτ1 ◦ R3),
and Preds(ρτ2 ◦ ρτ1 ◦R3).

Step VIII/Lines 7, 8, 14, and 16: We observe that τ2τ1 is no longer a (spu-
rious) counterexample. We discover that the relation ρπ corresponding to the
cyclic path π=τ1τ3τ2 is well-founded, but is not contained in any relation R∈R:

ρτ1 ◦ ρτ3 ◦ ρτ2 = x = 0 ∧ x′ = x− 1 ∧ y′ = 2 .

This means that we found another spurious counterexample. Therefore we exe-
cute lines 8, 14 and 16. The ranking relation R4 such that

R4 ≡ x ≥ 0 ∧ x′ ≤ x− 1

is a witness to the well-foundedness of ρτ1 ◦ ρτ3 ◦ ρτ2 . After executing line 14,
we have R = {R1, R2, R3, R4}.
Final Result: For the abstraction αP(π) of every cyclic path π there exists a
relation R in R = {R1, R2, R3, R4} such that αP(π) entails R. Therefore, the
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algorithm terminates with R = {R1, R2, R3, R4} and the set of predicates P
where

R1 = false ,
R2 = x− y ≥ 0 ∧ x′ − y′ ≤ x− y − 1 ,
R3 = x ≥ 2 ∧ x′ ≤ x− 1 ,
R4 = x ≥ 0 ∧ x′ ≤ x− 1 ,

and
P = { x ≥ 0, x ≥ 1, x ≥ 2, x ≥ 3,

y ≤ x, y ≤ x− 1, y > x,
x′ = x+ 1, x′ = x, x′ = x− 1, x′ = x− 2,
x′ ≤ x, x′ ≤ x− 1, x′ ≤ x− 3
x′ − y′ ≤ x− y − 1, x′ − y′ ≤ x− y − 2,
y′ = y + 1, y′ = y, y′ = 1} .

6 Conclusion

Counterexample-guided abstraction refinement allows us to automatically ex-
tract just the information that is needed to prove the property. The crux of
our abstraction refinement procedure for termination is the notion of a coun-
terexample, and the different possible root causes when counterexamples are
spurious.

We presented the first known counterexample-guided abstraction refinement
algorithm for the proof of termination. We exploit recent results on transition
invariants and transition predicate abstraction. Our counterexample-guided ab-
straction refinement algorithm successively weakens candidate transition invari-
ants and successively refines abstractions.

Future work. We are working on an implementation of this algorithm in Slam.
Possible extensions of the algorithm presented here concern a wider class of
properties (liveness with fairness assumptions) and a wider class of programs
(concurrent and recursive programs); here the techniques described in [22] and
in [23] can be useful.

Acknowledgment. We thank Tom Ball, Aaron Bradley, and Lenore Zuck for
discussions.
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Abstract. This paper presents a semantic framework for data abstrac-
tion and refinement for verifying safety properties of open programs.
The presentation is focused on an Algol-like programming language that
incorporates data abstraction in its syntax. The fully abstract game se-
mantics of the language is used for model-checking safety properties, and
an interaction-sequence-based semantics is used for interpreting poten-
tially spurious counterexamples and computing refined abstractions for
the next iteration.

1 Introduction

Abstraction refinement has proved to be one of the most effective methods of au-
tomated verification of systems with very large state spaces, especially software
systems. Current state-of-the art tools implementing abstraction refinement al-
gorithms [5, 16] combine model checking and theorem proving: model checking is
used to verify whether an abstracted system satisfies a property, while theorem
proving is used to refine the abstraction using the counterexamples discovered
by model checking. Since abstractions are conservative over-approximations the
safety of any abstracted program implies the safety of the concrete program.
The converse is not true, and the refinement process may not terminate if the
concrete program has an infinite state space.

This paper introduces a purely semantic approach to (data) abstraction re-
finement, based on game semantics [2, 17]. In order to keep the presentation
focussed, the main vehicle of our development is the language Abstracted Ide-
alized Algol (AIA), an expressive programming language combining imperative
features, locally-scoped variables and (call-by-name) procedures. The key feature
of this language is the use of abstraction schemes at the level of data-types, which
allows the writing of abstracted programs in a syntax similar to that of concrete
programs. In fact, a concrete program is a particular abstracted program, in
which all the abstractions are identities.

The following is a simple example illustrating this method. Consider the (con-
crete) program fragment below, which uses local variable x , non-local function f ,
∗
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and a command abort which causes abnormal termination. Is this program safe
for all instantiations of f , or is it possible for its execution to terminate abnor-
mally? 1

newint x := 0 in f (x := !x + 1, if !x = 5 then abort else skip)

The procedure-call mechanism is by-name, so every call to the first argument
increments x , and any call to the second uses the new value of x . So the program
is not safe if function f uses its first argument precisely 5 times, then its second
argument.

We approximate the set of integers by a finite set of partitioning intervals. Let
the initial abstraction have only one partition. We denote this in the program
by annotation (see Table 1):

newint[] x := 0 in f (x := !x +[] 1, if !x = 5 then abort else skip)

A counterexample execution trace exists, corresponding to the function evalu-
ating its second argument. During the execution of this argument, the value of
x is not 0 but, because of the abstraction, possibly any integer, chosen non-
deterministically. If the chosen value is 5 then abort occurs. Of course, this
counterexample is spurious because it is made possible only by the nondeter-
minism caused by over-abstraction. However, the counterexample informs the
refinement procedure that the abstraction of x needs to be improved. Iterations
like this one are performed until we obtain

newint[0,5] x := 0 in f (x := !x +[0,5] 1, if !x = 5 then abort else skip)

at which point a genuine counterexample is discovered, corresponding to the
behaviour resulting in abnormal termination.

In addition to giving a precise account of data abstraction-refinement, this
approach has several advantages compared to alternative approaches:

Modularity. To our knowledge, examples such as the one described before,
cannot be generally handled by known inter-procedural abstraction-refinement
techniques. [8] has cogently advocated a need for such techniques, and we believe
that we are meeting the challenge, although our approach is technically different.

Completeness and correctness. A concrete representation of a fully abstract
semantic model is guaranteed to be accurate and is set on a firm theoretical
foundation.

Compositionality. The semantic model is denotational, i.e. defined recursively
on the syntax, therefore the model of a larger program is constructed from the
models of its constituting sub-programs. This entails an ability to model program
fragments, containing non-locally defined procedures as in the example above.
This feature is the key to scalability, the modeling and verification of software
systems that are too large to be dealt with as a whole.
1 !x denotes dereferencing.
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Efficiency. As already emphasised in previous work on games-based model
checking [1], finite-state representations of strategies give models of programs
often several orders of magnitude smaller than state-exploration based models,
essentially due to the fact that the details of local-state manipulation are hidden
during composition.

2 Abstracted Idealized Algol

The data types of AIA are booleans and abstracted integers (τ ::= bool | intπ).
We use π to denote computable binary predicates on Z. The abstractions π range
over computable equivalence relations (i.e. partitions) of the integers Z. To say
that m,n ∈ Z are in the same class of π, we write m ≈π n.

The phrase types of AIA are base types of expressions, variables and com-
mands (σ ::= expτ | varτ | com) and function types (θ ::= σ | θ → θ).

We say that a type is concrete if it contains no abstractions other than the
identity abstraction κ =

{
{i} | i ∈ Z

}
. For any type θ, we write θ̃ for the

concrete type obtained by replacing all abstractions with κ. For simplicity, we
write intκ as simply int.

The syntax of the language consists of imperative features (local variables,
assignment, dereferencing, sequencing, branching, iteration, skip and abort) and
functional features (abstraction, application, recursion, arithmetic-logic
constants and operators). It is convenient to present the syntax of AIA in a
“functionalised” form [3], using function-constants rather than term combina-
tors, as in:

if B thenM elseN ∼= if B M N
newτ x :=E inC ∼= new E (λ x : varτ.C ), etc.

Combinators can be reintroduced as syntactic sugar, to improve readability.
The base-type constants are:

true, false : expbool abort, skip : com n : expintπ

The functional constants are:

new :expτ1 → (varτ2 → com) → com, if :expbool → σ1 → σ2 → σ,

τ̃1 = τ̃2 σ̃1 = σ̃2 = σ̃

asg :varτ1 → expτ2 → com, τ̃1 = τ̃2 while :expbool → com → com

der :varτ → expτ rec :(θ → θ) → θ

seq :com → σ → σ op :expτ1 → expτ2 → expτ

where op stands for any arithmetic-logic operator whose concrete type is expτ̃1 →
expτ̃2 → expτ̃ . For example, for any abstractions π1 and π2, AIA contains an
equality operator = of type expintπ1 → expintπ2 → expbool.

For types of new, asg and if to be valid, it is required above that correspond-
ing subterms of types have equal concretisations, but their abstractions can be
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Notation for sets of integers:

<n = {n ′ | n ′ < n}, n = {n}, >n = {n ′ | n ′ > n}

Notation for abstractions:

[] = {Z}, [n, m] = {<n,n,n + 1, . . . ,m − 1, m, >m}

Fig. 1. Some integer abstractions

different. For example, for any abstractions π1 and π2, we can assign expressions
of type intπ2 to variables of type intπ1 . This flexibility, which is also present in
the rule for functional application below, enables abstractions within a term to
be changed independently of each other while preserving well-typed-ness.

Γ # M : θ, where Γ is a list of typed identifiers, indicates that term M with
free identifiers in Γ has type θ. The typing rules are:

Γ # k : θ (k is a language constant of type θ) Γ, x : θ # x : θ

Γ, x : θ # M : θ′

Γ # λ x : θ.M : θ → θ′
Γ # M : θ1 → θ Γ # N : θ2

θ̃1 = θ̃2
Γ # M N : θ

Whenever we write Γ # M : θ, we are considering implicitly a particular deriva-
tion of that typing judgment from the rules above. Such a derivation contains
typing judgments for all sub-terms of M . When we need to be explicit about
which derivation was used, we shall annotate M with abstractions. For example,
with the notations in Fig. 1,

x : varint[0,4] # x := !x +[0,4]→[0,1]→[0,3] 1[0,1] : com

means that the operator + was used with type expint[0,4] → expint[0,1] →
expint[0,3]. Here the combinators := and ! are syntactic sugar for applications of
the functional constants asg and der.

We say that a term is concrete if it contains no abstractions other than the
identity abstraction κ. For any term Γ # M : θ, we write Γ̃ # M̃ : θ̃ for the
concrete term obtained by replacing all abstractions with κ.

The operational semantics is defined as a big-step reduction relation M , s =⇒
K, where M is a program (all free identifiers are assignable variables), s is a state
(a function assigning data values to the variables), and K is a final configura-
tion. The final configuration can be either a pair V , s ′ with V a value (i.e. a
language constant or an abstraction λ x : θ.M ) and s ′ a state, or special error
configuration E .

The reduction rules are similar to those for IA, with two differences. First,
whenever an integer value n participates in an operation as belonging to a data
type intπ , any other integer n ′ can be used nondeterministically so long as n ′≈π n.

N1, s1 =⇒ n1, s2 N2, s2 =⇒ n2, s n ′
i ≈πi ni , i = 1, 2, n ′ ≈π op n ′

1 n ′
2

opintπ1→intπ2→intπ N1 N2, s1 =⇒ n ′, s

Assignment and dereferencing have similar nondeterministic rules.
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Second, the abort program with any state reduces to E , and a composite
program reduces to E if a subprogram is reduced and results in E . For any
language operator op

abort, s =⇒ E M , s =⇒ E
opM M ′ =⇒ E

,

2.1 Observational Safety

A program M is said to terminate in state s if there exists configuration K such
that K = E or K = skip, s ′ for some state s ′ such that M , s =⇒ K. If K �= E
we say M is safe. Term Γ # M : θ approximates term Γ # M ′ : θ, denoted by
Γ # M �∼ M ′ if for all contexts C[−], the termination of program C[M ] implies
the termination of program C[M ′]. If two terms approximate each other they are
considered equivalent, denoted by Γ # M ∼= M ′.

A context is safe if it does not include occurrences of the abort command. A
term M is safe if for any safe context Csafe[−] program Csafe[M ] is safe; otherwise
the term is unsafe.

3 Game Semantics of AIA

Game semantics emerged in the last decade as a potent framework for mod-
eling programming languages [2, 17, 3, 18, 11, 15]. It is an alternative (to Scott-
Strachey) denotational semantics which interprets types as arenas (i.e. struc-
tured sets of atomic moves), computation as plays (i.e. structured sequences of
moves) and terms as strategies (i.e. structured sets of plays). Strategies compose,
much like CSP-style processes, which makes it possible to define denotational
models. For technical details, the reader is referred to loc. cit.

Except for the presence of abort, AIA is syntactic sugar on top of IA with
Erratic choice (EIA). We will use the may-termination model presented in [14,
Chap. 3]. For any integer abstraction π, let blurexpintπ : expint → expint denote
an EIA term which, given an integer n, returns a nondeterministically chosen
integer n ′ such that n ′ ≈π n.2 For all other AIA types θ, we define EIA terms
blurθ : θ̃ → θ̃ as follows:

blurexpbool = λ x : expbool.x blurcom = λ x : com.x
blurvarτ = λ x : varτ̃ .mkvar (λ y : expτ̃ .asg x (blurexpτy)) (blurexpτ (derx ))
blurθ→θ′ = λ f : θ̃ → θ̃′. λ x : θ̃.blurθ′(f (blurθx ))

For any AIA type θ, its translation �θ� into EIA is θ̃. The translation of any
AIA term into EIA is defined by:
2 Since abstractions are assumed computable, such terms are definable in EIA by iter-

atively testing all integers n ′. However, in addition to the possibilities to choose any
n ′ with n ′ ≈π n nondeterministically, there is the possibility of divergence. There-
fore, this approach works only for may-termination semantics, which is sufficient in
this paper.
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�k : θ� = blurθk : θ̃ �M N : θ� = �M : θ1 → θ��N : θ2�
�x : θ� = blurθx : θ̃ �λ x : θ.M : θ → θ′� = λ x : θ̃.�M : θ′�

The semantic model of AIA is therefore essentially that of EIA, which is pre-
sented in detail in [15]. Below, we give a sketch of the model.

An arena A is a triple 〈MA, λA,#A〉 where MA is a set of moves, λA : MA →
{O ,P} × {Q ,A} is a function determining for each m ∈ MA whether it is an
Opponent or a Proponent move, and a question or an answer. We write λOP

A , λ
QA
A

for the composite of λA with respectively the first and second projections. #A

is a binary relation on MA, called enabling, satisfying: if m #A n for no m then
λA(n) = (O ,Q), if m #A n then λ

OP
A (m) �= λ

OP
A (n), and if m #A n then

λQA
A (m) = Q . If m #A n we say that m enables n. We shall write IA for the set

of all moves of A which have no enabler; such moves are called initial. Note that
an initial move must be an Opponent question.

An arena is called flat if its questions are all initial (consequently the P-moves
can only be answers). Flat arenas interpret base types, and are determined by
their enabling relations:

com : run # done, abort

expτ : q # n, abort
varτ : read # n, abort, write(n) # ok, abort.

The product (A × B) and arrow (A ⇒ B) arenas are defined by:

MA×B = MA + MB

λA×B = [λA, λB ]

#A×B = #A + #B

MA⇒B = MA + MB

λA⇒B = [〈λPO
A , λ

QA
A 〉, λB ]

#A⇒B = #A ∪ #B ∪ (IB × IA)

where λPO
A (m) = O iff λ

OP
A (m) = P .

A justified sequence in arena A is a finite sequence of moves of A equipped
with pointers. The first move is initial and has no pointer, but each subsequent
move n must have a unique pointer to an earlier occurrence of a move m such that
m #A n. We say that n is (explicitly) justified by m or, when n is an answer,
that n answers m. A legal play is a justified sequence with some additional
constraints. Alternation and well-threaded-ness are standard in game semantics,
to which we add the following:

Definition 1 (Halting plays). No moves can follow abort.

This represents the abrupt termination caused by aborting. The set of all legal
plays in arena A is denoted by PA.

A strategy is a prefix-closed set of even length plays. Strategies compose in a
way which is reminiscent of parallel composition plus hiding in process calculi.
We call a play complete if either the opening question is answered or the special
move abort has been played.

Two strategies σ : A ⇒ B ′ and τ : B ′′ ⇒ C can be composed by considering
their possible interactions in the shared arena B (the decorations are only used
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to distinguish the two occurrences of this type). Moves in B are subsequently
hidden yielding a sequence of moves in A and C .

Let u be a sequence of moves from arenas A, B ′, B ′′ and C with justification
pointers from all moves except those initial in C , such that pointers from moves
in C cannot point to moves in A and vice versa. Define u � B ′′,C to be the
subsequence of u consisting of all moves from B ′′ and C (pointers between A-
moves and B ′′-moves are ignored). u � A,B ′ is defined analogously (pointers
between B ′ and C are then ignored).

Definition 2 (Interaction sequence). We say that justified sequence u is an
interaction sequence of A, B ′, B ′′ and C if:

1. any move from IB ′′ is followed by its copy in IB ′ ,
2. any answer to a move in IB ′ is followed by its copy in IB ′′

3. u � A,B ′ ∈ PA⇒B ′ , u � A,C ∈ PA⇒C , u � B ′′,C ∈ PB ′′⇒C .

The set of all such sequences is written as int(A,B ,C ). Composing the two
strategies σ and τ yields the following set of interaction sequences:

σ � τ = {u ∈ int(A,B ,C ) | u � A,B ′ ∈ σ, u � B ′′,C ∈ τ}

Suppose u ∈ int(A,B ,C ). Define u � A,C to be the subsequence of u con-
sisting of all moves from A and C , but where there was a pointer from a move
mA ∈ MA to an initial move m ∈ IB ′′ extend the pointer to the initial move in C
which was pointed to from its copy mB ′ . The strategy which is the composition
of σ and τ is then defined as σ; τ = {u � A,C | u ∈ σ � τ}.

Strategies are used to give denotations to terms. Language constants, includ-
ing functional constants, are interpreted by strategies and terms are constructed
using strategy composition. Lambda abstraction and currying are isomorphisms
consisting only of re-tagging of move occurrences. We interpret abort using the
strategy �abort� = {ε, run · abort}.

3.1 Full Abstraction

Using standard game-semantic techniques we can show that the above model is
fully abstract for AIA.

Theorem 1 (Full abstraction). For any terms Γ # M ,M ′ : θ, Γ # M �∼ M ′

iff �Γ # M : θ� ⊆ �Γ # M ′ : θ�.
Proof (sketch). The proof follows the pattern of [14, Sec. 3.8]. In the presence
of abort it is no longer necessary to use quotienting on strategies, as they are
characterised by their full set of plays. The proof of this property is similar to
that of the Characterisation Theorem for IA [3, Thm. 25]. The basic idea is that
we can interrupt any play (not necessarily complete) by composing it with a
stateful strategy that plays abort at the right moment. ��

Note that in the presence of abort it is no longer the case that strategies are
characterised by their set of complete plays, as it is the case for EIA. This is
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consistent with the fact that terms such as c : com # c; diverge and diverge
are no longer equivalent although they both have same set of complete plays
(empty). Command c may cause abort, thus preventing divergence. This is a
common property of languages with control [18], and abort is such a feature.

Let us call a play safe if it does not terminate in abort, and a strategy if it
consists only of safe plays; otherwise, we will call plays and strategies unsafe.
From the full abstraction result it follows that:

Corollary 1 (Safety). Γ # M : θ is safe iff �Γ # M : θ� is safe.

This result ensures that model-checking a strategy for safety (i.e. the absence
of the abort move) is equivalent to proving the safety of a term.

3.2 Quotient Semantics

Given a base type expintπ or varintπ of AIA, we can quotient the arena and game
for expint or varint (respectively) in a standard way, by replacing any integer n
with its equivalence class {m | m ≈π n}. This extends compositionally to any
type θ of AIA: we can quotient the arena and game for θ̃ by the abstractions in
θ. For any play t of the game for θ̃, let t denote the image play of the quotient
game, obtained by replacing each integer in t by its equivalence class in the
corresponding abstraction in θ.

It is straightforward to check that, for any term Γ # M : θ of AIA, and plays
t and t ′ of the game for Γ̃ # θ̃, such that t = t ′, we have

t ∈ �Γ # M : θ� ⇔ t ′ ∈ �Γ # M : θ�
Therefore, the quotient of the strategy �Γ # M : θ� by the abstractions in Γ and
θ loses no information.

Moreover, the quotient strategies can be defined compositionally, i.e. by re-
cursion on the typing rules of AIA. The most interesting case is functional ap-
plication Γ # M N : θ, where Γ # M : θ1 → θ, Γ # N : θ2, and θ̃1 = θ̃2. Since
the abstractions in θ1 and θ2 may be different, we need to allow a move which
contains an equivalence class c to interact with any move obtained by replacing
c with some c′ such that c ∩ c′ �= ∅. Hence, even if the quotient strategies for M
and N are deterministic, the one for M N may be nondeterministic.

In the rest of the paper, �Γ # M : θ� will denote the quotient strategy.

Example 1. Consider the quotient strategy

�x : varint[0,4] # x := !x +[0,4]→[0,1]→[0,3] 1[0,1] : com�
If the abstract value (i.e. equivalence class) 3 is read from the variable x , the
result of the addition is >3, because it belongs to the abstraction [0, 3]. When >3
is assigned to x which is abstracted by [0, 4], it is nondeterministically converted
to either 4 or >4. Thus, the following are two possible complete plays:

run readx 3x write(4)x okx ok, run readx 3x write(>4)x okx ok
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3.3 Interaction Semantics

In standard semantics, which is presented above, to obtain the strategy �Γ #
M N : θ�, the strategies �Γ # M : θ1 → θ� and �Γ # N : θ2� are composed, and
moves which interact are hidden. (Here θ̃1 = θ̃2.)

Let 〈〈−〉〉 denote an alternative semantics, where moves which interact are not
hidden. We call this the interaction semantics, and its building blocks interaction
plays and interaction strategies.

For any term Γ # M : θ of AIA, its interaction semantics can be easily
reconciled with its standard semantics, by performing all the hiding at once. In
the following, − � Γ, θ indicates restriction to the arenas corresponding to base
types occurring in Γ and θ.

Proposition 1. �Γ # M : θ� = 〈〈Γ # M : θ〉〉 � Γ, θ.

Standard plays are alternating sequences of Opponent and Player moves.
Interaction plays in addition contain internal moves, which do not interact in
subsequent compositions, but which record all intermediate steps taken during
the computation.

Consider composing 〈〈Γ # M : θ1 → θ〉〉 and 〈〈Γ # N : θ2〉〉 to obtain
〈〈Γ # M N : θ〉〉. According to the definition of interaction sequences above, for
any moves r1 and r2 whose types σ1 and σ2 (respectively) are corresponding base
types in θ1 and θ2, and which interact, they are both recorded in 〈〈Γ # M N : θ〉〉.
Indeed, since we only have θ̃1 = θ̃2, r1 and r2 may be different. However, if σ1
and σ2 are not types of integer expressions or integer variables, then σ1 = σ2
and r1 = r2. In such cases, when presenting interaction plays and strategies, we
may record r1 and r2 only once, for readability.

Example 2. Consider the interaction strategy of the term in Example 1. Here is
one of its complete interaction plays, corresponding to the second standard play
in Example 1. Any internal move is tagged with the coordinates of the corre-
sponding sub-term. For instance, q2,1 is the question to the sub-term !x , which
is the 1st immediate sub-term of !x + 1, which in turn is the 2nd immediate
sub-term of x := !x + 1. Observe also the double occurrences of integer internal
moves, in line with how interaction plays are composed. In this example, those
pairs are equal because, in any functional application, any two corresponding
abstractions are equal. An abstract value needs to be converted to another ab-
straction only within the strategy for asg, where a value with abstraction [0, 3]
is assigned to a variable with abstraction [0, 4].

run q2 q2,1 q2,1,1 readx 3x 32,1,1 32,1,1 32,1 32,1 q2,2 12,2 12,2

(>3)2 (>3)2 write(>4)1 write(>4)x okx ok1 ok

The interaction semantics, rather than the standard semantics, will be used
for the purpose of abstraction refinement. The reason is that, given an unsafe
standard play of an abstracted term, it does not in general contain sufficient
information to decide that it can be produced by the concrete version of the
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term (i.e. that it is not a spurious counterexample), or to choose one or more
abstractions to be refined for the next iteration.

In classical, stateful, abstraction-refinement an abstract counterexample to
a safety property is guaranteed to be genuine if the computation was determin-
istic (or, at least, the nondeterminism was not caused by over-abstraction). In
standard semantics, however, all internal steps within a computation are hidden.
This results in standard strategies of abstracted terms in general not containing
all information about sources of their nondeterminism.

Example 3. Consider the following abstracted term, with notation in Fig. 1:

# newint[] x := 0[0,0] in if (x �= 0[0,0]) abort skip : com

Its complete standard plays are run abort and run ok. In fact, its strategy is the
same as the strategy of the EIA term abort or skip. However, the counterexample
run abort is spurious, and the abstraction of x needs to be refined, but internal
moves which point to this abstraction as the source of nondeterminism have been
hidden.

4 Conservativity of Abstraction

As interaction plays contain internal moves, we can distinguish those whose
underlying computation did not pass through any nondeterministic branching
that is due to abstraction.

Definition 3. (a) Given integer abstractions π and π′, and an abstract value
(i.e. equivalence class) c of π, we say that converting c to π′ is deterministic
if there exists an abstract value c′ of π′ such that c ⊆ c′.

(b) Given an abstracted operation op : expτ1 → expτ2 → expτ and abstract values
c1 and c2 of type τ1 and τ2 respectively, we say that the application of op to
c1 and c2 is deterministic if there exists an abstract value c of type τ such
that ∀ v1 ∈ c1, v2 ∈ c2, op v1 v2 ∈ c.3

(c) An interaction play u ∈ 〈〈Γ # M : θ〉〉 is deterministic if each conversion of
an abstract integer value in u is deterministic, and each application of an
arithmetic-logic operator in u is deterministic.

For abstractions π and π′, we say that π′ refines π if, for any equivalence
class c′ of π′, there exists an equivalence class c of π such that c′ ⊆ c. When π′

refines π, and c is an equivalence class of π, we say that π′ splits c if c is not an
equivalence class of π′.

We say that a term Γ ′ # M ′ : θ′ refines a term Γ # M : θ if Γ̃ ′ = Γ̃ ,
M̃ ′ = M̃ , θ̃′ = θ̃, and each abstraction in Γ ′ # M ′ : θ′ refines the corresponding
abstraction in Γ # M : θ.

Theorem 2. Suppose Γ ′ # M ′ : θ′ refines Γ # M : θ.
3 Here we regard the abstract values tt and ff as singleton sets {tt} and {ff}.
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(i) For any t ∈ �Γ ′ # M ′ : θ′�, we have t ∈ �Γ # M : θ�. The same is true for
the 〈〈−〉〉 semantics.

(ii) For any deterministic u ∈ 〈〈Γ # M : θ〉〉, there exists t ∈ 〈〈Γ ′ # M ′ : θ′〉〉
such that u = t .4

Proof. By induction on the typing rules of AIA. ��

The following consequence of Corollary 1, Proposition 1 and Theorem 2 will
justify the correctness of the abstraction refinement procedure.

Corollary 2. Suppose Γ ′ # M ′ : θ′ refines Γ # M : θ.

(i) If �Γ # M : θ� is safe, then Γ ′ # M ′ : θ′ is safe.
(ii) If 〈〈Γ # M : θ〉〉 has a deterministic unsafe interaction play, then Γ ′ # M ′ : θ′

is unsafe.

5 Abstraction Refinement

In the rest of the paper, we work with the 2nd-order recursion-free fragment
of AIA. In particular, function types are restricted to θ ::= σ | σ → θ. In-
stead of the functional constant new is more convenient to use the combinator
newτ x := E inM which binds free occurrences of x in M . Without loss of gen-
erality, we consider only normal forms with respect to β-reduction.

An abstraction π is finitary if it has finitely many equivalence classes. A term
is finitely abstracted if it contains only finitary abstractions.

A set of abstractions is effective if their equivalence classes have finite rep-
resentations, and if conversions of abstract values between abstractions, and all
arithmetic-logic operators over abstract values, are computable.

Proposition 2. For any finitely abstracted term Γ # M : θ with abstractions
from an effective set, the set �Γ # M : θ� is a regular language. Moreover, an
automaton which recognises it is effectively constructible. The same is true for
the 〈〈−〉〉 semantics.

Proof. Since the abstractions are finitary, Γ # M : θ can be seen as a term of
2nd-order recursion free EIA with finite data types and abort. We can extend
the construction in [10] to obtain effectively an automaton which recognises
�Γ # M : θ�. Note that the construction in loc. cit. characterises strategies in
terms of their complete plays, i.e. those plays in which the initial question is
answered. However, in the presence of abort strategies are defined by their full
sets of plays is (Theorem 1), so to each finite state machine used in loc. cit. we
apply a suitable prefix closure operator, which preserves the finite-state property.

To obtain an automaton for 〈〈Γ # M : θ〉〉, interacting moves are tagged with
sub-term coordinates rather than hidden. ��
4 This can be strengthened to apply to interaction plays which are deterministic with

respect to the abstractions in Γ ′ � M ′ : θ′. The latter notion allows nondeterministic
conversions of, and operator applications to, abstract values which are not split by
the corresponding abstractions in Γ ′ � M ′ : θ′.
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Fig. 2. A possible definition of �

Let A�Γ # M : θ� and A〈〈Γ # M : θ〉〉 denote the automata obtained as
in the proof of Proposition 2. Since there is no hiding in the construction of
A〈〈Γ # M : θ〉〉, this automaton is deterministic.

Given a finite word u and a deterministic automaton A which accepts u, we
call u cycle-free if the accepting run visits any state of A at most once.

Apart from the identity abstraction κ, for simplicity, from now on we work
only with the abstractions [] and [n,m], where n ≤ 0 ≤ m + 1 (see Fig. 1).
Observe that these abstractions are finitary and form an effective set.

Let ≺ denote the following computable linear ordering between abstract
values:

Z ≺ (<0) ≺ (>−1) ≺ (<−1) ≺ −1 ≺ 0 ≺ (>0) ≺ · · ·
(<−(n + 1)) ≺ −(n + 1) ≺ n ≺ (>n) ≺ · · ·

For two moves (possibly tagged with sub-term coordinates) r and r ′ which are
equal except for containing different abstract integer values c and c′, let r ≺ r ′

if c ≺ c′, and r ′ ≺ r if c′ ≺ c. Now, we extend this ordering to a computable
linear ordering on all moves (in an arbitrary but fixed way), and denote it by
≺. Let ≺ also denote the linear orderings on plays obtained by lifting the linear
ordering on moves lexicographically.

Let (n, c) ' (n ′, c′) be any computable linear ordering between pairs of non-
negative integers and abstract integer values which is obtained by extending
the partial ordering defined by n ≤ n ′ and c � c′, and which admits no infi-
nite strictly decreasing sequences, and no infinite strictly increasing sequences
bounded above (see Fig. 2). For any play u, let |u| denote its length, and max(u)
denote the ≺-maximal abstract integer value in u (or Z if there is no such value).
Let u ' u ′ mean (|u|,max(u)) ' (|u ′|,max(u ′)). Now, let � be the linear order-
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The procedure checks safety of a given concrete term Γ � M : θ.

1 Let Γ0 � M0 : θ0 be a finitely abstracted anti-refinement of Γ � M : θ, i.e. be
obtained from Γ � M : θ by replacing κ by finitary abstractions. Let i := 0.

2 If A�Γi � Mi : θi� accepts only safe plays, terminate with answer SAFE.
3 Otherwise, if A〈〈Γi � Mi : θi〉〉 accepts a deterministic unsafe interaction play,

terminate with answer UNSAFE.
4 Otherwise, let u be the �-minimal unsafe interaction play accepted by A〈〈Γi �

Mi : θi〉〉. Let Γi+1 � Mi+1 : θi+1 be obtained by refining one or more ab-
stractions in Γi � Mi : θi by finitary abstractions, provided that at least one
abstract value which occurs in u is split. Let i := i + 1, and repeat from 2.

Fig. 3. Abstraction refinement procedure

ing between plays such that u � u ′ if and only if either u � u ′, or |u| = |u ′|,
max(u) = max(u ′) and u � u ′.

Lemma 1. In the linear order of all plays with respect to �:

(i) there is no infinite strictly decreasing sequence;
(ii) there is no infinite strictly increasing sequence which is bounded above.

Proof. This is due to the following two facts. Firstly, the ' ordering between
pairs of nonnegative integers and abstract integer values has the properties (i)
and (ii). Secondly, for any such pair (n, c), there are only finitely many plays u
such that |u| = n and max(u) = c. ��

The abstraction refinement procedure (ARP) is given in Fig. 3. Note that, in
step 1, the initial abstractions can be chosen arbitrarily; and in step 4, arbitrary
abstractions can be refined in arbitrary ways, as long as that splits at least one
abstract value in u. These do not affect correctness and semi-termination, but
they allow experimentation with different heuristics in concrete implementations.

Theorem 3. ARP is well-defined and effective. If it terminates with SAFE
(UNSAFE, respectively), then Γ # M : θ is safe (unsafe, respectively).

Proof. For well-defined-ness, Lemma 1 (i) ensures that the �-minimal unsafe
interaction play u accepted by A〈〈Γi # Mi : θi〉〉 always exists. Since the condition
in step 3 was not satisfied, u is not deterministic. Therefore, u cannot contain
only singleton abstract values, so there is at least one abstract value in u which
can be split.

Effectiveness follows from Proposition 2, by the fact that it suffices to consider
cycle-free plays in step 4, and from computability of �.

If ARP terminates with SAFE (UNSAFE, respectively), then Γ # M : θ is
safe (unsafe, respectively) by Corollary 2, since any abstraction is refined by the
identity abstraction κ. ��

Theorem 4. If Γ # M : θ is unsafe then ARP will terminate with UNSAFE.
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Proof. By Corollary 1 and Proposition 1, there exists an unsafe t ∈ 〈〈Γ # M : θ〉〉.
For each i , let Ui be the set of all unsafe u ∈ 〈〈Γi # Mi : θi〉〉, and let u†

i be
the �-minimal element of Ui .

It follows by Theorem 2 that, for any u ∈ 〈〈Γi+1 # Mi+1 : θi+1〉〉, u ∈
〈〈Γi # Mi : θi〉〉. Also, we have u � u. Now, step 4 ensures that, for any i ,
u†
i �∈ 〈〈Γi+1 # Mi+1 : θi+1〉〉.

Therefore, u†
0 � u†

1 � · · · u†
i � · · · . But, for each i , u†

i � t i � t . By Lemma 1
(ii), ARP must terminate for Γ # M : θ! ��

ARP may diverge for safe terms. This is generally the case with abstrac-
tion refinement methods since the underlying problem is undecidable. A simple
example is the term

e : expint # newint x := e in if (!x =!x + 1) abort skip : com

This term is safe, but any finitely abstracted anti-refinement of it is unsafe.

6 Conclusions and Related Work

In this paper, we extended the applicability of game-based software model check-
ing by a data-abstraction refinement procedure which applies to open program
fragments which can contain infinite integer types, and which is guaranteed to
discover an error if it exists. The procedure is made possible and it was jus-
tified by a firm theoretical framework. Some interesting topics for future work
are dealing with terms which contain recursion, and extending to a concurrent
programming language [12] or higher-order fragments [22].

The pioneering applications of game models to program analysis were by
Hankin and Malacaria [13, 19–21], who also use nondeterminism as a form of ab-
straction. Their abstraction techniques apply to higher-order constructs rather
than just data, by forgetting certain information used in constructing the game
models (the justification pointers). It is an interesting question whether this style
of abstraction can be iteratively refined. The first applications of game-semantic
models to model checking were by Ghica and McCusker [10]. The latter line of re-
search was further pursued as part of the Algorithmic Game Semantics research
programme at the University of Oxford [1], and by Dimovski and Lazić [9].

On the topics of data abstraction [7] and abstraction refinement [6], there
is a literature too vast to mention. Good entry points, which also represented
essential motivation for our work, are the articles written on the SLAM model-
checker [4]. It is too early to compare our approach with traditional, stateful,
model-checkers. The first obstacle is the use of different target languages to
express programs, but we hope to move towards more realistic target languages
in the near future. The second obstacle stems from a difference of focus. Stateful
techniques are already very mature and can target realistic industrial software;
their overriding concern is efficiency. Our main concern, on the other hand, is
compositionality, which we believe can be achieved in a clean and theoretically
solid way by using a semantics-directed approach. In order to narrow the gap
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between the efficiency of stateful tools and game-based tools, many program
analysis techniques need to be re-cast using this new framework. Judging by the
positive initial results, we trust the effort is worthwhile. Compositionality is a
worthwhile long-term goal as compositional techniques are the best guarantee of
scalability to large systems.

Aside from compositionality, one important advantage of game-based models
is their small size, which is achieved by hiding all unobservable internal actions.
However, in order to identify and analyse counterexample traces it is necessary,
as we have pointed out in Sec. 3.3, to expose internal actions. In order to imple-
ment this abstraction refinement procedure reasonably, we must proceed by first
identifying counter-example standard plays, and then obtaining corresponding
interaction plays by “uncovering” the hidden moves. We are currently develop-
ing a model-checking tool based on representing strategies in the process algebra
CSP [23], which can be verified using the FDR model checker. We can exploit a
feature of FDR which allows identification of hidden events in counterexample
traces, in order to implement the “uncovering” operation necessary to compute
interaction plays efficiently.
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2 Département d’Informatique, Université Libre de Bruxelles
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Abstract. We present locality-based abstractions, in which a set of
states of a distributed system is abstracted to the collection of views that
some observers have of the states. Special cases of locality-abstractions
have been used in different contexts (planning, analysis of concurrent pro-
grams, concurrency theory). In this paper we give a general definition in
the context of abstract interpretation, show that arbitrary locality-based
abstractions are hard to compute in general, and provide two solutions
to this problem. The solutions are evaluated in several case studies.

1 Introduction

Consider a system acting on a set X of program variables over some value set
V . An abstraction of the system, in the abstract-interpretation sense [1], delib-
erately loses information about the current values of the variables. Many ab-
stractions can be intuitively visualized by imagining an observer who has access
to the program code but is only allowed to retain limited knowledge about the
values of the variables. For instance, the observer may only be allowed to retain
the sign of a variable, its value modulo a number, or whether one value is larger
than another one. In this paper we consider locality-based abstractions, which
are best visualized by imagining a set of observers, each of which has a partial
view of the system. Each observer has access to all the information ‘within his
window’, but no information outside of it. For instance, in a system with three
variables there could be three observers, each of them with perfect information
about two of the variables, but no knowledge about the third. Given the set
{〈1, 1, 0〉, 〈1, 0, 1〉, 〈0, 1, 1〉} of valuations of the variables, the observer with ac-
cess to, say, the first two variables ‘sees’ {〈1, 1,u〉, 〈1, 0,u〉, 〈0, 1,u〉}, where u
stands for absence of information. Notice that information is lost: Even if the
three observers exchange their informations, they cannot conclude that 〈1, 1, 1〉
does not belong to the set of valuations.

The idea of local observers is particularly appropriate for distributed systems
in which the value of a variable corresponds to the local state of a component
of the system. In this case, a partial view corresponds to having no information
from a number of components of the system. This is also the reason for the term
“locality-based” abstraction.
� The author wishes to thank the University of Stuttgart, where most of the work was

done, for hospitality and both FRIA and FNRS for financial support.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 118–134, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Locality-Based Abstractions 119

Plan of the paper. In Sect. 3 we present a very general definition of locality-based
abstraction, and study, in Sect. 4, the problem of computing the abstract post#

operator (i.e., the abstract operator corresponding to the usual post operator
that computes the set of immediate successors on the concrete space). We observe
that, in general, computing post# involves solving an NP-complete problem, and
present two orthogonal solutions to this problem in Sect. 5 and 6, respectively.
Each of them leads to a polynomial-time algorithm. The first solution works
for a restricted class of systems and arbitrary abstractions, while the second
restricts the class of abstractions that are used but can be applied to arbitrary
systems. In Sect. 7 we present an abstraction-refinement scheme which allows to
progressively refine the precision of the abstractions while keeping good control
of the time required to compute the (post#)∗ operator, i.e., the operator yielding
the set of reachable abstract states. Section 8 reports on experimental results
obtained from an implementation of the approaches of Sect. 5 and 6.

Related work. Locality-based abstractions have been used before in the litera-
ture, but to the best of our knowledge not with the generality presented here.
A particular case of locality-based abstraction are the Cartesian abstractions of
[2], in which a set of tuples is approximated by the smallest Cartesian product
containing this set. It corresponds to the case in which we have an observer for
each variable (i.e., the observer can only see this variable, and nothing else). An-
other particular case that has been independently rediscovered several times is
the pairs abstraction, in which we have an observer for each (unordered) pair of
variables. In [3,4,5], this abstraction is used to overapproximate the pairs {l, l′}
of program points of a concurrent program such that during execution the con-
trol can simultaneously be at l, l′. In [6], it is used to overapproximate the pairs
of places of a Petri net that can be simultaneously marked, and the abstraction
is proved to be exact for the subclass of T-nets, also called marked graphs. In
Graphplan, an approach to the solution of propositional planning problems [7,8],
it is used to overapproximate the set of states reachable after at most n steps.

Prerequisites. The reader is expected to be familiar with the abstract interpre-
tation framework and with the manipulation of symbolic data structures based
on deterministic automata such as binary decision diagrams [9].

Full version. A version of the paper containing all proofs is available at
http://www.ulb.ac.be/di/ssd/cfv/publications.html.

2 Preliminaries

System model. We fix a finite set V of values (in our examples we use V = {0, 1}).
A state is a function s : X → V , where X = {x1, . . . , xn} is a set of state
variables. We also represent a state s by the tuple (s[1], . . . , s[n]), where s[i] is
an abbreviation for s(xi). The set of all states over the set X of variables is
denoted by S .

Let X ′ be a disjoint copy of X . A transition t is a subset of S × S , which
we represent as a predicate t(X,X ′), i.e., (s, s′) ∈ t if and only if t(s, s′) is true.
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A system is a pair Sys = (X,T ) where X is a finite set of variables and T is
a finite set of transitions. We define the transition relation R ⊆ S × S as the
union of all the transitions of T .

Given a set of states S, we define the successors of S, denoted by post [Sys](S),
as the set of states s′ such that R(s, s′) for some s ∈ S, and the predecessors of S,
denoted by pre[Sys](S), as the set of states s′ such that R(s′, s) for some s ∈ S.
We also write post(S) or pre(S) if the system Sys is clear from the context. We
use the following notations: post0(S) = S, post i+1(S) = post(post i(S)) for every
i ≥ 0, and post∗(S) =

⋃
n∈N postn(S). We use analogous notations for pre. A

state s is reachable from S if s ∈ post∗(S).

Partial states. Let V + = V ∪ {u} where u, disjoint from V , is the undefined
value. It is convenient to define a partial order � on V +, given by

v � v′
def⇐⇒ (v′ = u ∨ v = v′) .

A partial state is a function p : X → V +. The set of all partial states is
denoted by P. The support of a partial state p is the set of indices i ∈ {1, . . . , n}
such that p[i] �= u. We extend the partial order � to partial states:

p � p′
def⇐⇒

∧
x∈X

(
p(x) � p′(x)

)
and to sets of partial states:

P � P ′ def⇐⇒ ∀p ∈ P ∃p′ ∈ P ′ : p � p′ .

Given a partial state p, we define its upward and downward closure as p↑=
{p′ ∈ P | p′ � p} and p↓= {p′ ∈ P | p � p′}, respectively. We extend these
two notions to sets of partial states in the natural way. We say that P is upward
or downward closed if P↑= P or P↓= P , respectively. We also say that P is a
uc-set or a dc-set.

Finally, we also define p⇑= p↑ ∩S , and extend the notation to sets of states.

3 Locality-Based Abstractions

Fix a system Sys and a set I of initial states of Sys . We say that a partial state
p is reachable from I if some state s � p is reachable from I. Observe that with
this definition p is reachable if and only if all partial states in the downward
closure p↓ are reachable. So the pieces of information we have about reachability
of partial states can be identified with downward closed subsets of P.

Assume now that the only dc-sets we have access to are those included in
some dc-set D ⊆ P, called in the rest of the paper a domain. If a state s is
reachable, then all the elements of s↓ ∩D are reachable by definition. However,
the contrary does not necessarily hold, since we may have s /∈ D. In our abstrac-
tions we overapproximate by declaring s reachable if all the elements of s↓ ∩D
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are reachable, i.e., if all the information we have access to is compatible with s
being reachable.

Intuitively, we can look at D as the union of sets D1, . . . , Dn, where all the
partial states in Di have the same support, i.e., a partial state p ∈ Di satisfies
p[i] = u only if all partial states p′ ∈ Di satisfy p′[i] = u. The sets Di correspond
to the pieces of information that the different observers have access to. Notice
that we can have a domain Di like, say Di = {〈0, 0,u〉, 〈1, 0,u〉}↓ in which the
observer is only allowed to see some local states of the first two components, but
not others, like 〈1, 1,u〉.

Recall that the powerset lattice PL(A) associated to a set A is the com-
plete lattice having the powerset of A as carrier, and union and intersection
as least upper bound and greatest lower bound operations, respectively. In our
abstractions the concrete lattice is the powerset lattice PL(S ) of the set of
states S .

We fix a domain D ⊆ P, and define the downward powerset lattice DPL(D)
associated to D as the restriction of PL(D) to the dc-sets included in D. That is,
the carrier of DPL(D) is the set of dc-subsets of D (which, since D is downward
closed, contains D itself), and the least upper bound and greatest lower bound
operations are union and intersection. Notice that DPL(D) is well-defined be-
cause the union and intersection of a family of dc-sets is a dc-set. The abstract
lattice of a locality-based abstraction is DPL(D), and the concretization and
abstraction mappings are defined as follows:

α(S) def= S↓ ∩D for any S ∈ PL(S )

γ(P ) def= {s ∈ S | s↓ ∩D ⊆ P} for any P ∈ DPL(D)
= S \ (D \ P )⇑ .

Example 1. Consider the set of values V and the state variables X defined by
V = {0, 1} and X = {x1, x2, x3}, respectively. The domain of pairs over X is
given by

D2 = {(n,m,u), (n,u,m), (u, n,m) | n,m ∈ {0, 1}}↓ .

For the set S = {〈1, 1, 0〉, 〈1, 0, 0〉, 〈0, 1, 0〉} we get

α(S) = {〈1, 1,u〉, 〈1, 0,u〉, 〈0, 1,u〉, 〈1,u, 0〉, 〈0,u, 0〉, 〈u, 1, 0〉, 〈u, 0, 0〉}↓

and (γ ◦ α)(S) = S, i.e., in this case no information is lost.
Consider now the domain

D1 = {(n,u,u), (u, n,u), (u,u, n), (u,u,u) | n ∈ {0, 1}} .

In this case we get

(γ ◦ α)(S) = γ({〈1,u,u〉, 〈0,u,u〉, 〈u, 1,u〉, 〈u, 0,u〉, 〈u,u, 0〉, 〈u,u,u〉})
= {0, 1} × {0, 1} × {0}
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and in general (γ ◦ α)(S) is the smallest cartesian product of subsets of V con-
taining S, matching the cartesian abstractions of [2] 1.

Observe that for D = P we obtain

α(S) = S↓ for any S ∈ PL(S )
γ(P ) = P ∩ S for any P ∈ DPL(D)

and so (γ ◦ α)(S) = S, i.e., no information is lost.
The concrete PL(S ) and abstract DPL(D) domains and the abstraction

α : PL(S ) �→ DPL(D) and concretization γ : DPL(D) �→ PL(S ) maps form a
Galois connection, denoted by PL(S )

α�
γ

DPL(D), for every domain D.

Proposition 1. For every domain D, PL(S )
α�
γ

DPL(D).

3.1 The post# Operator

We define the function post#[Sys, D] : DPL(D) → DPL(D):

post#[Sys , D] def= λP.(α ◦ post [Sys ] ◦ γ)(P ) .

We shorten post#[Sys , D] to post# if the system and the domain are clear from
the context. We have the following characterization of post#[Sys , D].

Proposition 2. Let Sys and D be a system and a domain, respectively. For
every P ∈ DPL(D) and for every p ∈ P

p ∈ post#(P ) ⇐⇒ p ∈ D ∧ ¬(pre(p⇑) ⊆ (D \ P )⇑) .

Proof (of Proposition 2).

p ∈ post#(P ) ⇔ p ∈ (α ◦ post ◦ γ)(P )
⇔ p ∈ D ∧ p ∈ (↓ ◦post ◦ γ)(P ) (Def. of α)
⇔ p ∈ D ∧ (p⇑ ∩(post ◦ γ)(P ) �= ∅)
⇔ p ∈ D ∧ (pre(p⇑) ∩ γ(P ) �= ∅)
⇔ p ∈ D ∧ (pre(p⇑) ∩

(
S \ (D \ P )⇑

)
�= ∅) (Def. of γ)

⇔ p ∈ D ∧ ¬(pre(p⇑) ⊆ (D \ P )⇑) 	

Using standard results of abstract interpretation we get for every set of states
S that (post#)∗ is a sound abstraction of post∗, i.e.:

post∗(S) ⊆ (γ ◦ (post#)∗ ◦ α)(S) for every S ∈ PL(S ).

1 Actually, the functions α and γ of [2] are slightly different, but their composition is
the same as here.
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4 The Complexity of Computing post#

In the rest of the paper we assume that sets of (partial) states are symbolically
represented as multi-valued decision diagrams (MDD) (see [10] for more details)
over the set of variables X with a fixed variable order. The cardinality of X will
be denoted |X |. Given a set P of partial states we denote the MDD representing
P by PM and the size of PM by |PM|. We also assume that each transition t of
a system Sys = (X,T ) is symbolically represented as a MDD tM over variables
X,X ′ with a fixed variable order whose projection onto X coincides with the
fixed order on X . The size of Sys is defined as

∑
t∈T |tM| + |X | and denoted

by |Sys |.
We consider the following decision problem.

Definition 1. The problem POST# is defined as follows:
Instance: a system Sys = (X,T ), an element p ∈ D and two MDDs DM, PM,
where D is a non-empty domain and P ∈ DPL(D).
Question: p ∈ post#[Sys, D](P ) ?

We say that a class of systems C is polynomial if the restriction POST#
C of

POST# to instances in which the system Sys belongs to C can be solved in
polynomial time. Unfortunately, as we are going to show, unless P=NP holds,
even very simple classes of systems are not polynomial. Before proceeding, we
need a time complexity bound for some operation on MDD.

Proposition 3. Let p ∈ P and SM be a MDD for S ⊆ P. We can decide in
O(|X | + |SM|) time if there exists s ∈ S such that p � s.

Proof (of Proposition 3). We use a simple marking algorithm. Initially we mark
the root node of SM. If a node m labelled by xi is marked, we mark all successors
n of m such that the edge e = (n,m) is labelled with a vi ∈ V + satisfying
p(xi) � vi. The state s exists iff at the end of the algorithm the accepting node
is marked. ��

The following proposition is proved by means of a simple reduction from the
3-colorability problem on graphs.

Proposition 4. The following problem is NP-complete:
Instance: a set X of variables, and two MDDs DM, PM, where D is a non-
empty domain on X and P ∈ DPL(D).
Question: γ(P ) �= ∅ ?
In particular, if P�=NP then there is no polynomial time algorithm to compute
γ(P )M.

We are now able to present the main result of this section. Fix V = {0, 1}
and let {Sysn}n≥1 be the family of systems given by Sysn = (Xn, {tn}), Xn =
{x1, . . . xn} and tn = S ×S . Intuitively Sysn is a system with n state variables
and a unique transition tn such that for any pairs of states s, s′ we find that
(s, s′) ∈ tn.
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Proposition 5. If the class C = {Sysn}n≥1 of systems is polynomial, then
P=NP.

Proof. We reduce the problem of Prop. 4 to POST#
C . This shows that POST#

C
is NP-complete and so if C is polynomial, then P=NP.

Given an instance X , DM, PM of the problem of Prop. 4, we build in poly-
nomial time the partial state u|X| (u|X| ∈ D for any D �= ∅) and the MDD tM|X|
such that t|X| = S × S . The operator post# is given by (α ◦ post ◦ γ) and so
we have γ(P ) �= ∅ iff u|X| ∈ post#[Sys |X|, D](P ). ��

This result shows that we do not have much hope of finding a broad, inter-
esting class of polynomial systems. In the next sections we present two possible
ways of dealing with this problem.

5 Partial Reachability

In this section we show that, if we change the concrete lattice in our abstrac-
tions by extending reachability also to partial states, then an interesting class
of systems becomes polynomial. From now on, we assume the following ordering
on X = {x1, . . . , xn} and its disjoint copy X ′: x1 < x′1 < · · · < xn < x′n.

We define the notion of kernel of a transition. Intuitively, the kernel of a
transition is the set of variables that are “involved” in it.

Definition 2. Let t(X,X ′) be a transition and let Y ⊆ X be the smallest subset
of X such that

t(X,X ′) ≡ t̂(Y, Y ′) ∧
∧

x∈X\Y

(x = x′)

for some relation t̂. We call t̂ the kernel of t, Y the kernel variables and |Y |
the kernel width. Given a partial state p ∈ P, we denote by p̂ the partial state
given by

p̂[i] =

{
p[i] if xi belongs to the kernel variables of t,
u otherwise,

and p̃ the partial state given by

p̃[i] =

{
p[i] if xi does not belong to the kernel variables of t,
u otherwise.

We identify a partial state p and the pair (p̂, p̃).

We need to extend the transitions to partial states.

Definition 3. Let Sys = (X,T ) be a system and let t ∈ T . The extended tran-
sition t ⊆ P × P is defined as follows:

t(p1, p2)
def⇐⇒ ∃p ∈ P : t̂(p̂1, p) ∧ p � p̂2 ∧ p̃1 = p̃2 .

Given a system Sys = (X,T ), we define the extended transition relation R of
Sys as the union of all its extended transitions.
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The intuition behind this definition is as follows: If we know that p1 is reach-
able (i.e., that some state s � p1 is reachable) and that t(p1, p2) holds, then
we already have enough information to infer that p2 is reachable. Let us see
why. We know the values of all the variables involved in t (this is p̂1), and we
know that we can reach (p, p̃1) from (p̂1, p̃1) (because t̂(p̂1, p)). Now, since we
can reach (p, p̃1) and we know that p � p̂2 and p̃1 = p̃2, we can infer that p2 is
also reachable.

It is easy to show that the restriction of the extended reachability relation
to states coincides with the reachability relation.

Lemma 1. For any t ∈ T and any s1, s2 ∈ S , we have t(s1, s2) iff t(s1, s2).

Proof (of Lemma 1). Since s2 is a state, p � ŝ2 holds if and only if p = ŝ2, and
so

t(s1, s2) ⇔ (t̂(ŝ1, ŝ2)∧ s̃1 = s̃2) ⇔ t(s1, s2) . ��

In order to obtain a Galois connection, we extend the functions α, γ to
α : DPL(P) → DPL(D) and γ : DPL(D) → DPL(P) in the obvious way:

∀P ∈ DPL(P) : α(P ) def= P↓ ∩D = P ∩D (P is a dc-set)
∀P ∈ DPL(D) : γ(P ) def= {p | p↓ ∩D ⊆ P}

= P \ (D \ P )↑ .

Proposition 6. For every domain D, DPL(P)
α
�
γ

DPL(D).

5.1 The post# Operator

We extend post and pre to post and pre on partial states by declaring p′ ∈ post(p)
and p ∈ pre(p′) iff R(p, p′). We have the following useful property:

Lemma 2. Fix an arbitrary system, for every p ∈ P, pre(p↑) = pre(p)↑ and
post(p↑) = post(p)↑.

The set post#[Sys , D](P ) is given by

{p2 ∈ D | ∃p1 : R(p1, p2) ∧ ¬
(
∃p3 : p3 ∈ (D \ P ) ∧ (p1 � p3)

)
} .

Notice that, given MDDs DM, PM, RM and �M, the set post#[Sys, D](P )
can be computed symbolically using classical operations provided by any MDD
package.

The following result, which makes use of Lemmata 1 and 2, shows that the
post# operator is a better approximation to post than post#, i.e., replacing post#

by post# leads to a loss of precision.

Proposition 7. Fix a system and a domain D. For every P ∈ DPL(D),
post#(P ) ⊆ post#(P ), but the converse does not hold.
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Proof. The first part is an easy consequence of the definitions, and can be found
in the full version of the paper. Here we provide a detailed example proving the
non inclusion of post#(P ) in post#(P ).

Fix V = {0, 1, 2} and Sys = (X,T ) with X = {x1, x2, x3, x4}, T = {t1, t2, t3,
t4} and such that

t1(X,X ′) ≡ t̂1(Y, Y ′) ∧ x3 = x′3 t̂1 = {(〈0, 0, 0〉, 〈1, 1, 1〉)} Y = X \ {x3}
t2(X,X ′) ≡ t̂2(Y, Y ′) ∧ x2 = x′2 t̂2 = {(〈0, 0, 0〉, 〈1, 1, 2〉)} Y = X \ {x2}

t3(X,X ′) ≡ t̂3(Y, Y ′) ∧
(
x1 = x′1
x4 = x′4

)
t̂3 = {(〈0, 0〉, 〈1, 1〉)} Y = {x2, x3}

t4(X,X ′) ≡ t̂4(Y, Y ′) ∧ x4 = x′4 t̂4 = {(〈1, 1, 1〉, 〈2, 2, 2〉)} Y = X \ {x4}

The domain D is the set of partial states p ∈ {0, 1, 2,u}4 such that for at
most 2 indices i, j of {1, 2, 3, 4} : p[i] �= u and p[j] �= u. The set of initial state I
is given by {〈0, 0, 0, 0〉}. The set (post# ◦ α)(I↓), denoted F , is given by

F = {〈1, 1,u,u〉, 〈1,u,u, 1〉, 〈u, 1,u, 1〉, 〈1,u, 0,u〉, 〈u, 1, 0,u〉, 〈u,u, 0, 1〉
〈1,u, 1,u〉, 〈1,u,u, 2〉, 〈u,u, 1, 2〉, 〈1, 0,u,u〉, 〈u, 0, 1,u〉, 〈u, 0,u, 2〉,
〈u, 1, 1,u〉, 〈0, 1,u,u〉, 〈u, 1,u, 0〉, 〈0,u, 1,u〉, 〈u,u, 1, 0〉, 〈0,u,u, 0〉}↓ .

It is routine to check that (post# ◦ α)(I) and (post# ◦ α)(I↓) coincide. Observe
that 〈1, 1, 1,u〉 ∈ γ(F ) but

{〈1, 1, 1, 0〉, 〈1, 1, 1, 1〉, 〈1, 1, 1, 2〉}∩ γ(F ) = ∅ .

Now consider the second iteration. In this case we find that 〈2, 2,u,u〉 ∈
post#(F ) but 〈2, 2,u,u〉 /∈ post#(F ) which proves our claim. ��

The loss of precision of post# is compensated by its better properties. We
have the following characterization of post#[Sys , D](P ).

Proposition 8. Let Sys and D be a system and a domain, respectively. For
every P ∈ DPL(D), for every p ∈ P

p ∈ post#(P ) ⇐⇒ p ∈ D ∧ ¬(pre(p) � (D \ P )) .

Proof (of Proposition 8).

p ∈ post#(P ) ⇔ p ∈ (α ◦ post ◦ γ)(P )

⇔ p ∈ D ∧ p ∈ (post ◦ γ)(P ) (Def. of α)

⇔ p ∈ D ∧ (pre(p) ∩ γ(P ) �= ∅)
⇔ p ∈ D ∧ (pre(p) ∩ (P \ (D \ P )↑) �= ∅) (Def. of γ)

⇔ p ∈ D ∧ ¬(pre(p) ⊆ (D \ P )↑)
⇔ p ∈ D ∧ ¬(pre(p) � (D \ P )) 	
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This proposition shows the difference between computing post# and post#:
In the first case we have to deal with (D \ P )⇑, which can have a much more
complex symbolic representation than (D\P ). In the case of post# we only need
to deal with the set (D \ P ) itself.

5.2 The Complexity of Computing post#

Given a system Sys , we define the problem POST# as POST#, just replacing
post# by post#. As seen in Prop. 8, we can decide POST# by checking whether
pre(p) � (D \ P ) holds. Consider the class of systems satisfying the following
two conditions for every partial state p,

(a) |pre(p)| is bounded by a polynomial in |X |, and
(b) pre(p)M can be computed in polynomial time in |X |.

By Prop. 3, for p′ ∈ pre(p), we can decide {p′} � (D\P ) in time O(|DM|·|PM|+
|X |) and thus, given pre(p)M, DM, and PM, we can decide pre(p) � (D \ P )
in polynomial time. Since |pre(p)M| is polynomial in |X | and |X | is O(|Sys |),
we can decide POST# in polynomial time. It follows that these systems are
polynomial for POST#.

We now show that an interesting class of systems satisfies (a) and (b). Intu-
itively, we look at a system on a set X as a set having |X | components. Each
variable describes the local state of the corresponding component.

Definition 4. A system Sys = (X,T ) is k-bounded if the width of the kernel
of all transitions of T is bounded by k.

Loosely speaking, a system is k-bounded if its transitions involve at most
k components. Many systems are k-bounded. For instance, consider systems
communicating by point to point channels. If we describe the local state of a
component/channel by one variable, then usually we have k = 2, because a
transition depends on the current state of the receiving/sending component and
on the state of the channel. Another example are token ring protocols, where
each component communicates only with its left and right neighbours. These
systems are at most 3-bounded.

Observe that each k-bounded system is equivalent to another one satisfying
|T | ≤ |X |k: if there is t̂i(Yi, Y

′
i ), t̂j(Yj , Y

′
j ) such that i �= j but Yi = Yj , then we

can replace t̂i and t̂j by (t̂i ∨ t̂j)(Yi, Y
′
i ).

Proposition 9. Let p be a partial state of a k-bounded system. The set pre(p)
contains at most |X |k · |V +|k elements, and pre(p)M can be computed in time
polynomial in |X |.

Corollary 1. For a fixed k ≥ 0, the class of k-bounded systems is polynomial.
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6 Neighbourhood Domains

The polynomiality result of the last section is obtained at a price: we had to
consider less precise abstractions, and we had to restrict ourselves to k-bounded
systems. In this section we define an approach, applicable to arbitrary systems,
that uses a class of domains called neighbourhood domains. Intuitively, in a neigh-
bourhood domain the variables an observer has access to must be neighbours with
respect to the order used to construct the MDDs. E.g., an observer may observe
variables x3, x4, x5, but not x1, x8.

We say that a class D of domains is polynomial if the restriction POST#
D

of POST# to instances in which the domain D belongs to D can be solved in
polynomial time.

By Prop. 4 we know that, unless P=NP, there is no polynomial algorithm
to compute γ(·). We define hereafter a class of domains which avoids this prob-
lem, i.e., for every set P in the domain, the γ(P )M can be computed in time
polynomial in |X |, |PM| and |DM|.

Definition 5. Let x1 < · · · < xn be a variable ordering for X and let 1 ≤ k ≤
|X |. The k-neighbourhood domain D is defined as follows

D(X) ≡
∨

Vi∈V

( ∧
x∈X\Vi

(x = u)
)

where V is the set of all the sets of k consecutive variables, e.g., for n ≥ k + 2
we find that {x2, . . . , x2+k} ∈ V.

In what follows, we sometimes abbreviate
∧

x∈X\Vi
(x = u) to Di(X).

The following two propositions introduce the two key properties of neigh-
bourhood domains:
Proposition 10. Let D be a k-neighbourhood domain D, and let P ∈ DPL(D).
The MDD for the set (D \ P )↑M can be be computed in polynomial time in
|(D \P )M| (and so, in particular, it is only polynomially larger than (D \P )M).

We prove a similar result for the computation of the downward closure.

Proposition 11. Given a k-neighbourhood domain D and a set S ⊆ S , the
MDD for (S ↓ ∩Di) with Vi ∈ V can be computed in polynomial time in
|DM

i | · |SM|.

It follows that, for neighbourhood domains, both α and γ can be computed
in polynomial time in their input size.

Proposition 12. For a fixed k ≥ 0, the class of k-neighbourhood domains is
polynomial.

Proof. Consider an instance of POST# in which D is a k-neighbourhood do-
main. We give a polynomial algorithm to decide if p ∈ post#[Sys, D](P ). By the
definition of post# and α, we have p ∈ post#[Sys, D](P ) iff there is a transition
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t and states s, s′ such that s ∈ γ(P ) ∧ t(s, s′) ∧ s′ ∈ p⇑. By Prop. 10, γ(P )M

over variables X can be computed in polynomial time in |DM| and |PM|, and
an MDD p ⇑M, over variables X ′ can be computed in polynomial time in |X |.
The algorithm constructs, for each transition t of the system, an MDD for the
formula γ(P )M ∧ t(X,X ′) ∧ p⇑M (X ′) and checks if it encodes the empty set.
Since the construction and the check can be carried out in polynomial time, we
are done. ��

Moreover, while in the concrete system the number of image computations
may also be exponential, here we get a much better bound. Given a k-neighbour-
hood domain, each of the (|X | − (k− 1)) formulæ Di(X) has exactly |V |k satis-
fying partial states. This leads us to the following fact: for any k-neighbourhood
domain, for any system and for any set I of initial states, the number of iter-
ations required to reach the fixed point in the computation of (post#)∗(I) is
bounded by (|X | − (k − 1)) × |V |k. Choosing the domain adequately, we thus
have a way to control the complexity of computing (post#)∗(I). In practice this
suggests the following strategy: if the post image computation is costly we can
reduce the number of iterations needed to reach the fixed point by choosing a k-
neighbourhood domain with k << |X |, of course at the prize of losing precision.

7 Abstraction Refinement

In this section, we describe an abstraction-refinement loop for testing reachability
using the partial-reachability method. Given a system Sys = (X,T ), a set of
initial states I, and a partial state u. Our goal is to check whether u is reachable,
i.e. whether u⇑ ∩post∗(I) �= ∅.

Our method starts from a (given) initial domain D and computes the reach-
able states in the abstraction, i.e. (post#)∗(I↓). If the latter includes u, we check
if the imprecision caused by choosing the domain D might be responsible for the
positive result. If so, we refine D accordingly.

More precisely, our scheme consists of the following two steps:

Search. Compute the sequence F0 = α(I↓), In0 = Out0 = ∅, and then for i ≥ 0:

Ti+1 = { (p, p′) | p ∈ γ(Fi), p′ ∈ (α ◦ post)(p) }
Fi+1 = Fi ∪ { p′ | ∃p : (p, p′) ∈ Ti+1 }
Ini+1 = Ini ∪ { (p, p′) ∈ Ti+1 | p ∈ D }

Outi+1 = Outi ∪ { (p, p′) ∈ Ti+1 | p ∈ P \D }.

Stop when the sequence of Fis reaches a fixed point. We denote the values of
the sets in the fixed point as Ff , Inf , Outf , respectively.

Notice that Ti records a reachability relation between partial states, where the
left components can be either previously computed partial states in D or partial
states whose reachability was (potentially wrongly) ‘inferred’ by the concretiza-
tion. We then have Fi+1 = Fi ∪ post#(Fi). The sequence of In sets records the
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reachability relation between states for which no inference was used, whereas Out
records the relations for which inference was used, i.e. the places where potential
imprecision was introduced.

By Prop. 8, the Ti sets can be computed efficiently.

Refine. If u /∈ γ(Ff ), then by Prop. 7 u is unreachable, and we stop with a
negative result.

Otherwise, if u /∈ D, then we inferred reachability of u from the reachability of
several partial states. We then refine D to D∪u↓, which forces the next iteration
to ‘watch’ the partial state u explicitly. (Notice that we could have done this
before the first iteration, but then again we might be able to refute reachability
of u in the first iteration without doing this.)

Failing both tests, we check whether there is a real trace from an initial state
to u. For this, we compute backwards reachability using the relation Inf . We
conclude that u is reachable in the concrete system if ∃i ∈ α(I↓) : (i, u) ∈ In∗

f .
Executing this check step for step also gives us the ability to output a witness
path for u’s reachability.

Otherwise, u was reachable in the abstraction because of a step contained
in Outf . To prove concrete reachability of u, we must prove that the partial
source states of these steps were indeed reachable. Thus, we compute the set
A = { p | In∗

f (p, u) } and then refine D to D ∪ { p | ∃p′ ∈ A : (p, p′) ∈ Outf}.

Our approach is different from the usual CEGAR approach (see [11] for
more details), where one tests whether an abstract counterexample found in the
search phase is spurious. If it is, one refines the abstraction to prevent that coun-
terexample from being found again. In our approach, we cannot tell whether a
counterexample is spurious or not; we can merely test whether potentially impre-
cise information was used. If the counterexample was spurious, our refinement
prevents it from being found again. If the counterexample was real, then our
refinement gathers additional information to prove the counterexample correct.

Extensive work (see [12,13,14]) investigates the connection between abstract
model checking, and in particular the CEGAR approach, and the domain refine-
ment used in abstract interpretation. As a future work we plan to investigate
the connection but relatively to the refinement technique we proposed in this
section.

8 Experiments

We have produced a prototype implementation of the approaches of Sect. 5 (with
abstraction refinement) and 6 (without abstraction refinement), and applied it
to two well-known examples. The examples only use boolean variables, and so
we use BDDs instead of MDDs. Since our implementation is preliminary and our
main motivation is to provide a space-efficient method, we only report on the
sizes of the BDDs used to decide a property. We compare them with the BDD
size of the full set of reachable states, which is computed using NuSMV [15].
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8.1 Dining Philosophers Example

Our first example is a deterministic non-symmetric solution to the dining philoso-
phers problem taken from [16]. The model uses two arrays, one for the forks and
the other for the philosophers, both of size N , the number of philosophers. Each
fork is represented by two bits, and each philosopher by three. For our experi-
ments, we use two different ‘natural’ variable orders.

(A) The first order puts the bits for the forks at the top and the philosophers
at the bottom, while each array element is stored with its most significant
bit at the top.

(B) The second order interleaves forks and philosophers, i.e. we put the first fork
at the top, then the first philosopher, then the second fork etc.

The sizes of the BDDs encoding the full set of reachable states are listed (for
orders A and B and various values of N) in the left half of Table 1. As can be
seen, they strongly depend on the variable ordering, with order B working far
better.

We consider the following three properties:

1. Is it possible that two neighbouring philosophers eat at the same time? (This
property is false in the model.)

2. Is it possible for all forks to be taken at the same time? (This property is
true in the model.)

3. Is it possible for philosophers 1 and 3 to eat at the same time? (This property
is true for all N > 3.)

Notice that, without a refinement loop, an abstraction can only prove that a set
of states is not reachable, and so it can only be used to decide property 1. Since
we have not implemented the refinement loop for the neighbourhood approach
(see Sect. 6), we only apply it to this property. The partial-reachability approach
is applied to all three properties.

In the neighbourhood approach, we can decide property 1 by taking N + 1
and k = 3 for ordering A and B, respectively. The BDD sizes for (post#)∗(I)
are shown in the right half of Table 1. We observe that, as for full reachability,
the BDDs grow exponentially for ordering A and only linearly for ordering B.

Table 1. BDD sizes in Dining Philosophers example, part 1

full reachability neighb. approach
N ord. A ord. B ord. A ord. B

2 26 25 13 18
3 64 41 40 36
4 140 57 82 54
7 1,204 105 304 108

10 9,716 153 670 162
15 311,284 273 1,600 252
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Table 2. Results for Dining Philosophers, partial-reachability approach

starting with 1 component starting with 2 components
prop. 1 prop. 2 prop. 3 prop. 1 prop. 2 prop. 3

N |post∗| #ref |post∗| #ref |post∗| #ref |post∗| #ref |post∗| #ref |post∗| #ref
2 52 5 34 3 n/a n/a 38 0 46 2 n/a n/a
3 128 4 112 4 109 7 73 0 144 4 73 0
4 217 4 321 5 89 5 112 0 426 5 152 4
7 523 4 6,781 8 167 5 259 0 6,300 8 335 4

10 919 4 ?? ? 245 5 451 0 ?? ? 563 4
15 1,807 4 ?? ? 375 5 871 0 ?? ? 1,043 4

However, the constant of the growth for ordering A is much smaller, i.e., the
approach is far less sensitive to the variable order.

The results for the partial reachability approach are detailed in Table 2.
We considered two different initial abstractions for the refinement loop. In the
first one, we take one observer for each component (philosopher or fork); in the
second, one observer for each pair of components (left and right part of Table 2,
resp.). The #ref columns denote the number of refinements that were necessary
to prove or disprove the properties. The column marked |post∗| gives the number
of BDD nodes used to represent (post#)∗(I↓) in the last refinement, where this
number was highest. The representation of D was either nearly of the same size
or significantly lower. The data for the orderings A and B are almost identical,
and so only those for ordering A are shown. For properties 1 and 3, we observe
the same pattern as in the neighbourhood case: the approach works well and
is far less sensitive to the variable ordering. Looking closely, we observe that
the 2-component initialization works better for property 1, presumably because
the property is a conjunction of sub-properties concerning pairs of philosophers.
For property 3, the 1-component initialization works better, probably because it
concerns only 2 specific components. Property 2 is a case in which the locality-
based approach works far worse than full reachability: The property is universally
quantified, forcing the abstraction refinement to consider tuples ranging over all
components.

8.2 Production Cell Example

Our second example is a model of the well-known production cell case study
taken from [17]. Our encoding of the model has 15 variables with 39 bits alto-
gether. We tested all fifteen safety properties mentioned in [17], but present the
results for a few representative ones (the rest yielded similar results). The results
are shown in Table 3.

Table 3 lists results for instantiations of the model with one and five plates.
The number |reach| is the BDD size of the reachable state space as computed
by NuSMV, while |post∗| and #ref have the same meanings as in Table 2.

The results show that while the reachable state space grows (linearly) with
the number of plates, the partial-reachability approach is largely unaffected by
their number. Moreover, while the number of refinement iterations varies (the
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Table 3. Results for production cell example

One plate Five plates
|reach | = 230 |reach | = 632

Prop |post∗| #ref |post∗| #ref
1 83 2 83 2
2 88 4 92 6
4 76 1 76 1
6 105 5 120 8
11 146 3 146 3

largest number of refinements was 13), the BDD sizes vary only by about 50%
between the smallest and the largest example. As the number of plates increases,
the space savings of the locality-based approach become significant.

In the neighbourhood approach, 4 out of the 15 properties could be proved
with a neighbourhood domain of size k = 2. Independently of the number of
plates, the number of BDD nodes representing the reachable state space was 129.
A domain of size k = 3 was sufficient to verify another 7 properties; the number
of BDD nodes increased to 208. The remaining properties could only be veri-
fied using full reachability, i.e. the neighbourhood approach did not have any
advantage in this case.

9 Conclusions

We have presented locality-based abstractions, in which a state of the system is
abstracted to the collection of views that some observers have of the state. Each
observer has only access to some variables of the system. As pointed out in the
introduction, special cases of locality-abstractions have been used in different
contexts (planning, analysis of concurrent programs, concurrency theory). In
this paper we have (1) generalized the abstractions used in other papers, (2)
put them in the framework of abstract interpretation, (3) pointed out the bad
complexity of the computation of the abstract successor operator for arbitrary
locality-based abstractions, (4) provided two efficient solutions to this problem,
and (5) evaluated these solutions on a number of examples. Our conclusion is
that locality-based abstractions are a useful tool for the analysis of concurrent
systems.

In our approach we have assumed that variables have a finite domain, and
that if an observer has access to a variable, then it gets full information about its
value. Both assumptions can be relaxed. For instance, locality-based abstractions
can be easily combined with any of the usual abstractions on integer variables. It
must only be required that clustered variables must be observable by the same
observer.
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Abstract. Programmers increasingly implement plugin architectures in
type-safe object-oriented languages such as Java. A virtual machine can
dynamically load class files containing plugins, and a JIT compiler can
do optimisations such as method inlining. Until now, the best known
approach to type-safe method inlining in the presence of dynamic class
loading is based on Class Hierarchy Analysis. Flow analyses that are
more powerful than Class Hierarchy Analysis lead to more inlining but
are more time consuming and not known to be type safe. In this paper
we present and justify a new approach to type-safe method inlining in
the presence of dynamic class loading. First we present experimental
results that show that there are major advantages to analysing all locally
available plugins at start-up time. If we analyse the locally available
plugins at start-up time, then flow analysis is only needed at start-up
time and when downloading plugins from the Internet, that is, when
long pauses are expected anyway. Second, inspired by the experimental
results, we design a new framework for type-safe method inlining which
is based on a new type system and an existing flow analysis. In the
new type system, a type is a pair of Java types, one from the original
program and one that reflects the flow analysis. We prove that method
inlining preserves typability, and the experimental results show that the
new approach inlines considerably more call sites than Class Hierarchy
Analysis.

1 Introduction

In a rapidly changing world, software has a better chance of success when it
is extensible. Rather than having a fixed set of features, extensible software
allows new features to be added on the fly. For example, modern browsers such
as Firefox, Konqueror, Mozilla, and Viola [25] allow downloading of plug-ins
that enable the browser to display new types of content. Using plugins can
also help keep the core of the software smaller and make large projects more
manageable thanks to the resulting modularisation. Plugin architectures have
become a common approach to achieving extensibility and include well-known
software such as Eclipse and Jedit.
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While good news for users, plug-ins architectures are challenging for optimis-
ing compilers. This paper investigates the optimisation of software that has a
plug-in architecture and that is written in a type-safe object-oriented language.
Our focus is on method inlining, one of the most important and most studied
optimisations for object-oriented languages.

Consider the following typical snippet of Java code for loading and running
a plugin.

String className = ...;
Class c = Class.forName(className);
Object o = c.newInstance();
Runnable p = (Runnable) o;
p.run();

The first line gets from somewhere the name of a plugin class. The list of plugins
is typically supplied in the system configuration and loaded using I/O, preventing
the compiler from doing a data-flow analysis to determine all possible plugins.
The second line loads a plugin class with the given name. The third line creates
an instance of the plugin class, which is subsequently cast to an interface and
used.

In the presence of this dynamic loading, a compiler has two choices: either
treat dynamic-loading points very conservatively or make speculative optimisa-
tions based on currently loaded classes only. The former can pollute the analysis
of much of the program, potentially leading to little optimisation. The latter
can potentially lead to more optimisation, but dynamically-loaded code might
invalidate earlier optimisation decisions, and thus require the compiler to undo
the optimisations. When a method inlining is invalidated by class loading, the
run-time must revirtualise the call, that is, replace the inlined code with a virtual
call. The observation that invalidations can happen easily in a system that uses
plugins leads to the question:

Question: If an optimising compiler for a plug-in architecture inlines
aggressively, will it have to revirtualise frequently?

This paper presents experimental results for Eclipse and Jedit that quan-
tify the potential invalidations and suggest how to significantly decrease the
number of invalidations. We count which sites are likely candidates for future
invalidation, which sites are unlikely to require invalidation, and which sites
are guaranteed to stay inlined forever. These numbers suggest that speculative
optimisation is beneficial and that invalidation can be kept manageable.

In addition to the goal of inlining more and revirtualising less, we want
method inlining to preserve typability. This paper shows how to do inlining
and revirtualisation in a way that preserves typability of the intermediate repre-
sentation. The quest for preserving typability stems from the success of several
compilers that use typed intermediate languages [9,15,16,17,26] to give debug-
ging and optimisation benefits [16,24]. A bug in a compiler that discards type
information might result in a run-time error, such as a segmentation violation,
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that should be impossible in a typed language. On the other hand, if optimi-
sations are type preserving, bugs can be found automatically by verifying that
the compiler generates an intermediate respresentation that type checks. Ad-
ditionally, preserving the types in the intermediate code may help guide other
optimisations. So it is desirable to write optimisations so that they preserve
typability.

Most of the compilers that use typed intermediate languages are “ahead-of-
time” compilers. Similar benefits are desired for “just-in-time” (JIT) compilers.
A step towards that goal was taken by the Jikes Research Virtual Machine [1]
for Java, whose JIT compilers preserve and exploit Java’s static types in the
intermediate representations, chiefly for optimisation purposes. However, those
intermediate representations are not typed in the usual sense—there is no type
checker that guarantees type soundness (David Grove, personal communication,
2004). In two previous papers we presented algorithms for type-safe method
inlining. The first paper [11] handles a setting without dynamic class loading,
and the second paper [10] handles a setting with dynamic class loading, but
with the least-precise flow analysis possible (CHA). In this paper we improve
significantly on the second paper by presenting a new transformation and type
system that together can handle a similar class of flow analyses as in the first
paper.

Our Results. We make two contributions. Our first contribution is to present
experimental numbers for inlining and invalidation. These numbers show that
if a compiler analyses all plugins that are locally available, then dynamically
loading from these plugins will lead to a miniscule number of invalidations. In
contrast, when dynamically loading an unanalysed plugin, the run-time will have
to consider a significantly larger number of invalidations. In order to ensure that
loading unanalzed plugins happens less frequently, the compiler should anal-
yse all of the local plugins using the most powerful technique available. That
observation motivates our second contribution, which is a new framework for
type-safe method inlining. The new framework handles dynamic class loading
and a wide range of flow analyses. The main technical innovation is a technique
for changing type annotations both at speculative devirtualisation time and at
revirtualisation time, solving the key issue that we identified but side stepped in
our previous paper [10]. As in both our previous papers, we prove a formalisa-
tion of the optimisation correct and type preserving. Using the most-precise flow
analysis in the permitted class, our new framework achieves precision comparable
to 0-CFA [18,21].

2 An Experiment

Using the plugin architectures Eclipse and Jedit as our benchmark, we have
conducted an experiment that addresses the following questions:

– How many call sites can be inlined?
– How many inlinings remain valid and how many can be invalidated?
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– How much can be gained by preanalysing the plugins that are statically
available?

Preanalysing plugins can be beneficial. Consider the code in Figure 1. The anal-
ysis can see that the plugin calls method m in Main and passes it an Main.B2;
since main also calls m with a Main.B1, it is probably not a good idea to inline
the a.n() call in m as it will be invalidated by loading the plugin. The analysis
can also see which methods are overridden by the plugin, in this case only run of
Runnable is. The analysis must still be conservative in some places, for example
at the instantiation inside of the for loop, as this statement could load any plu-
gin. But the analysis can gather much more information about the program and
make decisions based on likely invalidations by dynamically loading the known
plugins.

Being able to apply the inlining optimisation in the first place still depends
on the flow analysis being powerful enough to establish the unique target. Thus,
the answer to each of the three questions depends on the static analysis that is
used to determine which call sites have a unique target. We have experimented
with four different interprocedural flow analyses, all implemented for Java byte-
code, here listed in order of increasing precision (the first three support type
preservation, the last one does not):

– Class Hierarchy Analysis (CHA, [7,8])
– Rapid Type Analysis (RTA, [2,3])
– subset-based, context-insensitive, flow-insensitive flow analysis for type-pre-

serving method inlining (TSMI, [11]) and
– subset-based, context-insensitive, flow-insensitive flow analysis (0-CFA,

[18,21]).

In order to show that deoptimisation is a necessity for optimising compilers
for plugin architectures, we also give the results for a simple intraprocedural flow
analysis (“local”) which corresponds to the number of inlinings that will never
have to be deoptimised, even if arbitrary new code is added to the system. The
“local” analysis essentially makes conservative assumptions about all arguments,
including the possibility of being passed new types that are not known to the
analysis. A run-time system that cannot perform deoptimisation is limited to
the optimisations found by “local” if loading arbitrary plugins is to be allowed.

The implementations of the five analyses share as much code as possible; our
goal was to create the fairest comparison, not to optimise the analysis time. All
of our experiments were run with at most 1.8 GB of memory. (1.8 GB is the
maximum total process memory for the Hotspot Java Virtual Machine running
on OS X as reported by top and also the memory limit specified at the command
line using the -Xmx option.)

We use two benchmarks in our experiments:

Jedit 4.2pre13. A free programmer’s text editor which can be extended with
plugins from http://jedit.org/, 865 classes; analysed with GNU classpath
0.09, from http://www.classpath.org, 2706 classes.
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class Main {

static Main main;

public static void main(String[] args) throws Exception {

main = new Main();

for (int i=0;i<args.length;i++) {

Class c = Class.forName(args[i]);

Runnable p = (Runnable) c.newInstance();

p.run(); // virtual if loaded plugins define multiple run methods

}

main.m(new B1()); // can stay optimised for given Plugin

}

void m(A a) { a.n(); // needs to be virtual for given Plugin }

static abstract class A {

abstract void n();

}

static class B1 extends A {

void n() { }

}

static class B2 extends Main.A {

void n() { }

}

}

class Plugin implements Runnable {

public void run() { new Main().m(new Main.B2()); }

}

Fig. 1. Example code loading a known plugin. The Plugin does not modify Main.main,

which ensures that the call to main.m() can remain inlined. If only Plugin is loaded,

p.run() can also be inlined. Pre-analysing Plugin reveals that a.n() should be virtual,

even if the flow analysis of the code without Plugin may say otherwise.

Eclipse 3.0.1. An open extensible Integrated Development Environment from
http://www.eclipse.org/, 22858 classes from the platform and the CDT, JDT,
PDE and SDK components; analysed with Sun JDK 1.4.2 for Linux, 10277 classes
(using the JARs dnsns, rt, sunrsasign, jsse, jce, charsets, sunjce provider, ldapsec
and localedata).

While we have “only” two benchmarks, note that the combined size of
SPECjvm98 and SPECjbb2000 is merely 11% of the size of Eclipse. Furthermore,
these are the only freely available large Java systems with plugin architectures
that we are aware of. Analysing benchmarks, such as the SPEC benchmarks, that
do not have plugins is pointless. We are not aware of any previously published
results on 0-CFA for benchmarks of this size.

We will use app to denote the core application together with the plugins
that are available for ahead-of-time analysis. Automatically drawing a clear line
between plugins and the main application is difficult considering that parts of
the “core” may only be reachable from certain plugins.

Usually, flow analyses are implemented with a form of reachability built in,
and more powerful powerful analyses are better at reachability. To further ensure
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Jedit Can be inlined Cannot be inlined Total

Remain valid Can be invalidated
By DLCW By DLOW

not DLCW
app lib app lib app lib app lib app lib

Local 682 297 0 0 0 0 20252 7808 20934 8105

CHA 682 297 69 7 18720 6178 1463 1623 20934 8105

RTA 682 297 97 51 18723 6178 1432 1579 20934 8105

TSMI 682 297 99 59 19449 7091 704 658 20934 8105

0-CFA 682 297 103 83 19592 7191 557 534 20934 8105

Eclipse Can be inlined Cannot be inlined Total

Remain valid Can be invalidated
By DLCW By DLOW

not DLCW
app lib app lib app lib app lib app lib

Local 15497 472 0 0 0 0 481939 26512 497436 26984

CHA 15497 472 4105 61 366114 20796 111720 5655 497436 26984

RTA 15497 472 9024 169 366169 20797 106746 5546 497436 26984

TSMI 15497 472 11479 439 420029 23097 50431 2976 497436 26984

0-CFA 15497 472 9921 46 428944 23971 43074 2495 497436 26984

Fig. 2. Experimental results; each number is a count of virtual call sites

a fair comparison of the analyses, reachability is first done once in the same way
for all analyses. Then each of the analyses is run with reachability disabled. The
initial reachability analysis is based on RTA and assumes that all of app is live,
in particular, all local plugins are treated as roots for reachability. The analysis
determines the part of the library (classpath, JDK) which is live, denoted lib,
and then we remove the remainder of the library.

The combination app + lib is the “closed world” that is available to the
ahead-of-time compiler, in contrast to all of the code that could theoretically be
dynamically loaded from the “open world”. We use the abbreviations:

DLCW = Dynamic Loading from Closed World
DLOW = Dynamic Loading from Open World.

In other words, DLCW means loading a local plugin, whereas DLOW means
loading a plugin from, say, the Internet.

Figure 2 shows the static number of virtual call sites that can be inlined
under the respective circumstances. The numbers show that loading from the
local set of plugins results in an extremely small number of possible invalidations
(DLCW). The numbers also show that preanalyzing plugins is about 50% more
effective for 0-CFA than for CHA: the number of additional devirtualisations is
respectively 57% and 49% higher for 0-CFA after compensating for the higher
number of devirtualisations of 0-CFA. When loading arbitrary code from the
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open world (DLOW), the compiler has to consider almost all devirtualised call
sites for invalidation. Only a tiny fraction of all virtual calls can be guaranteed
to never require revirtualisation in a setting with dynamic loading—a compiler
that cannot revirtualise calls can only perform a fraction of the possible inlining
optimisations.

The data also shows that TSMI and 0-CFA are quite close in terms of pre-
cision, which is good news since this means it is possible to use the type-safe
variant without loosing many opportunities for optimisation. As expected, using
0-CFA or TSMI instead of CHA or RTA cuts in half the number of virtual calls
left in the code after optimisation. Notice that for Eclipse, in the column for call
sites that can be inlined and invalidated by DLCW, 0-CFA has a smaller number
than TSMI. This is not an anomaly; on the contrary, it shows that 0-CFA is so
good that it both identifies 7357 more call sites in app for inlining than TSMI
and determines that many call sites cannot be invalidated by DLCW.

The closest related work to our experiment is the extant analysis of Sreedhar,
Burke, and Choi [22] which determines whether a variable can only contain
objects of classes from the closed world. They did not consider the more detailed
question of whether inlining can be invalidated due to DLCW or only due to
DLOW. Their largest benchmark was jess which has 112 classes.

3 Overview of Our Framework

Our framework uses a simple construct called dynnew which abbreviates the
Java expression Class.forName(...).newInstance(), that is, an operation
that loads some class and immediately instantiates it. Using this construct means
that we do not need to model the result of Class.forName(...) and deal with
objects that reify classes, simplifying the operational semantics.

A New Type System. In later sections we will prove that TSMI supports type-
safe method inlining for a setting with dynamic class loading. We use a new type
system for the intermediate representation: each type is a pair of Java types. In
this section we explain the main problem that lead us to the new type system.
Our running example is an extended version of one from our paper on TSMI [11].

class B { // code snippet 1:
B m() { return this; } B x = new C(); // x is a field

} x = x.m();
x = ((B)new C()).m();

class C extends B {
C f; // code snippet 2:
B m() { B y; // y is a field
return this.f; if (...) { y = new C(); }

} else { y = (B)dynnew; }
} y = y.m();
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The two code snippets contain three method calls, each to a receiver object of
type B. CHA will for each method call determine that there are two possible
target methods, namely B.m and C.m, so CHA will lead to inlining of none of
the three call sites.

In snippet 1, which does not have dynamic loading, both of the calls have
unique targets that are small code fragments, so it makes sense to inline these
calls:

x = x.f; // does not type check
x = ((B)new C()).f // does not type check

These two assignments do not type check because while this in class C has static
type C, both x and (B)new C() have static type B. Since B has no f field, both
field selections fail the type checker. As explained in our previous paper [11],
we remedy this problem by changing static type information to reflect the more
accurate information the flow analysis has. In particular, the flow analysis has
determined that x and the cast expression only evaluate to objects of type C, and
so we transform the static type information to produce the following well-typed
code snippet:

C x = new C();
x = x.f; // type checks
x = ((C)new C()).f; // type checks

To understand the problems introduced by dynamic class loading, let us consider
code snippet 2. The method call y.m() has a unique target method at least until
the next dynamic class loading. So it makes sense to inline the call, even though
that decision may be invalidated later. To see how this may be achieved, the key
question is:

Question: What is the flow set for dynnew ?

With CHA, the answer is given by the static type of dynnew, which is Object,
and so the flow set is “all classes in the program”. Since dynnew has no impact
on the execution until the next dynamic class loading, we could assign dynnew
the empty flow set! We extend TSMI to dynamic loading in this way. However,
this idea runs into a difficulty quickly, as we explain next.

For code snippet 2, our previous approach transforms the types in a way that
preserves well-typedness:

C y; // the type of y is changed to C
if (...) { y = new C(); }

else { y = (C)dynnew; } // the type cast is changed to C
y = y.m();

Let us now suppose that control reaches dynnew and that it loads and instantiates
a class D which extends class B and is otherwise unrelated to class C. In the
original code snippet 2, the cast of dynnew is to B, so it succeeds. However,
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in the transformed code snippet, the cast of dynnew is to C, so it fails. Thus,
if we transform the types in the style of our previous paper [11] and we do
not transform the types again at the time of evaluating dynnew, we change the
meaning of the program!

The source of the difficulty is that a type cast can viewed as doing double
duty: it does a run-time check and it helps the type checker. Our solution is to
change the cast into a form that uses a pair of types. In code snippet 2, we would
change the cast of dynnew to (B,C)dynnew. We say that B is the original type
and that C is the current type. The current type is based on the flow analysis.
The original type is used to do the run-time check while the current type is used
to help the type checker. In fact, we need to change the entire type system and
use pairs of types everywhere, not just in casts. Note, to be sound, the current
type must be a subtype of the original type.

Armed with the idea of using pairs of types, we can now state the type of
dynnew. The original type continues to be Object and the current type is derived
from the flow set which is the empty set. The empty set corresponds to a type
which is a subtype of all other types. To reflect that, we introduce a type Null
and give dynnew the type (Object, Null). This has the pleasant side effect that
we can remove an artificial requirement from the original formulation of TSMI,
namely that all flow sets have to be nonempty.

Returning to code snippet 2, our approach will first transform the snippet
into:

(B,C) y; // the type of y is changed to (B,C)

if (...) { y = new C(); }

else { y = (B,C)dynnew; } // the type cast is changed to (B,C)

y = y.m();

Next, evaluating dynnew and thereby loading and instantiating a class D can be
modeled as replacing dynnew with new D() as well as a new flow analysis of the
program. The new analysis changes the current types, resulting in the following
type-correct code:

(B,B) y;
if (...) { y = new C(); }

else { y = (B,D)new D(); }
y = y.m();

Notice that the current type of y was B initially, then the TSMI-based optimi-
sation changed it to the more specific type C, and then the dynamic loading of
class D changed the current type of y back to B.

In summary, the new ideas are:

– A type is a pair of Java types in which the second Java type is a subtype of
the first Java type.

– The Null type is used to type dynnew.
– A type cast uses the first Java type in the pair.
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Our main theorem is that with a type system based on those three ideas, TSMI-
based devirtualisation and revirtualisation is type preserving. As our experi-
ments in the previous section show, the new approach will lead to considerably
more inlining than the previously best approach, namely CHA. Later we for-
malise our ideas and prove the main theorem. First we clarify how revirtualisa-
tion is done and how we formalise it, and clarify how we do our proofs.

Patch Construct. Until now we have not said much about how a virtual machine
revirtualises a method invocation. The main problem with revirtualisation is that
an invalidated method inlining may be in a currently executing method, requiring
a nontrivial update of the program state. We focus on a technique for doing
this update called patching, used by some virtual machines (for example [14]
and ORP [5,6]). Patching is a form of in-place code modification for reverting to
unoptimised code, and does not require any update of the stack or recompilation
of methods. The basic idea is to compile the call x.m() to the following code:

label l1: [Inline x.C::m()]
label l3: ...
label l2: x.m(); [out of line]

jump l3;

(Where out of line means after the end of the function being compiled.) Then
if a class is loaded that invalidates the inlining, the virtual machine writes a
jump l2; instruction at address l1. There are important low-level details that
we abstract (these and techniques other than patching are described in our
previous paper [10]).

To formalise this idea in a small language, we need an expression of the
form e1 patchto� e2 where � is a label. Additionally, program states will have
a component, called the patch set, that is a set of labels of patches that have
been applied. If � is in this set then the above expression acts like e2, if not it
acts like e1. This idea models what the assembly sequence above does.

Note that, as in previous papers, we concentrate on devirtualisation, the
first step of method inlining, as the other step is straightforward. Given this
focus, a general patch construct is not needed. Instead we use a construct of
the form e.[C::]�m(), which can be though of as e.C::m() patchto� e.m()
where e.C::m() invokes C’s implementation of m on e, and ultimately should be
thought of as the code above.

The correctness of speculative inlining with patching is far less obvious than
the correctness of inlining for whole programs. We use a proof framework devel-
oped in our previous paper [10]. Note that we do devirtualisation of both the
initial program and of dynamically loaded classes. Furthermore, the patching
operation, which is part of the optimisation, is a runtime operation. The usual
formalisation methods do not suffice, and instead we formalise the optimisation
as a second semantics. This semantics includes the transformation that does de-
virtualisation and the patching operation as part of the semantics of dynnew.
To prove correctness of the optimisation we show that the optimising semantics
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gives the same meaning to a program as a standard semantics does. To prove
type preservation, we prove the optimising semantics type safe.

4 Dynamic Loading Language

This section begins the formal development of our results. It defines a simple
language with dynamic class loading that is the source language for the op-
timisation. The language is a variant of Featherweight Java (FJ [13]), adding
just one new expression form for dynamically loading a new class. Due to space
limitations we omit many standard or obvious details (readers can refer to the
original FJ paper or our previous dynamic loading paper). The optimised code
will use a slightly different syntax (see the following section), here is the common
syntax:

Expressions e ::= x� | new C�(e) | e.f� | e.m�(e) | (t)�e | dynnew�

Method Declarations M ::= t� m(t x�) { return e; }
Class Declarations CD ::= class C1 extends C2 { t f

�
; M }

And here is the standard syntax:

Types t ::= C
Program State P ::= (CD;e)

We use standard metavariables and the bar notation from the FJ paper.
To simplify matters, we assume that field names are unique, that all x� ex-

pressions have the same label as the binder of x, and that all labels of this in a
class have the same label. These restrictions mean that lab(f) identifies a unique
label for each field declared in a program, and that in the given scope lab(x)
identifies a unique label for each variable in that scope.

Some auxiliary definitions that are used in the rest of the paper appear in
appendix A. The standard operation semantics is similar to FJ extended with a
rule for dynnew:

CD = class C extends · · · { · · · }

(CD;X〈dynnew�〉) CD,e,�′�→s (CD, CD;X〈new C�′(e)〉)
(1)

Here X ranges over evaluation contexts. To keep the semantics deterministic, we
explicitly label the reduction with a label of the form (CD, e, �), where CD is the
newly loaded class, e are the initialiser expressions, and � is the label to use on
the new object.

The typing rules are those of Featherweight Java extended with a rule for
dynnew; they can be recovered from the more general rules in Figure 4 by ignoring
the right type in the type pairs. The type system is sound as can be proven by
standard techniques.



146 N. Glew, J. Palsberg, and C. Grothoff

poly(P, φ) = {� | e.[C::]�
m(e) ∈ P,∃D ∈ φ(lab(e)) : impl(P, D, m) 
= C::m}

fields(CD, C) = t f;

(CD;S;X〈new C�1(e).f
�2
i 〉) �→o (CD;S;X〈ei〉)

(2)

mbody(CD, C, m) = (x, e, �)

(CD;S;X〈new C�1(e).m�2(d)〉) �→o (CD;S;X〈e{this, x := new C�1(e), d}〉)
(3)

CD � C <: D

(CD;S;X〈((D,E))�′new C�(e)〉) �→o (CD;S;X〈new C�(e)〉)
(4)

CD = class C extends · · · { · · · } P = (CD, CD;S;X〈new C�(e)〉) φ = fa(P)

CD′ = retype(CD, φ) X′ = retype(X, φ) CD′ = [[retype(CD, φ)]]CD,CD,φ

e′ = [[retype(e, φ)]]CD,CD,φ
S′ = S ∪ poly(P, φ)

(CD;S;X〈dynnew�〉) CD,e,�′�→o (CD′, CD′;S′;X′〈new C�′(e′)〉)
(5)

mbody(CD,

{
C �2 ∈ S

D �2 /∈ S

}
, m) = (x, e, �)

(CD;S;X〈new C�1(e).[D::]�2m(d)〉) �→o (CD;S;X〈e{this, x := new C�1(e), d}〉)
(6)

Fig. 3. Optimised Operational Semantics

5 Devirtualisation Optimisation

This section formalises speculative devirtualisation with patching for revirtuali-
sation as a second semantics, called the optimising semantics , for the language
of the previous section. The additional constructs required are described next,
following by the actual transformation, and finally the semantics and the type
system.

Syntax. The optimised semantics needs a patching construct and an associated
patch set in the program states, and two types in each static typing annotation—
the original and the current type. The modified syntax is:

Types t ::= (C1,C2)
Expressions e ::= · · · | e.[C::]�m(e)
Program States P ::= (CD;S;e)

Here S, called the patch set , is the set of labels of the patch constructs that had
to be revirtualised. A patch construct has the form e.[C::]�m(e). If � is in the
patch set S then this expression acts like a normal virtual method invocation
e.m�(e). Otherwise it acts like a nonvirtual method invocation—it invokes C’s
version of m on object e with arguments e. Types are now pairs where the left
class name is the original type from the unoptimised code, and the right class
name is the current type based on the current flow analysis.
Transformation. The transformation of code is based on a flow that assigns
sets of class names, called flow sets , to expressions, fields, method parameters,
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and method returns. The set should include all classes in the current program
state that the expression might evaluate to. A flow analysis takes a program
state and returns a flow for it, and it should ignore the current types. Before
applying the transformation, the static type information must be transformed
so that the current types reflect the flow used. The retype function achieves
this change. Its definition is in Appendix A, as the only interesting clause
is: retype((C1,C2)

�, φ) = (C1, � φ(�)). The transformation takes an expres-
sion, method declaration, or class declaration and changes monomorphic virtual
method invocations into patchable nonvirtual method invocations. It appears in
Appendix A as the only interesting clause is:

[[e.m�(e)]]CD,φ
= [[e]]CD,φ

.[C::]�m([[e]]CD,φ
) if ∀D ∈ φ(lab(e)) : impl(CD, D, m) = C::m

Optimised Semantics. The optimised semantics is parameterised by a flow anal-
ysis fa (that is, a function that takes an optimised-syntax program state and re-
turns a flow for it). A standard syntax program (CD;e) starts in the optimised se-
mantics state ([[retype(CD, φ)]]CD,φ

;∅;[[retype(e, φ)]]CD,φ
) where φ = fa(CD;∅;e).

In other words a flow analysis is performed on the initial program and used to
transform it to form the initial state along with an empty patch set.

The reduction rules for the optimised semantics appear in Figure 3. The
rules are similar to the standard semantics with the following modifications.
The rule for cast uses the original type in the cast rather than the current type
to determine if the cast should succeed. The rule for dynamic new is the most
complex. It performs a flow analysis on the unoptimised new program state.
Then it uses this flow analysis to retype the program state and to transform the
new class declaration and initialiser expressions. Finally, it adds to the patch
set the labels of patch constructs that are no longer monomorphic. The rule for
the patch construct is similar to the rule for method invocation except in how
it finds the method body. If the label is in the patch set, then the construct is
“patched” and should act like a virtual method invocation. In this case it uses
the object’s class to lookup the body as in the rule for method invocation. If the
label is not in the patch set, then the construct acts like a nonvirtual invocation,
and uses the class in the construct, D, to lookup the method body.

Type System. The typing rules appear in Figure 4. The rules are fairly straight-
forward. They essentially are checking the original and current typing in parallel.
To look up field or method types, since these are the same whether we look in
the superclass or subclass, we simply use the original type. Two rules treat the
current and original types differently. For dynamic new, the current is Null as it
is always retyped before it is replaced by an actual object, but its original type
must be Object. For the patching construct, if not currently patched then the
object must be in the type E being dispatched to, so we require the current type
to be a subtype of this.

Except for the details of subtyping, the rules are deterministic, and for a
program state P, there is a unique t and derivation of # P ∈ t. Therefore, given
a program and an occurrence of a label in it, there is a uniquely determined type
associated with that occurrence: either the type of the expression it labels, or
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CD � Null <: Object CD � Object <: Object
(7)

class C extends D { · · · } ∈ CD

CD � Null <: C CD � C <: C CD � C <: D
(8)

CD � C <: D CD � D <: E

CD � C <: E
(9)

CD � C2 <: C1

CD � (C1,C2)
(10)

CD � C1 <: D1 CD � C2 <: D2

CD � (C1,C2) <: (D1,D2)
(11)

CD; S; Γ � x ∈ Γ (x)
(12)

fields(CD, C) = t f; CD; S; Γ � e ∈ t′ CD � t′ <: t

CD; S; Γ � new C�(e) ∈ (C,C)
(13)

CD; S; Γ � e ∈ (C,D) fields(CD, C) = t f;

CD; S; Γ � e.f�
i ∈ ti

(14)

CD; S; Γ � e ∈ (C,D) mtype(CD, C, m) = t→ t CD; S; Γ � e ∈ t′ CD � t′ <: t

CD; S; Γ � e.m�(e) ∈ t
(15)

CD; S; Γ � e ∈ t′ CD � t

CD; S; Γ � (t)�e ∈ t
(16)

CD; S; Γ � dynnew� ∈ (Object,Null)
(17)

CD; S; Γ � e ∈ (C,D)

mtype(CD, C, m) = t→ t

CD; S; Γ � e ∈ t′

CD � t′ <: t

mtype(CD, E, m) is defined
� /∈ S⇒ CD � D <: E

CD; S; Γ � e.[E::]�m(e) ∈ t
(18)

CD � t CD � t

CD; S; this : (C,C), x : t � e ∈ t′ CD � t′ <: t

can-declare(CD, C, m, t→ t)

CD; S � t� m(t x�) { return e; } in C
(19)

CD � t CD; S � M in C

CD; S � class C extends D { t f
�
; M }

(20)

CD; S � CD CD; S; · � e ∈ t

� (CD;S;e) ∈ t
(21)

Fig. 4. Typing Rules for the Optimised Syntax

the field, return, or parameter type that it labels. A flow φ for a program is type
respecting if and only if for each label � in the program, each class C in φ(�), and
each original type D associated with �, C is a subtype of D.
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6 Correctness

In this section we prove the optimisation correct, that is, that it preserves typa-
bility and operational semantics. The optimisation is correct, however, only for
certain flow analyses—the ones that respect the typing rules and approximate
the operational semantics. A flow φ for a program P is acceptable exactly when
it satisfies the conditions in Figure 5. A flow analysis fa is correct if fa(P) is an
acceptable and type-respecting flow for P whenever # P ∈ t for some t. We prove
the optimisation correct when it is based on a correct flow analysis.

Typability Preservation. Since the optimisation is stated as a second semantics
for the language, typability preservation means that a well-typed standard syn-
tax program does not get stuck in the optimised semantics. However, it is not
enough that the original program type checks, all dynamically loaded classes
must type check as well. We say that (CD, e, �) type checks with respect to
program (CD;S;e) exactly when CD, CD; S # CD and CD, CD; S; · # e ∈ t where
CD = class C extends · · · { · · · } and fields(CD, CD, C) = t f;. We say that
a reduction sequence type checks exactly when the initial program state type
checks and all the labels in the reduction sequence type check with respect to
the program state that precedes them.

Theorem 1 (Typability Preservation). If P is a well-typed standard-syntax
program, then any well-typed reduction sequence in the optimised semantics,
which starts from a state corresponding to P and is based on a correct flow
analysis, does not end in a stuck state.

The proof is given in the full version of the paper, which is available from the
webpage http://www.cs.ucla.edu/~palsberg/publications.html. The key
to proving the theorem is proving that at each point in the reduction sequence
the program state type checks and there is an acceptable and type-respecting
flow for the program state. Formally, we define # (P, φ) good to mean # P ∈ t for
some t, φ is an acceptable and type-respecting flow for P, and the current type
of every static typing annotation in P is �φ(�) where � is the label associated
with the annotation. As with standard type soundness arguments, we show that
reduction preserves goodness (rather than typability), and that typable (a subset
of good) states are not stuck.

Operational Correctness. We prove that the optimisation preserves semantics,
specifically that the optimised semantics simulates the standard semantics and
vice versa. To state the result we need a correspondence relation correspondsφ

(P, P′). This relation generalises the transformation slightly to reflect the fact
that the transformation is applied at consecutive loading points rather than all
at once. Its definition appears in the full version of the paper. Essentially, where
the left program has a virtual dispatch the right program may have one of two
expressions. It can have a corresponding virtual dispatch. It can also have an
equivalent patch construct if the virtual dispatch is monomorphic in the current
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– For each new C�(e) in P where fields(CD, C) = t f;:

φ(lab(e)) ⊆ φ(lab(f)) (22)

C ∈ φ(�) (23)

– For each e.f� in P:
φ(lab(f)) = φ(�) (24)

– For each e.m�(e) in P where e has type (C1,C2) and mbody(P, C1, m) = (x, e′, �′):

φ(lab(e)) ⊆ φ(lab(x)) (25)

φ(�′) = φ(�) (26)

And for each D ∈ φ(lab(e)), impl(P, D, m) = E::m, and �′ labels this in E:

φ(lab(e)) ⊆ φ(�′) (27)

– For each ((C,D))�e in P:

φ(lab(e)) ∩ subclasses(P, C) ⊆ φ(�) (28)

– For each dynnew� in P:

φ(�) = ∅ (29)

– For each e.[C::]�m(e) in P where e has type (C1,C2) and mbody(P, C1, m) =
(x, e′, �′):

φ(lab(e)) ⊆ φ(lab(x)) (30)

φ(�′) = φ(�) (31)

And if � ∈ S where P = ( · · · ;S; · · · ) then for each D ∈ φ(lab(e)), impl(P, D, m) =
E::m, and �′ labels this in E:

φ(lab(e)) ⊆ φ(�′) (32)

And if � /∈ S then the following where impl(P, C, m) = E::m and �′ labels this in E:

φ(lab(e)) ⊆ φ(�′) (33)

– For each class C in P with label � for C’s this occurrences:

C ∈ φ(�) (34)

– For each method t� m(t x�) { return e; } in P:

φ(lab(e)) ⊆ φ(�) (35)

– If t�1 m(t x�1
1 ) { return e1; } overrides t�2 m(t x�2

2 ) { return e2; } in P then:

φ(�1) = φ(�2) (36)

φ(�1) = φ(�2) (37)

Fig. 5. The Conditions for an Acceptable Flow Analysis
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program (the subscripts CD and φ on the relation) or if the patch label is in the
current patch set (the subscript S on the relation).

Given the correspondence relation, two facts are true. First, if P′ is the initial
state in the optimised semantics for program P then correspondsφ(P, P′) where
φ is the flow analysis used to compute the initial state. Second, the optimised
semantics simulates the standard semantics and vice versa, as stated in the
following theorem.

Theorem 2 (Operational Correctness).
If correspondsφ1

(P1, P′1) and the flow-analysis is correct then:

– If P1
L�→s P2 then P′1

L�→o P′2 and correspondsφ2
(P2, P′2) for some P′2 and φ2.

– If P′1
L�→o P′2 then P1

L�→s P2 and correspondsφ2
(P2, P′2) for some P2 and φ2.

The proof of both these facts is very similar to the proof in our previous pa-
per [10].

7 Conclusion

We presented a new type system and theorem that shows that TSMI is type pre-
serving in the presence of dynamic class loading. Our experimental results show
that TSMI leads to considerably more inlining than the current best approach,
namely CHA. Our experimental results also show the value of analyzing all lo-
cal plugins at start-up time: only few inlinings will be invalidated when loading
a local plugin. The flow analysis has to be recomputed only when a plugin is
loaded from non-local sources. Since such remote operations involve considerable
delay anyway, the extra delay from redoing the flow analysis is unlikely to be
noticable.

Researchers have recently developed many new ideas for efficiently doing flow
analysis, virtualisation, and devirtualisation in JIT compilers [4,12,19,20]. Our
results can form the basis of a new generation of typed intermediate representa-
tions used by powerful, type-preserving JIT compilers.

In future work we would like to go beyond the static counts of virtual call
sites. We would like to count how many times each call site is executed, and count
how many call sites turn out to be monomorphic at run time. Researchers might
also explore how our results fit with recent work on dynamic code updates [23].
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Appendix A: Details of the Formalisation

The function fields(CD, C) returns C’s fields (declared and inherited) and their
types; mtype(CD, C, m) returns the signature of m in C, it has the form t → t
where t are the argument types and t is the return type; mbody(CD, C, m) returns
the implementation of m in C, it has the form (x, e, �) where e is the expression
to evaluate, x are the parameters, and � is the label of the method return;
impl(CD, C, m) returns the class from which C inherits m (this could be C itself), it
has the form D::m where D is the class; can-declare(CD, C, m, t → t) checks that C
is allowed to declare m with signature t → t—this would not be the case if one
of C’s ancestors in the class hierarchy also declared m with a different signature.

Field Lookup, Method Information and Inheritance Checking

fields(CD, Object) = ·
CD(C) = class C extends D { t f

�
; M } fields(CD, D) = t′ f′;

fields(CD, C) = t′ f′;t f;
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CD(C) = class C extends D { t f
�
; M } t� m(t x�) { return e; } ∈ M

mtype(CD, C, m) = T→ t

mbody(CD, C, m) = (x, e, �)
impl(CD, C, m) = C::m

CD(C) = class C extends D { t f
�
; M } m not defined in M

mtype(CD, C, m) = mtype(CD, D, m)
mbody(CD, C, m) = mbody(CD, D, m)

impl(CD, C, m) = impl(CD, D, m)

CD(C) = class C extends D { · · · } mtype(CD, D, m) = t′ → t′ implies t = t′ ∧ t = t′

can-declare(CD, C, m, t→ t)

The Retyping Function and the Transformation

retype((C1,C2)
�, φ) = (C1, � φ(�))

retype(x�, φ) = x�

retype(new C�(e), φ) = new C�(retype(e, φ))
retype(e.f�, φ) = retype(e, φ).f�

retype(e.m�(e), φ) = retype(e, φ).m�(retype(e, φ))

retype((t)�e, φ) = (retype(t�, φ))�retype(e, φ)
retype(dynnew�, φ) = dynnew�

retype(e.[C::]�m(e), φ) = retype(e, φ).[C::]�m(retype(e, φ))

retype(t� m(t x�) { return e; }, φ) = retype(t�, φ)� m(retype(t�, φ) x�)

{ return retype(e, φ); }
retype(class C1 extends C2 { t f

�
; M }, φ) = class C1 extends C2

{ retype(t�, φ) f
�
; retype(M, φ) }

[[x�]]CD,φ
= x�

[[new C�(e)]]CD,φ
= new C�([[e]]CD,φ

)

[[e.f�]]CD,φ
= [[e]]CD,φ

.f�

[[e.m�(e)]]
CD,φ

= [[e]]
CD,φ

.[C::]�m([[e]]
CD,φ

)

if ∀D ∈ φ(lab(e)) : impl(CD, D, m) = C::m

[[e.m�(e)]]CD,φ
= [[e]]CD,φ

.m�([[e]]CD,φ
)

otherwise

[[(t)�e]]CD,φ
= (t)�[[e]]CD,φ

[[dynnew�]]CD,φ
= dynnew�

[[e.[C::]�m(e)]]CD,φ
= [[e]]CD,φ

.[C::]�m([[e]]CD,φ
)

[[t� m(t x�) { return e; }]]CD,φ
= t� m(t x�) { return [[e]]CD,φ

; }
[[class C1 extends C2 { t f

�
; M }]]CD,φ

= class C1 extends C2 { t f
�
; [[M]]CD,φ

}
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Abstract. There are many source-level analyses or instrumentation
tools that enforce various safety properties. In this paper we present an
infrastructure that can be used to check independently that the assem-
bly output of such tools has the desired safety properties. By working at
assembly level we avoid the complications with unavailability of source
code, with source-level parsing, and we certify the code that is actually
deployed.

The novel feature of the framework is an extensible dependently-typed
framework that supports type inference and mutation of dependent val-
ues in memory. The type system can be extended with new types as
needed for the source-level tool that is certified. Using these dependent
types, we are able to express the invariants enforced by CCured, a source-
level instrumentation tool that guarantees type safety in legacy C pro-
grams. We can therefore check that the x86 assembly code resulting from
compilation with CCured is in fact type-safe.

1 Introduction

There are numerous ongoing efforts to design static analyses or instrumentation
tools to ensure various safety and security properties of programs. In most cases,
there is no independent way to ensure that the analysis or instrumentation tool
was actually run on a given program. Since most of today’s software security
tools operate only on source code, a concerned user must obtain the source for
the program in question, must run the tool himself, and is forced to trust that
the tool and the compiler are working as advertised. In this paper, we describe
our efforts to develop an independent verification strategy for static analyses
and instrumentation tools.

A well-known example of the strategy that we advocate is the verification
of type safety in Java and .NET bytecode. A compiler verifies that the origi-
nal source code is type-safe, and uses this typing information to generate typed
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bytecode. The bytecode can then be checked for safety independently from the
source code. We want to push this strategy to lower-level languages, such as
assembly, and to allow more language-based enforcement tools to make use of it.
Working at the assembly-language level makes our technique fit well in the cur-
rent standard object-code distribution process. Furthermore, it does not require
the program source code, is applicable to more source languages, and eliminates
the compiler from the trusted computing base.

An additional goal of our work is to make it relatively easy for tool writers
to customize a generic certification infrastructure with the rules and invariants
that should hold in the processed code. To this end, the certification infrastruc-
ture performs many operations that are likely to be needed across a variety of
enforcement tools.

1.1 Motivation

This work was initially motivated by requests from CCured users to have inde-
pendent verification that libraries or object files have been processed by CCured.
CCured [1] is a source-to-source translator that guarantees type safety for legacy
C code by inserting run-time checks before potentially unsafe operations. Where
necessary, it modifies data structures to accommodate metadata such as array-
bound information. CCured performs extensive static analysis to minimize the
changes to data structures and the number of run-time checks necessary. CCured
also has many different kinds of run-time checks, for arrays, pointers on the stack,
or type hierarchies. A framework that can keep up with CCured’s analysis and
run-time checks would be suitable for certifying the result of simpler tools such
as Cqual [2] and Stackguard [3]. We believe our framework is general enough to
be used with languages other than C and safety policies other than type safety.

We cannot use standard Typed Assembly Languages [4] to encode the out-
put of CCured for two main reasons. First, the instrumentation scheme used
by CCured requires dependent types to encode, for example, that a field in
a structure is a pointer to a memory area whose length is stored in another
field. The DTAL [5] language is dependently-typed and is at the assembly-
language level, but does not allow mutation of dependently-typed records. The
ability to overwrite dependent memory locations is crucial for CCured, because
most C programs store pointer values in memory. We propose in this paper a
new dependently-typed language that allows mutable records, by allowing the
dependent-type invariants to be temporarily broken inside a basic block.

The other major obstacle in using one of the existing typed assembly lan-
guages is that it would require a special compiler that produces the desired lan-
guage. Instead, we want to apply this strategy even to source-to-source trans-
formations, in which the output of the tool is compiled using an off-the-shelf
compiler. The challenge posed by an external compiler is that register allocation
and other optimizations will cause us to lose the correspondence between local
variables in our source code and registers in the compiled code.

Our framework relies on (untrusted) annotations for function signatures and
types of global variables. These annotations are generated by the source-level
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tool whose policy we enforce. We decided against using such annotations for
individual program points inside of a function’s body, in order to reduce sensi-
tivity to optimizations or compilation details. Instead, we use type inference to
rediscover the types of the registers and stack slots in assembly code. Our use of
abstract interpretation for type inference is similar to that used in bytecode ver-
ifiers, or to that described described by Chang et al. for compiler debugging [6].
For space reasons, we do not discuss type inference in this paper.

The contributions of this paper include:

– An expressive yet practical dependent type system for low-level code that
supports mutable records. We describe in Section 2 the mechanism used for
customizing the type system to new policies, and present the type system
itself in Section 3.

– A description of the typechecking algorithm for this type system.
– An encoding of the safety constraints of CCured in this type system, with

support for arrays, dynamic typing, and stack-allocated variables whose ad-
dress is taken (Section 4). We describe in Section 5 our experience using a
prototype verifier that can check the CCured output for type safety.

2 Type Policies

Our type system is parameterized by a type policy that describes the invariants
enforced by the safety tool you wish to use (CCured, for example). Factoring
our type system in this way provides modularity and allows us to support ex-
tension to different safety tools. Furthermore, it lets us focus this paper on the
specific contributions of our framework, such as mutable dependent types and
the infrastructure for type checking.

A type policy consists of the following:

– A finite set T of type constructors C. These constructors are used to build
policy-specific types for word-sized values, as described below.

– A subtyping relation IsSubtype : τ → τ → Bool for the types generated by
these constructors, and the associated upper bound function TJoin : τ →
τ → τ that returns a supertype of its arguments.

– An operation ArithType : τ → op → τ → τ that assigns a type to the
result of binary operators given the type of the operands, and an operation
ConstType : const → τ that gives a type to each constant.

– A Constrain operation that refines a typing context after a certain boolean
expression has been tested to be true.

For example, a type policy could define a type constructor “Int” for integers
that will fit in a machine word, and a constructor “MaybeNullPtr σ” for possibly-
NULL pointers to records with type σ. We’ll see below that the framework defines
the “Ptr σ” type to describe pointers to σ. Then the policy will likely define both
IsSubtype(Ptr σ, MaybeNullPtr σ) and IsSubtype(MaybeNullPtr σ, Int) to be
true. Additionally, the policy might define ArithType(Ptr σ, “-”, Ptr σ) to be
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Int. Finally, the definition of Constrain for this policy may promote one or more
values of type MaybeNullPtr σ to Ptr σ following an appropriate NULL-check.

We defer the more detailed discussion of the IsSubtype, TJoin, ArithType,
and Constrain operators until the presentation of our typechecking algorithm
in Section 3.1.

Although we currently trust the soundness of the type policy, our implemen-
tation is designed to facilitate formal proofs of the soundness of verification. Such
a proof would rely on lemmas that the operators of the type policy are sound
with respect to the definition of the type constructors.

3 Our Type System

We describe in this section our framework for dependent types, and show how a
program can be typechecked with respect to a given type policy.

Figure 1 shows the language of memory types in our framework. Field types
t describe the contents of a word in memory or in a register whereas σ types
describe a mutable record consisting of a sequence of related fields.

field types t ::= C(d1, . . . dn) | Ptr σ
dependencies d ::= c | s.i | s
record types σ ::= Recs.〈0 : t0; . . . ; n− 1 : tn−1〉

constants c
type constructors C ∈ T

Fig. 1. The types that are assigned to registers and memory locations

The type of a word-sized location is either the instantiation of a type con-
structor C (given by the type policy) or a pointer to a mutable record. We saw
above a few examples of nullary constructors for non-dependent types; construc-
tors for dependent types are parameterized on one or more values. We distin-
guish the pointer type in our system so that we can give generic typing rules for
memory reads and writes.

The notation Recs.〈0 : t0; . . . ; n − 1 : tn−1〉 denotes a very-dependent [7]
record type with n mutable fields, each of whose types may depend on the
runtime values of other fields. For simplicity, fields are labeled with their index
in the record. The dependent type constructor “Recs” binds a variable s that
can be thought of as the “self pointer” for the record. We use s to encode
dependencies among the fields of the record: the special expression s.i refers to
the value stored in the ith word of the current record, where i is a constant. We
say that a field type C(d1, . . . dn) refers to field i iff at least one expression dj is
“s.i”. A record type σ = Recs.〈0 : t0; . . . ; n− 1 : tn−1〉 is well-formed if for all
terms s.j referring to a field, we have 0 ≤ j < n. In other words, dependencies
must refer to fields that actually exist. We require that all types used in this
framework be well-formed.
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For example, a type policy may define the singleton type constructor Sin-
gle(e), and then can define a dependent record containing two identical integers
as

Recs.〈0 : Int; 1 : Single(s.0)〉
If we define the type constructor “Array(len)” to be the type of a pointer to an
array of Ints with length len, then a record containing an array pointer and the
length of that array has the type

Recs.〈0 : Array(s.1); 1 : Int〉
Field types can even refer directly to the self pointer s. Recs.〈0 : Single(s)〉 is a
one-word object that contains a pointer to itself. Circular dependencies are also
allowed, so

Recs.〈0 : Single(s.1); 1 : Single(s.0)〉
is another valid definition for our record containing two identical integers.

We therefore have two kinds of memory locations in the language. Dependent
fields have types that refer to the self pointer or other fields, or are referred to
by the types of sibling fields. Non-dependent fields have types of the form C
(or C(c1, . . . cn), where each ci is a constant) that do not refer to, and are not
referred to by, any other field. We must be careful when a dependent field is
updated, to ensure that the dependencies are respected. However, we can modify
non-dependent fields in place without additional checking.

We also support dependent function types, including function pointers.
Checking dependent functions is very similar to checking that dependent records
are used correctly, and we do not discuss them further here.

3.1 Type Checking

We describe here the process of typechecking assembly code when the start of
each basic block has been annotated with an invariant, as is done in TAL [8]. For
space reasons, we do not discuss in this paper our inference system for generating
such invariants.

Figure 2 shows the simple MIPS-like assembly language that we will be type-
checking. A basic block is a sequence of instructions whose entry is denoted by
some label, and whose exit is a branch or a jump. Note that in this paper, we omit
details relating to stack handling or the calling convention [9]. Our implementa-
tion uses the stack analysis engine written for the Open Verifier project [10].

We must track the memory state explicitly in order to reason about writes
to dependent fields. “upd(m, e1, e2)” denotes the memory state that results from
modifying memory state m by writing value e2 at location e1, while “sel(m, e)”
is the result of reading address e in memory state m. We define “ValidMem” to be
the type of a memory heap that is in a consistent state: one where all allocated
locations contain a value that adheres to the type that the location was assigned
when it was allocated. Consistency may be temporarily broken when we write
a dependent field, since in general we will have to write to all of the fields in a
dependent group before we can conclude that the group is consistent. But we
will check that consistency holds at basic block boundaries.
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instructions I ::= mov rdest, c | mov rdest, L | alu rdest, rs1, rs2

| load rdest, ra | store rsrc, ra

arithmetic alu ::= add | mult | xor | slt | . . .
labels L
jumps J ::= beq rc, L | jump L | jr r

basic blocks B ::= I, B | J
functions F ::= 〈L1 : B1, . . . , Lm : Bm〉

Fig. 2. The target assembly language

states S ::= 〈Δ, Γ, m〉
register states Δ ::= r1 = e1, . . . , rk = ek

type states Γ ::= v1 �→ τ1, v2 �→ τ2, . . .
memory states m ::= upd(m, e1, e2) | v
abstract values v
register types τ ::= C(e1, . . . en) | Ptr σ

symbolic expressions e ::= c | v | L | sel(m, e) | e1 op e2

binary operations op ::= +| × | xor | < | . . .

Fig. 3. The states of our symbolic execution algorithm for typechecking

Our typechecker performs symbolic evaluation on one basic block at a time,
using abstract values v for any unknown values. As seen in Figure 3, a state
in our checker is 〈Δ,Γ,m〉, where Δ is a mapping from registers to symbolic
expressions, Γ is a mapping from abstract values to types, and m is the current
memory state. We could represent a checker state in which r2 was known to
equal r1 + 1 as 〈Δ0, Γ0, vmem0〉, where:

Δ0 = {r1 = v; r2 = v + 1}
Γ0 = {v �→ Int; vmem0 �→ ValidMem}

This state can be considered syntactic sugar for the following logical formula:

∃v ∈ Int . ∃vmem0 ∈ ValidMem . (r1 = v) ∧ (r2 = v + 1)

Typing Expressions. We give here the rules for assigning types to symbolic
expressions. The judgment Γ # e : τ means that expression e has type τ in
context Γ. Most of the this work is done by the type policies through the func-
tions ConstType, IsSubtype, and ArithType, while the framework maintains
the types of abstract variables and handles the typing of memory operations.

Γ # v : Γ(v)
[Abstract]

τ = ConstType(c)

Γ # c : τ
[Const]

Γ # e : τ ′ IsSubtype(τ ′, τ)

Γ # e : τ
[Subsumption]
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Γ # e1 : τ1 Γ # e2 : τ2 τ = ArithType(τ1, op, τ2)

Γ # e1 op e2 : τ
[Arith]

Type policies that do not care about arithmetic can say that ArithType(τ1,
op, τ2) is Int for all inputs, but policies such as CCured will derive a more precise
type for some inputs to ArithType.

The final form of expression is a read from memory. When reading a depen-
dent field with type C(s.j), we must replace dependency s.j with a symbolic
expression that explicitly encodes the current value of the jth field. Consider a
record that contains an array pointer and its length, and suppose we read the
array field into r1 and the length field into r2: 1

Δ = {r1 = sel(m0, v); r2 = sel(m0, v + 1)}
Γ = {v �→ Ptr Recs.〈0 : Array(s.1); 1 : Int〉}

The value in r1 should have type “Array(sel(m0, v + 1)),” to reflect the fact
that the length of the array is located at address v+ 1 in memory state m0. We
can now use r2 as the length of array r1. Even if memory is later changed, for
example by updating this record with a new array and different length, we will
still be able to use r2 as the length of r1 since we remember that they were read
from the same memory state m0.

We generalize the above intuition into the following rule:

Γ # e : Ptr Recs.〈0 : t0; . . . ; n− 1 : tn−1〉
τ = ti[e�s][sel(m, e+ 0)�s.0] · · · [sel(m, e+ n− 1)�s.(n− 1)]
Γ # m : ValidMem

Γ # sel(m, e+ i) : τ
[Read]

The binding step τ = ti[e�s][sel(m, e+ 0)�s.0] · · · [sel(m, e+ n)�s.n] will,
for example, convert the field type Array(s.1) from the previous example to the
register type Array (sel(m, v+1)). The requirement Γ # m : ValidMem ensures
that we are not in the middle of a dependent update.

Memory Updates. After writing a value to memory, we must see whether
Γ # m : ValidMem for the resulting memory state m. If the store wrote to a
dependent field, then other fields in the record may have to be updated as well
in order for the record to be internally consistent once again. For simplicity, our
framework requires that all the relevant dependent fields of a record be mutated
in the same basic block, with no other intervening writes to the heap. However,
it would not be hard to extend the type system to allow invalid memory states
that span basic block boundaries.

The rule for stores is below. Starting from a consistent state m, a basic block
can perform a series of writes to some object that starts at address ea. The
notation upd(·, ea +ci, ei) represents the result of storing ei into the object’s cith

1 Throughout this paper we assume that memory is addressed by words, not bytes.
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field; we check that each ci is in bounds while typechecking the corresponding
store statement. We ignore duplicate writes to the same field. Regardless of
which fields have been overwritten, we can reestablish consistency for this object
by checking whether every field ea +i in memory state m′ has the type it should.
First, we define a function that computes a canonical form for the result of a
memory read using standard axioms for memory:

Read(m, ea + i) =

⎧⎨⎩
e if m = upd(m′, ea + i, e)
Read(m′, ea + i) if m = upd(m′, ea + j, e) and i �= j
sel(vmem, ea + i) if m = vmem

With this function we can write the axiom for validating a sequence of writes
to the same record:

m′ = upd((. . . upd(m, ea + c1, e1) . . .), ea + cj , ej)
Γ � ea : Ptr Recs.〈0 : t0; . . . ; n − 1 : tn−1〉
∀0 ≤ i < n . Γ � Read(m′, ea + i) : τi

where τi = ti[ea�s][Read(m′, ea + 0)�s.0] · · · [Read(m′, ea + n)�s.n]
Γ � m : ValidMem

Γ � m′ : ValidMem
[Update]

For example, consider a record that contains an array reference, its length,
and one other field of type Foo. Suppose r2 contains an array pointer and that
r3 contains its length:

Δ = {r1 = vptr; r2 = v2; r3 = v3}
Γ = {vptr �→ Ptr Recs.〈0 : Array(s.1); 1 : Int; 2 : Foo〉;

v2 �→ Array(v3); v3 �→ Int; vmem0 �→ ValidMem}
Now we update the memory state vmem0 writing v2 at address r1 and v3 at

address r1+1, therefore mutating both the array and length fields of the record.
These two store instructions produce the memory state

m′ = upd(upd(vmem0, vptr, v2), vptr + 1, v3)

The intermediate memory state upd(vmem0, vptr, v2) is not consistent, and in
general it must not be used for load instructions. But m′ is consistent. Observe
that we get

Read(m′, vptr + 0) = v2

Read(m′, vptr + 1) = v3

Read(m′, vptr + 2) = sel(vmem0, vptr + 2)

Each of these three fields has the correct type. v2 has type

Array(v3) = Array(sel(m′, vptr + 1))

= Array(s.1)[Read(m′, vptr + 1)�s.1]

while v3 has type Int. Location vptr + 2 was not modified, so we rely on the
fact that “Γ # vmem0 : ValidMem” holds to ensure that sel(m′, vptr + 2) =
sel(vmem0, vptr + 2) has a value of type Foo.
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Checking Basic Blocks. Now we can put these rules together to create a
complete algorithm for typechecking a basic block according to the type policy.

The transition function for symbolic evaluation is straightforward. The effect
of each instruction on a state 〈Δ,Γ,m〉 is as follows:2

〈Δ,Γ,m〉 # mov rdest, c ⇓ 〈Δ[rdest �→ c], Γ, m〉
〈Δ,Γ,m〉 # load rdest, ra ⇓ 〈Δ[rdest �→ sel(m, Δ(ra))], Γ, m〉
〈Δ,Γ,m〉 # store rsrc, ra ⇓ 〈Δ, Γ, upd(m,Δ(ra), Δ(rsrc)〉
〈Δ,Γ,m〉 # add rdest, rs1, rs2 ⇓ 〈Δ[rdest �→ Δ(rs1) +Δ(rs2)], Γ, m〉

The other ALU operations have rules similar to add. In addition to updating
the state, we check that ra contains a valid pointer in each load and store
operation (Γ # Δ(ra) : Ptr σ).

We assume that each basic block is annotated with an invariant in the form of
a typechecker state 〈Δ0, Γ0,m0〉, which we use as the initial state of our symbolic
evaluation for the block. Evaluation then proceeds according to the transition
rules above until we reach the end of the block. At this point we must check that
the current state satisfies the invariant that is attached to the successor block(s).

One interesting case here is branches. The branch “beq r1, Lj” at the end
of block Bk means that control will jump to block Bj if r1 = 0, or fall through
to Bk+1 if r1 �= 0. A branch may be a dynamic check of some fact that is
interesting to the type policy. So each type policy can define an operation
Constrain : 〈Δ,Γ,m〉 → e → 〈Δ,Γ,m〉 that transforms a state to account
for any relevant information in a branch condition. For example, suppose we
have a state in which r1 and r2 hold the same possibly-NULL pointer to σ:

Δ1 = {r1 = v1, r2 = v1}
Γ1 = {v1 �→ MaybeNullPtr σ}

Then a typical type policy would define

Constrain(〈Δ1, Γ1,m1〉, r1 = 0) = 〈{r1 = 0, r2 = 0}, { }, m1〉
Constrain(〈Δ1, Γ1,m1〉, r1 �= 0) = 〈{r1 = v1, r2 = v1}, {v1 �→ Ptr σ}, m1〉

We must check now that Constrain(〈Δ1, Γ1,m1〉, r1 =0) implies the invariant
of Bj , and that Constrain(〈Δ1, Γ1,m1〉, r1 �=0) implies the invariant of Bk+1.

4 Dependent Types for CCured

We have built a prototype checker and inference system for the CCured type
system. CCured enforces type safety for legacy C code by classifying pointers
according to their usage. Depending on a pointer’s classification, or kind, CCured
changes the pointer to a “fat” pointer structure that stores metadata such as ar-
ray bounds and run-time type information. Figure 4 shows two such fat pointers
that we support in our prototype implementation: RTTI pointers, which hold
2 Changes to the program counter are omitted.
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Fig. 4. Two “fat” pointer kinds used by CCured: (a) a pointer with run-time type

information, and (b) a sequence pointer (array). The current targets of the pointers

are shown with stripes, and the metadata added by the CCured code transformation

is in grey.

Run-Time Type Information specifying the dynamic type of the object being
pointed to, and Sequence pointers, which are used for arrays. The metadata is
used to support run-time checks that CCured inserts when the pointer is deref-
erenced (for SEQ) or cast (for RTTI). When we want to update a pointer in
memory, we may have to update all of the fields in the fat pointer.

4.1 RTTI Pointers

Figure 4(a) shows a two-word pointer that refers to a structure in memory and
has a type tag specifying the run-time type of the object being pointed to.
CCured stores the tag alongside the pointer instead of with the object itself for
the sake of a less invasive transformation: the striped location could be in the
middle of an array or a struct, and changing its representation to accommodate
a type tag would mean transforming all accesses to the base type as well.

RTTI pointers are governed both by a static type (T in Figure 4) and the
dynamic type specified by the tag (T′), which must be a subtype of the static
type. Before casting this pointer to a different type T′′, a program must check
that the tag represents a subtype of T′′. CCured implements these checks using
a global table that relates tag values to types.

The assembly-level definition of an RTTI pointer is given in Figure 5. The
Rttiσ(x) type constructor defines a possibly-NULL pointer that has the static
type “pointer to σ” but that also has the type denoted by tag x. We use the
function typeof here to encode the tags-to-types relation for each program.

Our prototype does not yet handle CCured’s tagged unions or variable-
argument functions, which require reasoning similar to RTTI pointers.

4.2 Sequence Pointers

CCured uses Sequence pointers to support arrays and pointer arithmetic in C. A
Sequence pointer is a three-word fat pointer, as shown in Figure 4(b), consisting
of the actual pointer and pointers to the two ends of the array.

The assembly-level encoding of these pointers is shown in Figure 5. The def-
inition of Seqσ directly follows the invariants that CCured maintains for its
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RTTI pointer to σ = Recs.〈0 : Rttiσ(s.1); 1 : Int〉
Sequence pointer to σ = Recs.〈0 : Seqσ(s.1, s.2); 1 : Int; 2 : Int〉

where

Rttiσ(t) 
 {p | (p = 0 ∨ p isPtr σ) ∧ (p = 0 ∨ p isPtr typeof(s.1))

Seqσ(b, e) 
 {p | (b < e) ∧ (e− b) mod sizeof(σ) = 0

∧ (p− b) mod sizeof(σ) = 0

∧ ∀i.(b ≤ (p+i·sizeof(σ)) < e)⇒ ((p + i · sizeof(σ)) isPtr σ)}

Fig. 5. The meanings of the Rtti and Seq type constructors used by CCured. We use

the set comprehension notation {x| . . .} to show the meanings of the types constructors,

where “e isPtr σ” means that value e is a pointer to a record with type σ. The < and

≤ operators used here are unsigned comparisons.

Sequence pointers: sequence is non-empty and both the end pointer and the ac-
tual pointer are aligned on multiples of the element size, although the pointer
itself may be out of bounds. We can dereference a Seqσ pointer p and treat it
as an ordinary σ pointer if it is within its bounds b and e. Moreover, we can
apply pointer arithmetic to this value, so long as the quantity being added is a
multiple of the element size. If the new value is within the bounds, it too can be
dereferenced.

To encode Sequence pointers in a type policy for our framework, we define a
type constructor Seqσ(b, e) for each base type σ used by the program. We also
define a constructor CheckedSeqσ(b, e) that represents a sequence pointer after
a bounds check:

CheckedSeqσ (b, e) 

{p | (b<e) ∧ (e− b) mod sizeof(σ)=0 ∧ (p− b) mod sizeof(σ)=0

∧ ∀i.(b ≤ (p+i·sizeof(σ)) < e) ⇒ ((p+ i · sizeof(σ)) isPtr σ)
∧ b ≤ p < e}

CheckedSeqσ has all of the properties of Seqσ, meaning that we can do pointer
arithmetic on it, as well as the property that the current value of the pointer is in
bounds and can be dereferenced immediately. In the subtyping relationship used
by IsSubtype and TJoin, CheckedSeqσ(eb, ee) is a subtype of both Seqσ(eb, ee)
and Ptr σ.

Whenever our typechecker sees a bounds-checking branch instruction3 for a
value vp that has type Seqσ(eb, ee), the Constrain operation refines the type of v
into CheckedSeqσ(eb, ee). Now the value vp can be dereferenced: the requirement
in rules [Read] and [Update] that vp have a pointer type is satisfied by the rule
[Subsumption] and the fact IsSubtype(CheckedSeqσ(eb, ee), Ptr σ).

3 CCured checks both the lower and upper bounds of a sequence pointer in one branch
instruction, by using the unsigned comparison (pointer − base) < (end− base).
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For pointer arithmetic, we can define a type constructor MultipleOf(e) for
the integers that are multiples of some value e, and we use the rules

ArithType(Single(c), ×, Int), (where c is a power of two4) = MultipleOf(c)
ArithType(Seqσ(eb, ee), +, MultipleOf(sizeof(σ))) = Seqσ(eb, ee)
ArithType(CheckedSeqσ(eb, ee),+, MultipleOf(sizeof(σ))) = Seqσ(eb, ee)

These rules let us assign the correct type Seqσ(eb, ee) to “p+ 4x”, where p has
type CheckedSeqσ(eb, ee) and σ is 4 words long.

4.3 Other Features

Besides Rtti and Seq, our type system for CCured uses the basic type con-
structors you would expect for C code, such as MaybeNullPtr and Int. For each
struct or base type defined in the source code, we create a record type σ.

Initialization. Allocation in C programs is done via calls to malloc or a related
function. It is important to check that the newly-allocated data is initialized
correctly. When allocating a record type that contains only non-dependent Ints,
no initialization is needed since even garbage values are well-typed. But if the
record contains pointer or dependent fields, those fields must be initialized to
NULL. (By design, NULL is a valid value for every field type in CCured.)

Stack-allocated data. To support a common C programming idiom, we allow
programs to take the address of locations on the stack and pass these pointers
to other functions. Typically, this is done to achieve call-by-reference behavior.
We require, however, that programs not store such pointers into heap locations or
return them from functions. This restriction ensures that when the stack frame
is deallocated, there are no dangling pointers into that stack frame. CCured’s
inference engine can tell us which arguments may be pointers to stack-allocated
memory; the verifier needs simply to check that these pointers are not allowed
to “escape” through the heap or a return value.

5 Implementation

We have implemented a prototype verifier for the output of CCured using the
design in this paper. We use CCured to instrument C programs for type safety,
and gcc 3.3.3 to optimize and compile the code to x86 assembly. Our verifier
uses abstract interpretation over the domain of symbolic expressions to infer
register types and ensure that every instruction preserves memory safety. Our
implementation can handle Sequence and RTTI pointers and their associated
dependencies. We also implement pointers to stack-allocated data.

The CCured code transformer will generate annotations for each program
that serve as a partial witness of the program’s correctness, but these annota-
tions need not be trusted. Incorrect annotations will result in failed verification
4 When c is not a power of two, we need a branch instruction to check the result of

the multiplication for overflow before assuming that the product is a multiple of c.
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rather than unsoundness, just as incorrect type information in Java bytecode
will result in failed typechecking. The annotations encode: (1) the type of ev-
ery global variable; (2) the global table of RTTI tags; (3) for each function, the
types of its arguments and return value, and the types and stack location of
any local variables that will have their address taken; and (4) for every call to
malloc, the type that will be applied to the resulting pointer (e.g. “T*” if the
source instruction is “T* var = (T*) malloc(e)”). Annotations are expressed
in inline assembly so that GCC will pass them from the instrumented source
code down to the verifier. Only the annotations for malloc appear in the middle
of a function, ensuring that this inline assembly will impose minimal constraints
on the optimizer. Other annotation strategies would also be feasible.

These annotations give us all the information we need to know about the
structure of the heap. All that remains is to infer types for registers and check
each instruction for memory safety.

Considerable engineering work needs to be done before our verifier will be
able to support all of the features of C. The prototype does not yet support
variable-argument functions, tagged unions, floating point operations, or func-
tion pointers. We have not implemented any fat pointer kinds other than Se-
quence and RTTI, although most other kinds (such as “forward-sequence” and
kinds that combine RTTI with bounds information) will be straightforward. We
also do not support casts between Sequence pointer types that have different
base types. Such casts are rare, and we may need CCured to annotate them so
that they can be verified.

In order to facilitate joins, our abstract interpreter limits the form of symbolic
expressions that are used for pointer arithmetic. Pointer offsets may be either
constants or multiples of the base type size. This works well for one-dimensional
arrays, but not for nested arrays. We are currently examining how to support
more general indexing expressions without losing precision in our join algorithm.

We treat calls to malloc and other allocation functions specially, and deal
with initialization as described in Section 4.3. CCured uses the Boehm-Demers-
Weiser garbage collector [11], which we trust, so calling free has no effect.

5.1 Experiments

As an initial test, we used our prototype on the go program in the Spec95 bench-
mark suite. Of the Spec95 programs, we chose go because it makes extensive use
of arrays while avoiding floating-point instructions, which our x86 parser does
not yet handle. We used the -O2 optimizer flag while compiling the program.

Of the 378 functions in the 29,321 LOC program, we can successfully verify
316 of them(84%). The most common reason for failure was that array indexing
expressions of nested arrays are too complicated for our abstract domain. We di-
rected CCured to flatten two-dimensional arrays into single-dimensional arrays,
but in general there is no way to do this for arrays of structs that themselves
contain arrays. Other failures were due to the unimplemented C features men-
tioned earlier. We are currently working to improve the implementation so that
we can verify all of the Spec95 suite.
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Verifying the program takes 194 seconds on a 2.4 GHz Pentium 4 with 1
GB of RAM. While testing our system, we discovered several soundness bugs
in CCured: the instrumentation did not safely handle NULL return values from
malloc, and CCured’s optimizer incorrectly removed bounds checks based on
the faulty assumption that two pointers couldn’t alias. This experience shows
the importance of independent verification of safety tools.

6 Related Work

Certified object code. There has been much work done to certify that binary code
adheres to various safety properties. Colby et al. [12] survey several approaches,
such as TAL and PCC, and describe the general problem of certifying mobile
code, including how such certifications can be communicated to the end user.

Typed Assembly Language [8,4] is used as a compilation target for Popcorn,
a subset of C. TAL includes many useful features, including flow-sensitive types
for registers so that register types can change from one instruction to the next;
typechecking that is done one basic block at a time; existential types; and sup-
port for stack-based compilation schemes [9]. But TAL does not support the
dependent types that we need for CCured, and it assumes that assembly code
is generated by a specially-written, type-preserving compiler.

Proof-Carrying Code [13,14] packages object code with a checkable proof of
safety. The original implementations of PCC targeted specific type policies, such
as Java’s type system [14]. Recent projects such as LTT [15] and work by Shao
et al. [16] seek a general type system for certified code that is not tied to any one
source language. A low-level type system permits use of a wide variety of proofs
and proof techniques, and it allows code from multiple source languages to be
combined safely. But these two systems do not yet target imperative languages,
making them impractical for the applications we are considering.

Producing checkable proofs is a goal for our type system as well. Our approach
will follow work done by the Open Verifier group to design an extensible system
for foundational verification [17]. Currently, our implementation uses the Open
Verifier’s code for checking that stacks and function calls are handled correctly.

Balakrishnan and Reps [18] present a system for analyzing memory accesses
in x86 code. They do not require annotations from the compiler, but in exchange
they trade off some precision and soundness.

Dependent types. The Xanadu language [19] provides an expressive dependent
type system for an imperative, source-level language. Xanadu supports depen-
dencies between different objects, which lets the language express more interest-
ing properties about heap structures than ours can.

Xanadu can be compiled to DTAL, a dependently-typed assembly language
[5]. DTAL focuses largely on array types and array-bound check elimination.
Basic blocks are annotated with invariants to reduce the need for type inference,
and a type-preserving compiler is used. DTAL does not support modification of
dependently-typed locations in the heap.
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Our restricted form of dependent types is similar to Hickey’s very dependent
function types [7]. Hickey encodes immutable records as functions from labels
to values. By using very dependent types for these functions, one can impose
dependencies among the object’s fields. Hickey uses these types to formalize a
theory of objects, including methods and inheritance. Our type system has a
similar focus on dependencies among fields and function arguments, but in the
context of a low-level imperative language with mutable structures.

Grossman [20] discusses the difficulty in supporting destructive updates in
a language with existential types; this is the same difficulty that our system
addresses for dependent types.

7 Discussion

We have described a dependently typed assembly language that supports destruc-
tive updates of dependent values that are stored in the heap. We can express in
this framework the invariants enforced by CCured in the instrumented programs
it outputs, and we can check statically that they are maintained. Our prototype
verifier for CCured demonstrates that our approach can be used in practice.

Future work on this project will proceed in three main directions. First,
we will apply our framework to type policies other than CCured. Already we
have created an extension for Cqual [2], an interprocedural static analysis tool
that infers type qualifiers for C programs and has been used to check several
important security properties [21,22].

The second direction is to generalize our system of dependent types. Our
types work well for dependencies between two local variables or two fields of the
same object, but they cannot encode dependencies between two memory loca-
tions that are not stored in the same object. Removing this limitation will allow
us to encode all or nearly all invariants of the source languages we are dealing
with, including downcasts in object-oriented code and null-terminated strings.

The third direction of future work is to produce a proof of type safety for
each program. Currently, the verifier and type policy are treated as part of the
trusted computing base. Through the Open Verifier project [10], we plan to
produce “foundational” proofs that can be checked by end users who would not
need to trust our type inference or the implementation of the type policy.
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Abstract. In this paper, we study the relationship between two models
of secure information flow: the PER model (which uses equivalence rela-
tions) and the abstract non-interference model (which uses upper closure
operators). We embed the lattice of equivalence relations into the lat-
tice of closures, re-interpreting abstract non-interference over the lattice
of equivalence relations. For narrow abstract non-interference, we show
that the new definition is equivalent to the original, whereas for abstract
non-interference it is strictly less general. The relational presentation of
abstract non-interference leads to a simplified construction of the most
concrete harmless attacker. Moreover, the PER model of abstract non-
interference allows us to derive unconstrained attacker models, which do
not necessarily either observe all public information or ignore all private
information. Finally, we show how abstract domain completeness can be
used for enforcing the PER model of abstract non-interference.

Keywords: Information flow, non-interference, abstract interpretation,
language-based security.

1 Introduction

An important task of language based security is to protect confidentiality of
data manipulated by computational systems. Namely, it is important to guar-
antee that no information, about confidential/private data, can be caught by
an external viewer. In the standard approach to the confidentiality problem,
called non-interference, the characterization of attackers does not impose any
observational or complexity restriction on the attackers’ power. This means that
the attackers are all powerful : they are modeled without any limitation in their
quest to obtain confidential information. For this reason non-interference is an
extremely restrictive policy. The problem of refining these security policies is
considered as a major challenge in language-based information flow security [17].
Refining security policies means weakening standard non-interference, in such a
way that it can be used in practice. Specifically, we need a weaker notion of non-
interference where the power of the attacker (or external viewer) is bounded,
and where intentional leakage of information is allowed.
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Abstract non-interference is introduced [9] for modeling the secrecy degree
of programs by means of abstract interpretation. In particular, it is possible
to characterize the observational capability of the most powerful harmless at-
tacker, that is, the most powerful attacker that cannot disclose any confiden-
tial information. Moreover, this model also allows one to characterize which
aspects of private information can flow during the execution of a given pro-
gram, when non-interference fails. These two complementary aspects of non-
interference have been proved to be adjoint transformers of semantics in [10],
where non-interference has been modeled as an abstract domain completeness
problem.

In the PER model of secure information flow [18], a generalised notion of non-
interference is obtained by using equivalence relations to model attackers. In this
paper we show that, since equivalence relations can be viewed as particular types
of closures called partitioning closures [16], the definitions of narrow and abstract
non-interference from [9] can be re-interpreted by using equivalence relations only
in place of arbitrary closures. For narrow abstract non-interference, we show
that the new definition is equivalent to the original, whereas for abstract non-
interference it is strictly less general. The difference lies in the fact that abstract
non-interference depends on being able to distinguish properties of sets of values,
such as intervals, congruences, etc, and this cannot be done with equivalence
relations on the underlying set. We then show how the relational presentation of
narrow abstract non-interference leads to a simplified construction of the most
powerful harmless attacker. Moreover, the generalization of the PER model of
secure information flow allows us to derive unconstrained attacker models, which
do not necessarily either observe all public information or ignore all private
information. Finally, we show how abstract domain completeness can be used for
enforcing the PER model of abstract non-interference, proving that abstract non-
interference corresponds to abstract domain completeness of the corresponding
partitioning closures.

2 Mathematical Background

In this paper we use the standard framework of abstract interpretation [5,7] for
modeling the observational capability of attackers. The idea is that, instead of
observing the concrete semantics of programs, namely the values of public data,
attackers can only observe properties of public data, namely an abstract seman-
tics of the program. For this reason we model attackers by means of abstract do-
mains. Abstract domains are used for denoting properties of concrete domains,
since their mathematical structure guarantees, for each concrete element, the
existence of the best correct approximation in the abstract domain. This is due
to the fact that abstract domains are closed under the concrete greatest lower
bound. The relation between abstract and concrete domains is formalized by Ga-
lois connections (GC). In GC-based abstract interpretation the concrete domain
C and abstract domain A are often assumed to be complete lattices and are re-
lated by an abstraction map α : C → A and concretization map γ : A → C form-
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ing a GC 〈C,α, γ,A〉 [5], i.e., for any x ∈ C and y ∈ A: α(x) ≤A y ⇔ x ≤C γ(y).
When α is surjective then the GC is said to be a Galois insertion (GI) and
uniquely determines an abstract domain. Formally, the lattice of abstract in-
terpretations of C is isomorphic to the lattice uco(C) of all the upper closure
operators on C [7]. An upper closure operator ρ : C → C on a poset C is mono-
tone, idempotent, and extensive1. The dual notion of lower closure operator (lco)
is a monotone, idempotent and reductive2 map. Any closure operator is uniquely
determined by the set of its fix points ρ(C), which forms an abstract domain. If C
is a complete lattice then 〈uco(C),',�,�,,, id〉 is the lattice of upper closures,
where , def= λx. ,, id

def= λx. x, and for every ρ, η ∈ uco(C), {ρi}i∈I ⊆ uco(C)
and x ∈ C: ρ ' η iff η(C) ⊆ ρ(C); �i∈Iρi =

⋂
i∈I ρi; and �i∈Iρi = M(

⋃
i∈I ρi),

where M is the operation of closing a domain by concrete greatest lower bound,
e.g., intersection on power domains. The disjunctive completion of an abstract
domain ρ ∈ uco(C) is the most abstract domain able to represent the concrete
disjunction of its objects:

�
(ρ) = �{η ∈ uco(C)|η ' ρ and η is additive}. ρ is

disjunctive (or additive) iff
�

(ρ) = ρ (cf. [7]).

2.1 Equivalence Relations vs Closure Operators

In this section we review the relationships between equivalence relations and
upper closures which are key to the development in the rest of the paper.

The lattice of equivalence relations. The equivalence relations on a set C form a
lattice 〈Eq(C),',�,�, IdC ,AllC〉, where IdC is the relation that distinguishes
all the elements in C, AllC is the relation that cannot distinguish any element
in C, and:

– Q ' R iff Q ⊆ R iff x Q y ⇒ x R y;
– Q � R = Q ∩ R, i.e., x Q � R y iff x Q y ∧ x R y;
– Q � R = T(Q ∪ R), where x Q ∪ R y iff x Q y ∨ x R y.

Here T(S) is the transitive closure of the relation S (it is easily seen that both ∪
and T preserve symmetry and reflexivity).

Relating equivalence relations and upper closures. In this paper we will generally
be concerned with relationships between equivalence relations on a set C and
upper closure operators on the powerset ℘(C). However, we start by observing
the following strong correspondence between ucos (on any lattice) and their own
kernels. (Recall that the kernel, Kf , of a function f : C → D, is the equivalence
relation on C defined by x Kf y iff f(x) = f(y).)

Lemma 1. Let η, ρ ∈ uco(C). Then η ' ρ iff Kη ' Kρ.

1 ∀x ∈ C. x ≤C ρ(x).
2 ∀x ∈ C. x ≥C ρ(x).
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Next, we recall that there exists an isomorphism between equivalence rela-
tions and a subclass of the upper closure operators [16]. In fact, this isomorphism
arises from a Galois connection between Eq(C) and uco(℘(C)). For each equiv-
alence relation on a set C, R ⊆ C × C, we can define an upper closure operator
on ℘(C), CloR ∈ uco(℘(C)), and vice versa, from each upper closure operator
η ∈ uco(℘(C)) we can define an equivalence relation Relη ⊆ C × C.

Consider an upper closure operator η ∈ uco(℘(C)). We define Relη ⊆ C ×C,
as ∀x, y ∈ C . x Relη y ⇔ η({x}) = η({y}). Proving that Relη is an equivalence
relation is immediate and doesn’t depend on the fact that η is a uco, but only
on the fact that it is a function.

Consider now an equivalence relation R ⊆ C×C. We define CloR ∈ uco(℘(C))
as follows: ∀x ∈ C . CloR({x}) = [x]R and ∀X ⊆ C . CloR(X) =

⋃
x∈X [x]R. Thus

CloR is obtained by disjunctive completion of the partition induced by R. Proving
that CloR is an upper closure operator is immediate. In particular idempotence
derives directly from the fact that R is an equivalence relation.

In [16], CloR is identified as the most concrete uco η such that R = Relη. More
precisely:

Proposition 2. Let C be any set.

1. The mappings defined above form a Galois connection between the lattice of
equivalence relations on C and the lattice of upper closure operators on its
powerset. That is, for all R ∈ Eq(C), η ∈ uco(℘(C)): CloR ' η ⇔ R ' Relη.

2. For all R ∈ Eq(C), RelCloR

= R.

Corollary 3. Let Π(η) be defined by Π(η) = CloRelη .

1. Π : uco(℘(C)) → uco(℘(C)) is a lower closure operator.
2. For all η ∈ uco(℘(C)), Π(η) is the (unique) most concrete closure that

induces the same equivalence relation as η (Relη = RelΠ(η)).

The fix points of Π are termed the partitioning closures [16].

Proposition 4. An upper closure operator η ∈ uco(℘(C)) is partitioning, i.e.,
η = Π(η), iff it is complemented, namely if ∀X ∈ η. X

def= C �X ∈ η.

Indeed, an upper closure operator η is always closed under glb (intersection
in this context), therefore whenever it is closed also under complementation, we
have that it is surely disjunctive, by De Morgan’s laws. In the following we have
an example of the partitioning closure associated with a partition.

Example 5. Consider the set Σ = {1, 2, 3, 4} and one of its possible partitions
π = {{1}, {2, 3}, {4}}, then the closure η with fix points {∅, {1}, {4}, {123}, Σ}
induces exactly π as partition of states, but the most concrete closure that
induces π is Cloπ = Π(η) =

�
({∅, {1}, {2, 3}, {4}}, Σ), which is the closure on

the right in Fig. 1.

On the closures we have the following characterizations. Note that, since Π
is a lower closure operator on uco(℘(C)), then � in Eq coincides with � in uco,
whereas CloQ�R can be strictly less than CloQ � CloR.
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Fig. 1. A partitioning closure

Proposition 6. Q ' R iff CloQ ' CloR, Q � R = RelCloQ�CloR

and Q � R =
RelCloQ�CloR

.

3 Information Flows in Language-Based Security

In the rest of this paper, confidential data are considered private, labeled with
H (high level of secrecy), while all other data are public, labeled with L (low
level of secrecy). Non-interference can be naturally expressed by using semantic
models of program execution (this idea goes back to Cohen’s work on strong
dependency [3]). Non-interference for programs essentially means that “a varia-
tion of confidential (high or private) input does not cause a variation of public
(low) output” [17]. When this happens, we say that the program has only secure
information flows [1,3,8,13]. This situation has been modeled by considering the
denotational (input/output) semantics �P � of the program P . Program states in
Σ are functions (represented as tuples) mapping variables into the set of values
V. If T ∈ {H, L}, n = |{x ∈ Var(P )|x : T}|, and v ∈ Vn, we abuse notation by
denoting v ∈ VT the fact that v is a possible value for the variables with security
type T. Moreover, we assume that any input s, can be seen as a pair (h, l), where
sH = h is a value for private data and sL = l is a value for public data. In this
case, (standard) non-interference can be formulated as follows.

A program P is secure if ∀ input s, t. sL = tL ⇒ (�P �(s))L = (�P �(t))L

This definition has been formulated also as a Partial Equivalence Relation (PER)
[18]. The standard methods for checking non-interference are based on security-
type systems and data-flow/control-flow analysis. Type-based approaches are
designed in such a way that well typed programs do not leak secrets. In a
security-typed language, a type is inductively associated at compile time with
program statements in such a way that any statement showing a potential flow
disclosing secrets is rejected [19,21]. Similarly, data-flow/control-flow analysis
techniques are devoted to statically discover flows of secret data into public vari-
ables [2,13,15,18]. All these approaches are characterized by the way they model
attackers (or unauthorized users).
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Table 1. Narrow and Abstract Non-Interference

[η]P(ρ) if ∀h1, h2 ∈ V
H, ∀l1, l2 ∈ V

L . η({l1}) = η({l2}) ⇒ ρ({�P�(h1, l1)L}) = ρ({�P�(h2, l2)L})

(η)P(φ �[]ρ) if ∀h1, h2 ∈ V
H, ∀l ∈ V

L . ρ(�P �(φ({h1}), η({l}))L) = ρ(�P�(φ({h2}), η({l}))L)

3.1 Abstract Non-interference: Attack Models

The notion of abstract non-interference [9] is introduced for modeling both
weaker attack models, and declassification. The idea is that an attacker can
observe only some properties, modeled as abstract interpretations of program
semantics, of public concrete values. The model of an attacker , also called at-
tacker , is therefore a pair of abstractions 〈η, ρ〉, with η, ρ ∈ uco(℘(VL)), rep-
resenting what an observer can see about, respectively, the input and output
of a program. The notion of narrow (abstract) non-interference (NNI), denoted
[η]P (ρ), is given in Table 1. It says that if the attacker is able to observe the
property η of public input, and the property ρ of public output, then no informa-
tion flow concerning the private input is observable from the public output. The
problem with this notion is that it introduces deceptive flows [9], generated by
different public output due to different public input with the same η property.
Consider, for instance, the program l := l ∗ h2 and an observer who can observe
only the parity of l on input and its sign on output. Intuitively, we may say
that no information flows from h, since the sign of l after the assignment does
not reveal anything about the value of h. However, [Par]l := l ∗ h2(Sign) does
not hold3, since there is variation of the output’s sign due to the existence of
both negative and positive even numbers. In order to avoid deceptive flows we
introduce a weaker notion of non-interference, which considers as public input
the set of all the elements sharing the same property η. Hence, in the previous
example, the observable output for l is the set of all the elements with the same
parity, e.g., if Par(l) = even then we check the sign of

{
l ∗ h2

∣∣ l is even
}

which
is always unknown, since an even number can be both positive and negative,
while h2 does not interfere with the final sign. Moreover, we consider also a
property φ ∈ uco(℘(VH)), modeling the private property that has not to be ob-
served by the attacker 〈η, ρ〉. This notion, denoted (η)P (φ �[]ρ), is called abstract
non-interference (ANI) and is defined in Table 1. So for example the property
(id)l := l∗h2(Sign �[]Sign) is satisfied, since the public result’s sign do not depend
on the private input sign, which is kept secret.

Note that [id]P (id) models exactly (standard) non-interference. Moreover, we
have that abstract non-interference is a weakening of both standard and narrow
non-interference: [id]P (id) ⇒ (η)P (φ �[]ρ) and [η]P (ρ) ⇒ (η)P (φ �[]ρ), while
standard non-interference is not stronger than the narrow version, due to de-
ceptive flows. In [9], two methods are provided for deriving the most concrete
output observation for a program, given the input one, for both NNI and ANI.
In particular the idea is to collect in the same abstract object all the elements

3 Here Par
def
= {�, ev, od,⊥} and Sign

def
= {�, 0+,−,⊥}.
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that, if distinguished, would generate a visible flow. These most concrete output
observations, unable to get information from the program P observing η in in-
put, are, respectively, denoted [η]�P �(id) and (η)�P �(φ �[]id), both in uco(℘(VL)).
Hence, if for instance P def= l := |l| ∗ Sign(h) (where | · | is the absolute value), we
note that each value n has to be abstracted together with its opposite −n, in
order not to generate visible flows, hence the most concrete harmless attacker
can at most observe the absolute value Abs, i.e., [Abs]�P �(id) = Abs.

3.2 PER Model

The semantic approach described above has also been equivalently formalized
in [18], by using partial equivalence relations (PER) to model dependencies in
programs. As we noted above, the problem of non-interference can be seen as
absence of dependencies among data, where the meaning of dependency is given
in [3]. The idea behind this characterization consists in interpreting security
types as partial equivalence relations. In particular the type H is interpreted by
using the equivalence relation All , and L by using the relation Id . The intuition
is that All and Id model, respectively, that the user has no access to the high
information and has full access to the low information. This perspective can
simply be generalized to multilevel security problems.

In order to use this model in the security framework we need to combine
equivalence relations on simple domains to construct new relations on more
complex domains, in particular product spaces and function spaces. For the
latter, it turns out to be natural to generalise slightly to consider partial equiv-
alence relations, that is, relations which are symmetric and transitive but not
necessarily reflexive. Let Per(D) be the set of partial equivalence relations on
D. Given P ∈ Per(D) and Q ∈ Per(E) we define (P � Q) ∈ Per(D → E) and
(P× Q) ∈ Per(D × E) as follows:

1. f (P � Q) g ⇔ ∀x, x′ ∈ D . x P x′ ⇒ f(x) Q g(x′)
2. 〈x, y〉 P× Q 〈x′, y′〉 ⇔ x P x′ ∧ y Q y′.

In general, for P ∈ Per(D) and x ∈ D, we write x : P to mean x P x. In particular,
if f (P � Q) f , we write f : P � Q. Note that P � Q will not, in general, be
reflexive, even when P and Q are (for example, All � Id relates only functions
which are equal and constant).

At this point, we can formalize security in this model.

Definition 7. [18] A program P is said to be secure iff ∀s, t . 〈sH, sL〉 All × Id
〈tH, tL〉 ⇒ �P �(s) All × Id �P �(t), or, more concisely: �P � : All×Id � All×Id.

4 PER Model Versus Abstract Non-interference

The correspondence existing between ucos and equivalence relations suggests
that we can define particular notions of abstract non-interference where the clo-
sures modeling properties are all partitioning, i.e., correspond exactly to equiv-
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alence relations. As shown below, for NNI this specialisation makes essentially
no difference, while for ANI it does involve a loss of generality.

First of all we introduce the natural generalization of the PER model pro-
vided in [18]. Given a program P and relations Q, W ∈ Eq(V), we say that P is
〈Q, W〉-secure iff �P � : Q � W. Clearly, P is secure (Definition 7) just when it is
〈All × Id ,All × Id〉-secure.

4.1 PER Model vs NNI

Proposition 8. Let P be a deterministic program. Let η, ρ ∈ uco(℘(VL)). Then:

1. [η]P (ρ) iff �P � : All × Relη � All × Relρ

2. [η]P (ρ) iff [Π(η)]P (Π(ρ))

Proof. Part 1 is immediate from the definitions. Part 2 follows from part 1 by
part 2 of Corollary 3. ��

Since every equivalence relation R is represented exactly by the uco CloR, this
result shows that precisely the same class of NNI properties can be expressed
using equivalence relations or partitioning closures as using arbitrary ucos. In
particular, we may define NNI directly in terms of equivalence relations:

Definition 9. Let P be a program. Let R, S ∈ Eq(VL). Then P is said to be
〈R, S〉-NSecret, written [R]P (S), iff �P � : All × R � All × S.

By Proposition 8, all NNI properties may be written in this form.

4.2 PER Model vs ANI

To compare the relative expressive power of the PER model and the general no-
tion of abstract non-interference using arbitrary ucos, it is helpful to consider the
extension of a relation on C to a relation on subsets of C. The basic construction
is that used in defining Plotkin’s powerdomain.

Definition 10. Let R be a binary relation on a set C. Then the extension of R
to ℘(C) is the relation P [R] ⊆ ℘(C) × ℘(C) such that X P [R] Y iff

∀x ∈ X. ∃y ∈ Y . x R y and ∀y ∈ Y. ∃x ∈ X . x R y

For a partitioning closure, the extension of its corresponding equivalence relation
from C to ℘(C) has a particularly simple characterisation:

Proposition 11. Let C be any set and let η ∈ uco(℘(C)) be partitioning. Then
P [Relη] =Kη, that is: X P [Relη] Y ⇔ η(X) = η(Y ).

Corollary 12. Let η, φ ∈ uco(℘(VL)) and let ρ ∈ uco(℘(VH)). If ρ is partition-
ing, then (η)P (φ �[]ρ) iff

∀X1, X2 ∈ VH/Relφ, ∀Y ∈ VL/Relη . �P �(X1, Y ) P [All × Relρ] �P �(X2, Y )
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The following proposition shows that, in contrast to NNI, there are ANI
properties which cannot be expressed using the partitioning closures alone.

Proposition 13. Let P be a program, let η, φ ∈ uco(℘(VL)) and ρ ∈ uco(℘(VH)).
Then (Π(η))P (Π(φ) �[]Π(ρ)) ⇒ (η)P (φ �[]ρ) but, in general, the reverse implica-
tion does not hold.

The following example shows where the difference between the two notions lies.

Example 14. Consider the following program fragment:

P
def= if h = 0 then l := l mod 6 + 2; else if l < 0 then l := 2 else l := 7;

with security typing h : H, l : L. Consider η def= {,, 2Z, 2Z + 1,⊥} for parity,
φ = {,, 0+,−,⊥} for sign, and ρ

def= Int of intervals [5], in uco(℘(Z)). Note that,
since each integer number is in particular an interval, we have that Π(Int) = id,
distinguishing all the integer values, while Π(η) = η and Π(φ) = φ. Let us see
what happens in abstract non-interference. Consider η(l) = 2Z, then if φ(h) =
0+ we have that ρ(�P �(φ(h), η(l))L) = ρ({2, 4, 6, 7}) = [2, 7]. While, if φ(h) = −,
then we have ρ(�P �(φ(h), η(l))L) = ρ({2, 7}) = [2, 7]. On the other hand, if η(l) =
2Z + 1 and φ(h) = 0+, then ρ(�P �(φ(h), η(l))L) = ρ({2, 3, 5, 7}) = [2, 7], and
when φ(h) = − we have ρ(�P �(φ(h), η(l))L) = ρ({2, 7}) = [2, 7]. So (η)P (φ �[]ρ)

holds. Consider now Π(ρ) = id. It is clear that if we substitute above ρ with id,
then we have that (Π(η))P (Π(φ) �[]Π(ρ)) does not hold. ��

Hence, ANI with ucos is a more precise notion whenever we have to deal with sets
of values, instead of with singletons. This may be particularly useful, for example,
for non-deterministic systems, where the denotational semantics returns a set of
states as output.

5 Deriving Attacker Models by Abstract Interpretation

In this section we consider the PER model of NNI and use it to derive simple,
constructive characterisations of various classes of attacker considered in [9]. For
example, suppose given a class of attackers whose power to observe low security
inputs is given by R: for a given program P , what is the most powerful attacker
in the class (with respect to observation of low security outputs), for which P is
secure? There are two cases of principal interest:

1. Most powerful attacker: given R ∈ Eq(VL), is there a smallest S ∈ Eq(VL)
such that [R]P (S)? Or, given S ∈ Eq(VL), is there a greatest R ∈ Eq(VL) such
that [R]P (S)?

2. Fix point (canonical) attacker: is there a smallest R such that [R]P (R)?

The particular interest of fix point attackers is that, in many situations, the
power of the attacker to observe low security data may be independent of the
data’s rôle as input or output.
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5.1 Deriving Unconstrained Attackers

In this section, given a semantics f and an input [output] equivalence relation R
[S], we show how we can derive the most concrete [abstract] output [input] rela-
tion S [R] that makes the program satisfy f : R � S. Consider an arbitrary func-
tion f : A→ B between sets. As is well known, any such f lifts to an adjunction
between ℘(A) and ℘(B), in the form of f ’s direct and inverse image mappings. It
turns out that f can be lifted to an adjunction 〈Eq(A), f̂ , f̂−1,Eq(B)〉 between
lattices of equivalence relations in a similar way. In this section we detail the
construction of f̂ and f̂−1, and we go onto show how they are used to derive
attackers.

Given an output relation S it is always possible to find a good candidate for
input relation R, essentially by simply imposing the condition f : R � S. In other
words we can always define the equivalence relation f̂−1(S) in the following way:

x f̂−1(S) y iff f(x) S f(y) (1)

This is the key definition in [14] and is also exactly the idea used in [22] on the
trace semantics, namely we collect together all the elements whose semantics are
equivalent in the output observation.4

Lemma 15. f̂−1(S) is an equivalence relation and f : R � S ⇔ R ' f̂−1(S).

Note that for each S we have f̂−1(S) . Kf . This means that the input relation
has, at least, to identify all the elements with the same image under f . This
observation makes the definition of f̂ a bit more complicated. Indeed, given R,
we would like to find the best relation S which satisfies f : R � S. A naive
construction leads to the function f̃ : Rel(C) → Rel(C), as follows:

y f̃(R) y′ iff (∃x, x′ . x R x′ and f(x) = y, f(x′) = y′ ∨ y = y′)

Note that the disjunct y = y′ guarantees that the relation is reflexive. However,
f̃(R) may fail to be transitive, as we can see in the following example.

Example 16. Consider a domain C = {1, 2, 3, 4, 5, 6} and a function f such that
f(1) = 1, f(3) = f(4) = 2, f(2) = f(6) = 5 and f(5) = 3, and suppose that
R = {[1, 3], [2, 4], [5, 6]}, then we would have 1f̃(R)2, 2f̃(R)5 and 5f̃(R)3, but for
example 1¬f̃(R)3.

The problem is that f is not injective (Kf �= Id) and therefore, in the example
the fact that f(3) = f(4) while R distinguishes 3 from 4, creates the problems.

Proposition 17. Consider f : C → C and R ∈ Eq(C). If Kf ' R, then f̃(R) is
an equivalence relation, if Kf = R, then f̃(R) = Id.

We would like to modify f̃ in order to guarantee that f̃(R) is always an
equivalence relation. For this reason we prove the following result.
4 This transformation corresponds to the quotient of the concrete semantic domain

with respect to the property CloS [4].
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ff f f
f̂(R)R

⇒ ⇒

Sf̂−1(S)

Fig. 2. Example of application of f̂ and of f̂−1

Proposition 18. Let f : A→ B. Then f̂−1 : Eq(B) → Eq(A) is co-additive.

This means that f̂−1 is the right adjoint of a Galois connection. Thus we can
define the following function, which is its left adjoint [5]:

f̂(R) def=
�{

Q
∣∣∣R ' f̂−1(Q)

}
(2)

The co-additivity of f̂−1 guarantees that the element uniquely exists. We ma-
nipulate this set obtaining that f̂(R) =

�{
Q
∣∣x R y ⇒ f(x) Q f(y)

}
.

Theorem 19. f̂(R) = f̃(R � Kf ) = T(f̃(R)).

This means that, when R . Kf , then f̃(R) = f̂(R).
By construction, the following result is straightforward:

Proposition 20. 〈Eq(A), f̂ , f̂−1,Eq(B)〉 is a Galois connection. That is, for all
R ∈ Eq(A), S ∈ Eq(B): f̂(R) ' S ⇔ R ' f̂−1(S).

Combining Proposition 20 with Lemma 15, gives:

Theorem 21. f : R � S ⇔ f̂(R) ' S ⇔ R ' f̂−1(S).

This result shows which is the rôle of the two operators f̂ and f̂−1 in the whole
construction. Indeed, by Theorem 21 we have that f satisfies non-interference,
namely f : R � S, iff f̂(R) ' S. This means that f̂ characterizes exactly the most
concrete output relation that guarantees non-interference for f , fixed the input
relation. By the adjunction relation we can also say that f : R � S iff R ' f̂−1(S).
Thus f̂−1 characterizes the most abstract input relation that guarantees non-
interference for f , fixed the output relation. Indeed, as expected, we can always
abstract the output observation and we can always concretize the input one.
Note that [9] misses exactly a construction of the input observation that makes
a program secure, given the output one, while this is possible in this context
since we are considering equivalence relations. An example is provided in Fig. 2.

5.2 Fix Point Attackers

In this section we look for the characterisation of attackers that observe the same
property both in input and in output. The idea is to consider the fix points of
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f

(a)

lfpidf̂−1

f

(b)

gfp�f̂

Fig. 3. Examples of fix points

the unconstrained attackers derived above. Unfortunately, the most concrete and
the most abstract non trivial (different from top and identity) attacker models
do not exist as can be also verified in Fig. 3, therefore we can use the fix point
iteration simply as a possible systematic construction of canonical attackers.

Fix point of f̂−1. Note that f̂−1(,) = ,, this means that the interesting case,
if it exists, is the least fix point of f̂−1 starting from Id . We know that f̂−1 is
monotone (Prop. 20), therefore the least fix point exists and can be obtained as
the limit of the iterative application of f̂−1 starting from Id , the bottom of the
lattice of relations [6,20].

Fix point of f̂ . Note that f̂(Id) = Id , this means that we can find, if it exists,
only the greatest fix point of f̂ starting from ,. We know that f̂ is monotone
(Prop. 20), therefore the greatest fix point exists and can be obtained as the
limit of the iterative application of f̂ starting from the element , of the lattice
of relations [6,20].

5.3 Deriving Contrained Attackers

In this section, we consider attackers which are unable to observe private data,
and which can only observe properties of public data. In this way we derive
attackers for abstract non-interference [9], where the attackers are modeled by
equivalence relations instead of by closure operators.

Most Powerful Attackers. We can use f̂ to construct the most powerful attacker.
Firstly, note that it follows directly from the definitions that [R]P (S) iff π2 ◦ �P � :
All × R � S5. The following result is then a straightforward consequence of
Theorem 21:

Proposition 22. Let P be a program and let R ∈ Eq(VL). Then the smallest S
such that [R]P (S) is f̂(All × R), where f = π2 ◦�P �.
5 Here π2(〈a, b〉) = b is the projection on the second component of a pair.
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Fix Point Attackers. We wish to construct the smallest R such that:

�P � : All × R � All × R (3)

Let FP (R) def= f̂(All × R), where f = π2 ◦ �P �. Then, using Theorem 21, it is
easily verified that (3) holds iff FP (R) ' R. Thus the solutions to (3) are just
the post-fix points of FP . Since FP is clearly monotone on Eq(VL), Tarski’s fix
point theorem gives:

Proposition 23. Let P be a program and let FP : Eq(VL) → Eq(VL) be defined
as above. Then the smallest R such that [R]P (R) is lfp FP .

Note that this construction corresponds exactly to the characterization given
in [9] for arbitrary closures. Indeed here we collect elements, in the new relation
f̂(R), iff they are images by f of elements that are in the input relation. In [9] the
elements are collected, for obtaining the resulting closure, when they are images,
under f of inputs that differ only in the private information (which is the input
relation in ANI).

5.4 Non-interference and Completeness

In [10] it is proved that (abstract) non-interference can be modeled as a prob-
lem of completeness in the standard framework of abstract interpretation. Since
partitions are particular closure operators, we can use completeness also for the
PER model of abstract non-interference. We would like to understand how com-
pleteness can be helpful in order to obtain non-interference. First of all let us
consider a new characterization of completeness.

Theorem 24. Given ρ1, ρ2 ∈ uco(℘(C)), and
f : C → C, then 〈ρ1, ρ2〉 is complete for f ,
i.e., ρ2 ◦ f ◦ ρ1 = ρ2 ◦ f iff ∀X ∈ ρ1.∃Y ∈ ρ2
such that ∀z . (ρ1(z) = X ⇒ ρ2(f(z)) = Y ).

f

ρ1

ρ2

At this point let us define completeness of equivalence relations in terms of
completeness of the corresponding closure operators. Let R, S ∈ Eq(C), and f a
map on C: S◦f ◦R = S◦f iff CloS ◦f ◦CloR = CloS ◦f .

Corollary 25. f : R � S iff S◦f ◦R = S◦f .

(It is interesting to note that precisely this relationship was used in [12] to
establish a correspondence between PER-based and projection-based program
analyses. It holds generally for idempotent maps and their kernels.)

This means that we can use the constructive method given in [11] for making
abstract domains complete. Clearly the result of this transformation need not be
a partitioning closure, hence we have then to derive the partition associated with
the complete domain. In this way we obtain a method for making equivalence
relations complete.
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6 Conclusion

In this paper we define abstract non-interference in terms of the PER model.
In particular, we consider equivalence relations instead of arbitrary abstract
domains. We show that the notion does not change for narrow non-interference,
while it becomes less general when we consider abstract non-interference. And
it is possible to show that, even if we lift PERs to sets then we cannot reach the
generality of uco since lifted PERs correspond only to additive closures. The use
of equivalence relations allows us to simplify the characterization of the most
powerful harmless attacker. Moreover we can also derive distinguished attackers
for the generic PER model of security (〈Q, W〉-security, Sect. 4).

Finally, we show that the PER model of abstract non-interference can be
rewritten as an abstract domain completeness problem. This result is interesting
for us since it suggests how we may approach the problem of making partitioning
closures complete, similarly to what is done in [11]. Such a result could be useful
also in other fields of computer science, such as completeness in model checking
[16]. In this paper we only provide the relation-based construction of the most
powerful harmless attacker for the narrow case, which is the straightforward
generalization of the PER model [18]. It could be interesting to investigate if
the restriction to partitioning closures simplifies also the characterization of the
harmless attacker for abstract non-interference.
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Abstract. This paper concerns the abstraction of sets of functions for
use in abstract interpretation. The paper gives an overview of existing
methods, which are illustrated with applications to shape analysis, and
formalizes a new family of relational abstract domains that allows sets of
functions to be abstracted more precisely than with known approaches,
while being still machine-representable.

1 Introduction

A major strength of abstract interpretation is the ability create complex ab-
stract domains from simpler ones [2]. In particular, (i) Galois connections can
be composed, which allows a complex abstraction to be described as the compo-
sition of simpler ones, offering the ability to identify clearly the different kind of
approximations that take place; (ii) given two abstractions for sets of elements,
℘(Di), i = 1, 2, there exist techniques for abstracting functions of signature
D1 → D2 [4].

The starting point for the paper is the abstraction method defined in [8],
which presents a family of abstract domains that are useful when it is desired
to connect storage elements (e.g., elements of arrays and lists) with numeric
quantities. This paper reformulates that abstraction in a more general way—
as a general method of abstracting a set of functions—which allows the basic
idea from [8] to be applied more widely. Moreover, when the new formulation is
compared with previously known ways of abstracting a set of functions, it yields
more precise abstractions. We are just beginning to explore instantiations of the
method that go beyond the ones used in [8].

We formalize a generic abstract-interpretation combinator, which abstract
sets of functions of signatureD1 → D2 in a relational way, assuming the existence
of abstractions A1 and A2[n] for ℘(D1) and ℘((D2)n), respectively (where A1
is of finite cardinality n). The obtained abstract domain is precisely A2[n]. In
contrast to A1, A2[n] may be a complex lattice (relational, infinite, and of infinite
height), like the lattice of octagons [11] or convex polyhedra [5]. This relational
function-abstraction is more precise than the classical approach described in the
literature [4], because of its ability to represent relationships between the images
of different elements mapped by a set of functions. For instance, consider a set
of functions F ⊆ U → R (that may represent a set of possible values for an array
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c© Springer-Verlag Berlin Heidelberg 2005



A Relational Abstraction for Functions 187

of reals). If all f ∈ F satisfy f(u1) = f(u2), our abstraction is able to preserve
this information in the abstract domain; in that precise sense it may be qualified
as relational (which differs from the usual definition of [10]).

In terms of precision, the relational function-abstractionA2[n] lies in-between
the classical function-abstraction A1 → A2 and its disjunctive completion [3].
The important point is that A2[n] is still finitely representable in the same cir-
cumstances as A1 → A2 (i.e., when A1 → A2 is finitely representable, assuming
a tabulated representation).

The contribution of the paper are as follows:

– we give an overview of the existing approaches to abstracting functions and
relations and analyze the loss of information induced by them;

– we state our new approach to abstracting functions and compare it to existing
ones in terms of expressiveness and implementability;

– we illustrate these different abstractions by considering their use in shape
analysis; as a side-effect, we show how canonical abstraction can be partially
recast in terms of a powerful combination of elementary abstractions, without
resorting to the logical framework of [14].

In contrast to the domain construction and refinement approach (e.g.,
[12,6,7]), which operates on general lattices, our approach explicitly exploits
the functional structure of concrete states.

The remainder of the paper is organized into four sections: Section 2 intro-
duces some terminology and notation. Section 3 reviews the classical abstractions
of functions of signature D1 → D2 and relations between elements of D1 and D2
that were described in [4]. Section 4 describes relational function-abstraction.
Section 5 presents related work and draws some conclusions.

2 Preliminaries

2.1 Lattices and Galois Connections

We denote by L(',⊥,,,�,�) a lattice defined by the set L and the partial order
', where ⊥, ,, �, and � denote the smallest element, the greatest element, the
least upper bound, and the greatest lower bound, respectively. Given any set D,
the powerset ℘(D) is a lattice ordered by set inclusion, and the set of functions
D → L is a lattice ordered by the pointwise ordering: f ' g ⇔ ∀d ∈ D : f(d) '
g(d). Given two lattices L1 and L2, L1 ×L2 is a lattice ordered componentwise,
in which a pair (x1, x2) is identified with ⊥ if either component is ⊥. A function
f : L1 → L2 is strict and total if f(⊥) = ⊥ ∧ f(x) = ⊥ =⇒ x = ⊥, monotonic
if x ' y =⇒ f(x) ' f(y), and additive if f(x � y) = f(x) � f(y). We denote
these sets of functions by L1

⊥−→ L2, L1

−→ L2, and L1

�−→ L2, respectively. A
lattice will be called a flat lattice if it is formed by a set of unordered elements
to which a smallest element and a greatest element are added.

A Galois connection C −−−→←−−−
α

γ
A between two lattices C and A is defined by

abstraction and concretization functions α : C → A and γ : A → C that satisfy
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∀x ∈ C, ∀y ∈ A : x 'C γ(y) ⇐⇒ α(x) 'A y. In program analysis, C is most
often the powerset of states ℘(S). For any Galois connection: (i) γ◦α is extensive
(i.e., greater than the identity function) and represents the information lost by
the abstraction; (ii) α preserves �, and γ preserves �; (iii) α is one-to-one iff
γ is onto iff γ ◦ α is the identity; in this case, we use the notation C −−−−→←←−−−−

α

γ
A.

If γ ◦ α is the identity, α loses no information and we will consider that C and
A are isomorphic from the information standpoint, which is denoted by C / A
(although γ may not be one-to-one).

Any Galois connectionC −−−→←−−−
α

γ
A can be refined by considering the disjunctive

completion of A [2], which corresponds to ℘(A) equipped with an inclusion order
that takes into account the order of A. This refinement allows the disjunction of
abstract properties in A to be represented exactly, instead of using �A, which
usually loses information (i.e., in general, one has γ(x �A y) . γ(x) �C γ(y)).
We denote by ℘(A) −−−−→←−−−−

α∨

γ∨
A the Galois connection between the disjunctive

completion of a lattice and itself. A is said to be disjunctive if it isomorphic to
its disjunctive completion.

As mentioned in the introduction, Galois connections can be composed. We
use [σ, ς] to denote the composition of a connection σ followed by a connection
ς (so that we have α[σ,ς] = ας ◦ ασ).

The existence of a Galois connection between two lattices L1 and L2 defines
the following pre-order: L1 � L2 ⇔ L1 −−−→←−−−

α

γ
L2. Given a concrete lattice C, the

set of all (equivalence class of) lattices that abstract it, ordered by �, is itself a
lattice with top element C (see for instance Fig. 2).

2.2 Shape Analysis and Modeling Program States

This section provides background on the semantic domains used in shape anal-
ysis; this material will be used later in the paper to illustrate several aspects of
the different approaches to abstracting sets of functions.

The aim of shape analysis is to analyze the properties of programs that
manipulate heap-allocated storage and perform destructive updating of pointer-
valued fields [14]. The goal is to recover shape descriptors that provide informa-
tion about the characteristics of the data structures that a program’s pointer
variables can point to. Typically, work on shape analysis considers an imper-
ative language that is equipped with an operational semantics defined using a
transition relation between program states.

At a given control point, a program state s ∈ S is defined by the values of the
local variables and the heap. At each control point, the set of possible concrete
properties on states is thus ℘(S). The collecting semantics of programs is defined
as a system of equations on the lattice of concrete properties.

We now describe two ways in which a state s can be modeled (cf. Fig. 1).

– The set-theoretic model is perhaps more intuitive. We consider a fixed set
Cell of memory cells. The value of a pointer variable z is modeled by an
element z ∈ Cell ∪ {nil}, where nil denotes the null value. If cells have
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Set-theoretic model

Set of cells Pointer variable z Pointer field n Real-valued field x

Cell z ∈ Cell ∪ {nil} n : Cell → Cell ∪ {nil} x : Cell → R

U z : U → B n : U2 → B x : U → R
Universe Unary predicate Binary predicate Real-valued function

Logical model

Fig. 1. Two models of a program state

a pointer-valued field n, the values of n-fields are modeled by a function
n : Cell → Cell ∪ {nil} that associates with each memory cell the value of
the corresponding field.

– [14] models a state using the tools of logic: the set of cells is replaced by a
universe U of individuals; the value of a program variable z is defined by
a unary predicate on U ; and the value of a field n is defined by a binary
predicate on U2. Integrity constraints are used to capture the fact that, for
instance, a unary predicate z that represents what program variable z points
to can have the value “true” for at most one memory cell [14].
A real-valued field x can be modeled by a real-valued function on U .

We use the term “predicate of arity n” for a Boolean function Un → B. A
predicate can also be seen as a relation belonging to ℘(Un).

We use Pn to denote the set of predicates symbols of arity n, and R to
denote the set of real-valued function symbols. With such notation, the concrete
state-space considered is:1

S = (U → B)|P1| × (U2 → B)|P2| × (U → R)|R| (1)

A concrete property in ℘(S) is thus a relation between functions.
Because U is of unbounded size, concrete properties belonging to C = ℘(S)

have to be abstracted. The idea behind canonical abstraction [14] is to partition
U into a finite set of equivalence classes U �, and to introduce an unknown value
1/2 (or top element) to the Boolean set, yielding T = {0, 1, 1/2}, so that a
predicate p : U → B is abstracted by an object p� : U � → T.

Example 1. In [14] and in Eqn. (1), the basic sets in use are the universeD1 = U ,
the set of Booleans D2 = B, and the set of reals D3 = R. The universe U is
partitioned using an equivalence relation /, resulting in U � = U/ /. We use
π : U → U � to denote the corresponding projection function. We then obtain a
Galois connection

℘(U) −−−→←−−−
α

γ
(U �)�⊥

1 Eqn. (1) is really the concrete state-space that one would have if the techniques of
[14] were combined with those of [8]. To simplify Eqn. (1), we have omitted nullary
predicates, which would be used to model Boolean-valued variables, and nullary
functions, which would be used to model real-valued variables.
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where (U �)�⊥ is the flat domain U � completed with top and bottom elements,
γ(⊥) = ∅, γ(,) = U , and γ(u�) = π−1(u�). Booleans are not abstracted, i.e.,
the domain ℘(B) is abstracted by itself. In most cases, we will not consider the
abstractions of reals. In the sequel, U � will implicitely denote (U �)�⊥. �

3 Classical Abstractions of Functions and Relations

We recall from [4] the classical abstractions of functions of signature D1 →
D2 and relations between elements of D1 and D2 that can be built from two
Galois connections ℘(D1) −−−→←−−−

α1

γ1
A1 and ℘(D2) −−−→←−−−

α2

γ2
A2. Our notation is mainly

taken from [4]. We also make some observations in Sec. 3.3 about exploiting the
interplay between functions and relations to obtain suitable abstractions.

We first describe two useful isomorphisms used in the sequel.

– For any set D and lattice L, we have (D → L) −−−−→←←−−−−
α

γ
(℘(D) ⊥,
−−→ L):

α(F )(X) =
⊔

d∈X

F (d) , γ(F �)(d) = F �({d})

This isomorphism allows to use directly the Galois connection ℘(D1) −−−→←−−−
α1

γ1

A1 to abstract the domain of functions D1 → D2.
– For any sets D1 and D2, we have the isomorphism ℘(D1 × D2) −−−−→←←−−−−

α

γ

℘∅,∪(℘(D1) × ℘(D2)), which allows to code relations on elements by rela-
tions on sets of elements:

α(R) =
{

(X1, X2)
∣∣∣∣∀d1 ∈ X1, ∃d2 ∈ X2 : (d1, d2) ∈ R
∀d2 ∈ X2, ∃d1 ∈ X1 : (d1, d2) ∈ R

}
γ(R�) = {(x, y) | ({x}, {y}) ∈ R�}

℘∅,∪(L1 × L2) denotes the set of relations R ⊆ L1 × L2 that satisfies
• (⊥, x2) ∈ R =⇒ x2 = ⊥, as well as the converse.
• (x1, x2) ∈ R ∧ (y1, y2) ∈ R =⇒ (x1 � y1, x2 � y2) ∈ R (this corresponds

to a kind of upward-closure).

3.1 Classical Abstraction of a Functional Space

Fig. 2(a) shows classical abstract domains for sets of functions and their re-
lationships. The first abstraction � consists in abstracting a set of functions
F ⊆ D1 → D2 by a single function F � : D1 → ℘(D2) (or, equivalently, by a
relation between D1 and D2):

α�(F )(d1) = {f(d1) | f ∈ F} , f ∈ γ�(F �) ⇔ ∀d1 : f(d1) ∈ F �(d1)

In words, α�(F ) collects, for each argument in D1, the set of its images by
the functions in F . Consequently, this abstraction loses the possible relationship
between f(d1) and f(d′1) that may hold for f ∈ F .
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℘(D1 → D2)

D1 → ℘(D2)
�

℘(D1)
⊥,
−−→ ℘(D2)

A1
⊥,
−−→ ℘(D2)

D1 → A2

�
℘(D1)

⊥,
−−→ A2

A1
⊥,
−−→ A2

�

δ
π

π δ

ϕ

φ

℘(D1 ×D2)
�

℘∅,∪(℘(D1)× ℘(D2))

℘∅,∪(A1 × A2) ℘(D1)× ℘(D2)

A1 ×A2

ρ

∨

�

(a) for sets of functions (b) for relations

L1 L2 means that L1  L2

L1 L2 means that L1 is the disjunctive completion of L2.

Fig. 2. Lattice of abstract domains for functions and relations

Example 2. A set of real-valued functions of signature U → R is abstracted with
α� by an element of U → ℘(R). Fig. 4 of Section 4 depicts concrete value A1,
which is abstracted by value D = α�(A1). The relationship f(u2) = f(u1) + 1
that holds in A1 is lost in D. �

One can then abstract the equivalent transformer F : ℘(D1)
⊥,
−−→ ℘(D2) with

a function F � : A1
⊥,
−−→ A2 by abstracting both the domain and the codomain:

αϕ(F ) = α2 ◦ F ◦ γ1 , γϕ(F ) = γ2 ◦ F � ◦ α1

One can also abstract separately the domain (abstraction δ) and the codomain
(pointwise abstraction π) to obtain two intermediate abstractions. The full com-
position of these Galois connections is the Galois connection φ = [�, ϕ] = [�, [δ, π]]
= [�, [π, δ]] between ℘(D1 → D2) and A1

⊥,
−−→ A2.
Let us take a closer look at the abstractions δ and π. Under δ, a function

F : D1 → ℘(D2) is abstracted by a function A1 → ℘(D2) as follows: the image
for an element a ∈ A1 is computed by unioning together the images of the
elements of D1 represented by a:

αδ(F )(a) =
⋃

α1(d)=a

F (d)

An application of this abstraction is illustrated in Fig. 4 (E = αδ(D)). Under
pointwise abstraction π, a function F : D1 → ℘(D2) is abstracted by representing
the images of F by their abstraction in A2: απ(F ) = α2 ◦ F .

Example 3. If we consider the basic Galois connections described in Example 1, a
set of unary predicates of signature U → B is abstracted with φ by an element of



192 B. Jeannet, D. Gopan, and T. Reps

(U �)�⊥
⊥,�−−−→ ℘(B). The fact that canonical abstraction [14] can represent exactly

both false and true values of predicates (i.e., it is conservative in both values)
can be understood if you see unary predicates as ordinary functions abstracted
this way. The same holds for binary predicates in U2 → B. �

Remark 1. In practice, the abstraction A1 of the domain D1 of functions is often
a flat lattice induced by a partitioning of D1.

Remark 2. If A1
⊥,�−−−→ A2 is to be implemented, each of its elements has to be

finitely representable. This implies that A2 should be finitely representable, and
A1 should be finite, as in Example 3; in this case A1

⊥,�−−−→ A2 / (A2)n, where n
is the size of the partition used to define A1.

It is not necessary to have an n+1st dimension to represent the image of ⊥A1 ,
which is ⊥A2 . When A1 is built as in Example 3, the image of ,A1 does not carry
any additional information, because γ1(

⊔
a1∈A1\{�A1}

) =
⋃

a1∈A1\{�A1}
γ1(a1) =

D1. However, when the latter property does not hold, one should introduce one
additional dimension to the abstract domain for the image of ,A1 .

3.2 Classical Abstraction of a Relation

A binary relation between elements belonging to D1 and D2, respectively, is
an element of ℘(D1 × D2). Fig. 2(b) shows classical abstractions for relations.
Roughly speaking, the right-hand side of Fig. 2(b) abstracts a relation between
concrete elements as a pair of sets, and then abstracts the pair of sets component-
wise.

The left-hand side of Fig. 2(b) abstracts a relation between concrete ele-
ments using a relation between abstract elements. The abstraction ℘∅,∪(℘(D1)×
℘(D2)) −−−→←−−−

αρ

γρ

℘∅,∪(A1 ×A2) is defined by:

αρ(R) = {(α1(X1), α2(X2)) | (X1, X2) ∈ R} (2)
γρ(R�) = {(X1, X2) | ∃(a1, a2) ∈ R� : X1 ⊆ γ1(a1) ∧X2 ⊆ γ2(a2)} (3)

℘∅,∪(A1 × A2) can also be obtained by disjunctive completion of A1 × A2. An
observation similar to Remark 1 holds when choosing A1 and A2 for building
℘∅,∪(A1 ×A2).

Those principles seem natural when D1 and D2 are simple sets without struc-
ture, but the notation may seem rather heavy. However, the power of these com-
binators for relations is that they can be used when, for instance, D1 and D2
are sets of functions that are in turn abstracted using the principles described
in Section 3.1.

Example 4. Considering the state-space S described in Equation (1), if we ab-
stract functions with φ and relations over functions with ρ, we obtain the Galois
connection

℘(S) −−→←−− ℘∅,�

((
U � → ℘(B)

)|P1| ×
(
(U �)2 → ℘(B)

)|P2| ×
(
(U � → ℘(R)

)|R|)
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Viewing a function as: D1 ×D2 → B D1 → D2 ℘(D1 ×D2)

Abstracting sets of functions with:

Resulting abstract domains: A1 × A2 → ℘(B) A1 → A2 A1 × A2

φ φ [ρ,∨]

  

Fig. 3. Different ways of coding a set of functions, and the resulting abstractions

(Codomains of functions are not abstracted here, and abstract values are not
finitely representable.) �

3.3 Exploiting Classical Abstractions

There is an interplay between the abstraction methods for functions and the
abstraction methods for relations, because functions can be coded as relations
and conversely. For instance, a function D1 → D2 can be coded as a relation
in ℘(D1 × D2). A relation in ℘(D1 × D2) can in turn be viewed as a Boolean
function D1 ×D2 → B. Each view induces a different abstract domain using the
abstractions of the previous sections, as shown in Fig. 3.

Example 5. Coming back to Example 3, if we view a data-structure field as a
function U → U rather than a binary relation U × U → B, as in [13,1], we will
abstract ℘(U → U) by U � → ℘(U �) / U � × U � → B.2

This abstraction is not conservative with respect to the value “true”. That
is, with this abstraction, “false” means “false”, but “true” means “maybe true”.
An equivalent abstraction can be obtained when starting from ℘(U2 → B) by
abstracting ℘(B) by conflating the values true and , [14, Section 8.2]. �

Generally speaking, abstraction methods for functions are more precise than
abstraction methods for relations, as illustrated by Fig. 3. If we want to abstract
relations in ℘(D1 ×D2), viewing them as Boolean functions D1 ×D2 → B and
abstracting them with A1 ×A2 → ℘(B) instead of ℘(A1 ×A2) allows to specify
that some pairs of elements are definitely related.

Of course, the most suitable coding does not depend only on the induced
abstraction, but also on the operations on functions (or relations) that are used
for specifying the fixpoint equations to be solved. For instance, both concrete and
abstract function application operations are defined in the most straightforward
way when viewing a function as an element in D1 → D2.

4 Relational Function-Abstraction

If we consider a set of functions of type f : U → R, and if we abstract it with
the technique of Section 3.1 using convex polyhedra [5] for abstracting ℘(R), we

2 Here the domain U is abstracted by U 
, and the codomain U by the more precise
disjunctive completion ℘(U 
).
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would obtain U � → Pol[1] / U � → Interval. That is, we would associate to each
abstract individual an interval. This is not what is proposed in [8], where an
abstract value is a convex polyhedron, where each dimension corresponds to an
abstract individual.

In this section, we formalize such an approach in more general terms; we
analyze carefully the different kinds of abstractions that are performed; and we
compare the approach to the classical approach described in Section 3.1.

4.1 Real-Valued Functions

To provide some intuition, we first instantiate the abstraction scheme for func-
tions f : U → R. The universe U is partitioned by a projection function
π : U → U �. The cardinality of U � is denoted by |U �| = n.

Our aim is the following: starting from the lattice ℘(U → R), we want to
abstract it by a lattice of the form ℘(U � → R), for which many relational ab-
stractions exist, instead of considering the lattice U � → ℘(R) obtained by the
classical technique, which is not relational at all.

The abstraction proposed in [8] can be decomposed as follows:

℘(U → R)
μ−−→ ℘(U � → ℘(R))

η−−→ ℘(U � → R) → Pol[n]
/ /

℘
(
℘(R)n

)
℘(Rn)

The two isomorphisms mentioned in the above equation will be used later to
encode functions as vectors: a function f ∈ (U � → D) / Dn can be seen as a
vector of elements of D by rewriting it as 〈f(u�

1), . . . , f(u�
n)〉.

Fig. 4 illustrates the three abstraction steps, which are defined in detail below.

1. ℘(U → R) −−−→←−−−
αμ

γμ

℘(U � → ℘(R)) is defined by

αμ({f}) = {〈X1, . . . , Xn〉 | Xi = f ◦ π−1(u�
i)} , αμ(F ) =

⋃
f∈F

αμ({f})

γμ({f �}) = {f | ∀u : f(u) ∈ f �(π(u))} , γμ(F �) =
⋃

f�∈F �

γμ({f �})

where f is lifted to sets in the expression f ◦ π−1. This Galois connection

can be seen as the composition ℘(U → R)
[�,δ]−−−→ U � → ℘(R) depicted in

Fig. 2(a) refined by a disjunctive completion. This explains the fact that γμ

preserves �.
Intuitively, this abstraction does not merge functions together; as illus-

trated by abstract value B1 in Fig. 4, it only merges the values f(u) and
f(u′) when u and u′ are projected to the same abstract individual u�. Be-
cause U � → ℘(R) is ordered, a value in ℘(U � → ℘(R)) is completely char-
acterized by its maximal elements with respect to the U � → ℘(R) ordering.
(In Fig. 4, we only show maximal elements.)
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2. ℘(U � → ℘(R)) −−−→←−−−
αη

γη

℘(U � → R)
/ /

℘(℘(R)n) ℘(Rn)

is somewhat subtle:

αη(F ) =
⋃

〈X1,...,Xn〉∈F

X1 × . . .×Xn (4)

γη(F �) = {〈X1, . . . , Xn〉 | X1 × . . .×Xn ⊆ F �} (5)

Note that in the right-hand-side lattice, ℘(U � → R), each dimension corre-
sponds to a real instead of a set of reals. The subtle point in Eqn. (5) is that
the set of vectors F � is undercovered by a union of Cartesian products.

3. ℘(Rn)
γPol← Pol[n] is the abstraction of sets of vectors by convex polyhedra (in

this particular case, because Pol[n] is not a complete lattice, the abstraction
must be formalized using a weaker relationship than Galois connection).
Other numerical lattices could be used in place of Pol[n].

To focus on the abstraction of the domain U , in the following discussion and
in Fig. 4 we ignore the abstraction of codomain ℘(R)—i.e., we assume that the
codomain is not abstracted. (Using the notation of Fig. 2(a), we are redefining
φ to be the abstraction [�, δ].)

Intuitively, the composition of abstractions 1. and 2. allows capturing rela-
tionships between the images of the different arguments of the functions, when
they belong to different equivalence classes. In contrast, with the abstraction φ
of Fig. 2(a), such relationships are lost (due to the abstraction �).

Example 6. In Fig. 4, the abstraction of concrete value A1 using relational
function-abstraction is abstract value C. C concretizes to concrete value A3.
Inspection of A3 reveals that abstract value C preserves from A1 the properties
f(u2) = f(u1) + 1 and ∀u ∈ {u3, u4} : f(u1) + 3 ≤ f(u) ≤ f(u1) + 4. However,
C loses the property of A1 that whenever f(u1) = 1, f(u3) = f(u4).

In contrast, by using the abstraction φ of Section 3.1, we obtain the abstract
(functional) value E, from which one can only deduce weaker properties, as shown
by its concretization A4. A3 is of cardinality 8, whereas A4 is of cardinality 36.

�

To study the loss of information induced by abstraction η (i.e., abstraction-
step 2. above), let us consider the expression γη ◦ αη:

γη ◦ αη(F ) =

⎧⎨⎩〈X1, . . . , Xn〉

∣∣∣∣∣∣ X1 × . . .×Xn ⊆
⋃

〈Y1,...,Yn〉∈F

Y1 × . . .× Yn

⎫⎬⎭
In words, this means that (γη ◦ αη)(F ) adds to F Cartesian products that un-
derapproximate unions of Cartesian products.

Example 7. In Fig. 4, we have B2 = (γη ◦αη) (B1). The information that when-
ever f(u1) = 1, f(u3) = f(u4) is lost. More generally, η will lose relational
information about f(u) and f(u′) when u and u′ are merged together. �
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U , U 
, and π : U → U 
 : U

u1

u2

u3

u4

u

1

u

2

u

34

U 


π

A1 A2 A3 A4
(3 functions) (6 functions) (8 functions) (36 functions)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u1 �→
u2 �→
u3 �→
u4 �→

⎡⎢⎢⎣
1
2
4
4

⎤⎥⎥⎦,
⎡⎢⎢⎣
1
2
5
5

⎤⎥⎥⎦,
⎡⎢⎢⎣

2
3
5
6

⎤⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
u1 �→
u2 �→
u3 �→
u4 �→

⎡⎢⎢⎣
1
2
4
4

⎤⎥⎥⎦,
⎡⎢⎢⎣

1
2
5
5

⎤⎥⎥⎦,
⎡⎢⎢⎣

2
3
x
y

⎤⎥⎥⎦
x,y∈{5,6}

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
u1 �→
u2 �→
u3 �→
u4 �→

⎡⎢⎢⎣
1
2
x
y

⎤⎥⎥⎦
x,y∈{4,5}

,

⎡⎢⎢⎣
2
3
x
y

⎤⎥⎥⎦
x,y∈{5,6}

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x∈{1,2}
y∈{2,3}⎡⎢⎢⎣

x
y
z
w

⎤⎥⎥⎦
z,w∈{4,5,6}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
℘(U → R)

B1 B2⎧⎪⎨⎪⎩
u


1 �→
u


2 �→
u


34 �→

⎡⎣{1}{2}
{4}

⎤⎦,
⎡⎣{1}{2}
{5}

⎤⎦,
⎡⎣ {2}{3}
{5, 6}

⎤⎦
⎫⎪⎬⎪⎭

⎧⎪⎨⎪⎩
u


1 �→
u


2 �→
u


34 �→

⎡⎣ {1}{2}
{4, 5}

⎤⎦,
⎡⎣ {2}{3}
{5, 6}

⎤⎦
⎫⎪⎬⎪⎭

℘(U 
 → ℘(R))

C⎧⎪⎨⎪⎩
u


1 �→
u


2 �→
u


34 �→

⎡⎣1
2
4

⎤⎦,

⎡⎣1
2
5

⎤⎦,

⎡⎣2
3
5

⎤⎦,

⎡⎣2
3
6

⎤⎦
⎫⎪⎬⎪⎭

℘(U 
 → R) Relational function-abstraction
D⎧⎪⎪⎪⎨⎪⎪⎪⎩

u1 �→
u2 �→
u3 �→
u4 �→

⎡⎢⎢⎣
{1, 2}
{2, 3}
{4, 5}
{4, 5, 6}

⎤⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭

U → ℘(R))

E⎧⎪⎨⎪⎩
u


1 �→
u


2 �→
u


34 �→

⎡⎣ {1, 2}
{2, 3}
{4, 5, 6}

⎤⎦
⎫⎪⎬⎪⎭

U 
 → ℘(R)) Standard abstraction

αμ

αη

α�

αδ

γφ

α∨

γμ γμ

γη

α�

Fig. 4. Different abstractions of the concrete set of functions A1 and the loss of infor-

mation induced by them (shown by concrete values A2, A3, and A4). Abstract value

C (whose concretization is A3) is the abstract value obtained with relational function-

abstraction Φ, whereas abstract value E (whose concretization is A4) is the abstract

value obtained by the abstraction φ of Section 3.1.
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4.2 Generalization

In this section, we generalize the results of Section 4.1 by considering the ab-
straction of functions of signature D1 → D2. We also analyze the effect of the
abstracting codomain D2.

Our assumptions are as follows: Suppose that we have a Galois connection
℘(D1) −−−→←−−−

α1

γ1
A1, where A1 is a finite lattice with |A1| = n. Actually, this as-

sumption is only needed for the third abstraction step of Def. 1. In addition,
suppose that for any k, we have a Galois connection ℘((D2)k) −−→←−− A2[k], where
A2[k] is a k-dimensional abstract domain. We use A2 to denote A2[1]. We also
assume that ∀k ≥ 1 : A2[k + 1] � A2[k] × A2[1]. If the inequality is actually
an equality, A2[k] = (A2)k is said to be not relational [10] (for instance, inter-
vals on reals). If the inequality is strict, A2[k] is relational (for instance, convex
polyhedra).

Definition 1 (Relational function-abstraction Φ). The relational function-
abstraction Φ is defined by the composition of the following three abstractions:

℘(D1 → D2)
μ−−→ ℘(A1

⊥,�−−−→ ℘(D2))
η−−→ ℘(A1\{⊥} → D2)

α2[|A1|]−−−−−−→ A2[|A1|]

where

1. ℘(D1 → D2) −−−−→←−−−−
αμ

γμ

℘(A1
⊥,�−−−→ ℘(D2)) is defined by

αμ(F ) =
⋃

f∈F

{f � | ∀a1 : f �(a1) = f(γ1(a1))} (6)

γμ(F �) =
⋃

f�∈F �

{f | ∀d1 : f(d1) ∈ f �(α1(d1))} (7)

2. ℘(A1
⊥,�−−−→ ℘(D2)) −−−−→←−−−−

αη

γη

℘(A1\{⊥} → D2) is defined by3

αη(F ) =
⋃

f∈F

{f � | ∀a1 : f �(a1) ∈ f(a1)} (8)

γη(F �) = {f | ∀f � ∈ (A1 → D2) :
(
∀a1, f

�(a1) ∈ f(a1)
)
⇒ f � ∈ F �} (9)

3. The last abstraction is the abstraction of sets of D2-valued vectors by A2[n].

Notice that if we drop the assumption thatA2 is finite, we still provide an original
method for abstracting ℘(D1 → D2) with ℘(A1\{⊥} → D2). We identify below
an important class of properties preserved by this abstraction, generalizing the
properties mentioned in Example 6.

3 We confess that Eqn. (9), which is derived from the definition of αη, is difficult to
understand. However, this formulation is more general than Eqn. (5); i.e. it can be
used when A1 is not finite.
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Theorem 1 (Relational properties preserved by the abstraction [μ, η]).
Let P1 ⊆ (D1)2 and P2 ⊆ (D2)2 be binary relations on D1 and D2, and let
Ψ[P1,P2] ∈ ℘(D1 → D2) be a property on functions defined by

Ψ[P1,P2] = {f : D1 → D2 | ∀(d1, d
′
1) ∈ P1, (f(d1), f(d′1)) ∈ P2}.

Assume that P1 is preserved by the abstraction ℘(D1) −−−→←−−−
α1

γ1
A1 as follows:

(d1, d
′
1) ∈ P1 ⇒ (γ1 ◦ α1)(d1) × (γ1 ◦ α1)(d′1) ⊆ P1.

Let F ⊆ Ψ[P1,P2]. Then (γ[μ,η] ◦ α[μ,η])(F ) ⊆ Ψ[P1,P2]; i.e., property Ψ[P1,P2] is
preserved by the abstraction [μ, η].

Example 8. Coming back to Example 6 and Fig. 4, let P1 = {(u1, u3), (u1, u4)}
and P2 = {(x, y) | x + 3 ≤ y ≤ x + 4}. Then the property Ψ[P1,P2] is ∀u ∈
{u3, u4} : f(u1)+3 ≤ f(u) ≤ f(u1)+4, which is satisfied by the set of functions
A1. Because P1 is preserved by the abstraction ℘(U) −−→←−− U �, and A3 is equal to
(γ[μ,η] ◦ α[μ,η])(A1), A3 also satisfies Ψ[P1,P2].

The above theorem is generalizable to k-ary relations P1 and P2 for k ≤ |A1|.
Also, the theorem implies that if, in addition, the relation P2 is preserved by the
abstraction α2[|A1|], then the property Ψ[P1,P2] is preserved by the full relational
function-abstractionΦ. This is the case in the example above if one uses octagons,
for instance.

Proof. Let P �
1 = {(a1, a

′
1) ∈ (A1)2 | ∃d1 ∈ γ1(a1), ∃d′1 ∈ γ1(a′1) : (d1, d

′
1) ∈ P1}.

Notice that, due to the assumption on P1, P1 is fully defined by P �
1 . Then

αμ(Ψ[P1,P2]) =

{
f : A1 → ℘(D2)

∣∣∣∣ ∀(a1, a
′
1) ∈ P 


1 ,∀(d2, d
′
2) ∈ f(a1)× f(a′

1) :
(d2, d

′
2) ∈ P2

}
α[μ,η](Ψ[P1,P2]) = {f : A1 → D2 | ∀(a1, a

′
1) ∈ P 


1 : (f(a1), f(a′
1)) ∈ P2}

γη ◦ α[μ,η](Ψ[P1,P2]) =

⎧⎪⎪⎨⎪⎪⎩f : A1 → ℘(D2)

∣∣∣∣∣∣∣∣
∀f 
 : A1 → D2 :(

∀a1, f

(a1) ∈ f(a1)

)
⇒(

∀(a1, a
′
1) ∈ P 


1 : (f 
(a1), f

(a′

1)) ∈ P2

)
⎫⎪⎪⎬⎪⎪⎭

We now show that γη◦α[μ,η](Ψ[P1,P2]) ⊆ αμ(Ψ[P1,P2]). Let f ∈ γη ◦α[μ,η](Ψ[P1,P2]),
and (a1, a

′
1) ∈ P �

1 . We have that for any f � : A1 → D2 such that ∀a, f �(a) ∈ f(a),
then (f �(a1), f �(a′1)) ∈ P2. It follows that ∀(d2, d

′
2) ∈ f(a1) × f(a′1)) : (d2, d

′
2) ∈

P2, which proves that f ∈ αμ(Ψ[P1,P2]). It is easy to show that γμ ◦αμ(Ψ[P1,P2]) ⊆
Ψ[P1,P2]. Now, because F ⊆ Ψ[P1,P2] and (γ[μ,η] ◦ α[μ,η]) is monotone, the desired
relationship holds:

(γ[μ,η] ◦ α[μ,η])(F ) ⊆ (γ[μ,η] ◦ α[μ,η])(Ψ[P1,P2]) ⊆ Ψ[P1,P2]. �

Example 9. It is instructive to illustrate relational function-abstraction Φ for
the case of Boolean functions in U → B, assuming that the codomain (B) is not
abstracted. We obtain ℘(U � → B) / ℘(Bn); i.e., an abstract value is a set of
bit-vectors, or, equivalently, a propositional formula. If we use the abstraction
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φ, we obtain instead U � → ℘(B) / ℘(B)n; i.e., an abstract value is a trivector
or a single monomial. This means that in this specific case the abstraction Φ =
[μ, η] reduces to the disjunctive completion μ of the abstraction [�, δ] = φ. In
particular, the abstraction η does not lose any information. This property is not
true in general, as shown by Example 7. �

We now compare the relational function-abstraction Φ defined above with
φ, the traditional approach to abstracting sets of functions, and its disjunctive
completion.

Theorem 2. We have the following relationships:

℘(A1
⊥,�−−−→ A2) � A2[|A1|] � (A1

⊥,�−−−→ A2)

The first inequality reduces to an equality iff A2[|A1|] is disjunctive. The second
inequality reduces to an equality iff A2[|A1|] is not relational.

Proof. Let n = |A1| be the cardinality of A1. We have the isomorphism (A1
⊥,�−−−→

A2) / (A2)n. By hypothesis, ∀k ≥ 1 : A2[k] � (A2)k.
As a consequence, A2[n] � (A2)n, which corresponds to the second inequality

of the theorem. The equality and strict-inequality cases follow from the definition
of a relational lattice.

We denote by A2[n] −−−→←−−−
α

γ
(A2)n the Galois connection corresponding to the

inequality A2[n] � (A2)n. We now define the Galois connection ℘((A2)n) −−−→←−−−
α′

γ′

A2[n] with

α′(X) = �{γ(a) | a ∈ X} and γ′(Y ) = {a ∈ (A2)n | γ(a) ' Y }

One can easily check that this defines a Galois connection. This proves the first
inequality of the theorem. The equality and strict-inequality cases follow from
the definition of a disjunctive lattice (cf. Section 2.1) and the fact that ℘(A1

⊥,�−−−→
A2) is trivially disjunctive. �

Implementability Issues. An abstract lattice, even if not implementable, is
interesting in so far as it may be used as a semantic domain in an abstrac-
tion chain. Here, adopting a pragmatic standpoint, we are interested in knowing
when the three abstract domains ℘(A1

⊥,�−−−→ A2), A2[|A1|], and (A1
⊥,�−−−→ A2)

can be used in practice, i.e., when their elements are finitely representable. For
the sake of discussion, assume that A1

⊥,�−−−→ A2 is finitely representable by an
argument/value table (e.g., A1 is finite and A2 is finitely representable). The do-

main ℘(A1
⊥,�−−−→ A2) is finitely representable only if A2 is a finite lattice, or an

infinite lattice that does not contain infinite subsets of incomparable elements (or
anti-chains). In contrast, the relational function-abstraction A2[|A1|] is always
finitely representable under our assumptions. In particular,
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– A2[|A1|] is finitely representable when A2 is a finite-height lattice. In this
case it is also finite-height.

– A2[|A1|] is finitely representable even when A2 is not a finite-height lattice,
and can be used in practice, provided that A2 is equipped with a widening
operator.

For instance, if D2 = R, A2[n] can be the relational lattice of octagons [11]
or convex polyhedra [5]. If D2 = Σ∗ is a language over an alphabet Σ, A2[n]
can be the relational lattice Reg(Σn) of regular languages over vectors of letters
equipped with a suitable widening operator. Neither of these lattices are finite-
height.

The disussion above assumed that only argument/value tabular representa-
tions are available for functions in A1 → A2. Of course, in particular cases, more
efficient representations may be available that exploit the underlying structure
of the domain and/or codomain. For instance, regular transducers are a very
effective representation of (a subset of) functions on Σ∗ → Σ∗, which has both
infinite domain and codomain.

4.3 Abstracting Relations over Functions with Relational
Function-Abstraction

The strength of relational lattices is their ability to abstract a powerset of Carte-
sian products more precisely than the abstractions that were discussed in Sec-
tion 3.2, as illustrated by the following example:

Example 10. Suppose that we want to abstract relations between vectors (i.e.,
the concrete domain is C = ℘(Rn×Rm)), where sets of vectors ℘(Rn) and ℘(Rm)
are abstracted by convex polyhedra. The abstraction ρ of Fig. 2(b) results in the
abstract domain ℘(Pol[n] × Pol[m]), which is not finitely representable. The ab-
straction [ρ,∨] results in Pol[n] × Pol[m], which does not capture relationships
between pairs very precisely. It is well-known that the most precise way to ab-
stract C is to use the relational lattice Pol[n+m]. �

A similar phenomenon arises when abstracting relations over functions with
relational function-abstraction. If we want to abstract a relation in ℘

(
(D1 →

D2)×(D1 → D2)
)

(i.e., a relation between functions that share the same domain
and codomain), we should use A2[2 · |A1|]. In other words, we can exploit the
set-isomorphism (D1 → D2)2 = D1 → (D2)2, and then apply relational function-
abstraction:

℘
(
(D1 → D2) × (D1 → D2)

)
= ℘

(
D1 → (D2)2

)
−−→←−− A2[2 · |A1|]

Example 11. Coming back to Eqn. (1), let us illustrate the principles described
in this paper to obtain a finitely representable abstract domain for ℘(S):

℘(S) = ℘
(
(U → B)|P1| × (U2 → B)|P2| × (U → R)|R|

)
(10)

=
(
(U → B)|P1| × (U2 → B)|P2|

)
→ ℘

(
U → R|R|

)
(11)

−−→←−−
((
U � → ℘(B)

)|P1| ×
(
(U �)2 → ℘(B)

)|P2|
) ⊥,�−−−→ Pol[ |R| · |U �| ] (12)
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The function in Eqn. (11) is abstracted using the function-abstraction ϕ of Fig. 2,
the abstraction [ρ,∨] being used for the domain and the relational function-
abstraction Φ being used for the codomain. Intuitively, we associate a convex
polyhedra to each vector of abstract Boolean functions. �

5 Related Work and Conclusions

We formalized in this paper a generic abstract-interpretation combinator, which
abstracts sets of functions D1 → D2 in a relational way, assuming the existence
of abstractions A1 and A2[n] for ℘(D1) and ℘((D2)n), respectively. Viewed from
another angle, we have shown how to give a new semantics—in terms of sets
of functions—to some previously known abstract lattices, such as octagons and
convex polyhedra. This was achieved by developing nonstandard concretization
functions for such domains. As an intermediate step, we formalized the abstrac-
tion of sets of functions D1 → D2 by sets of functions A1 → D2 and identified a
class of properties preserved by this abstraction.

In terms of precision, the abstract domains that we obtain from relational
function-abstraction lie in-between the classical function-abstraction A1 → A2
and its disjunctive completion. The important point is that the abstract domains
obtained from relational function-abstraction are finitely representable in more
general circumstances than the disjunctive completions of classical function-
abstractions. In fact, they are finitely representable in the same circumstances as
classical function-abstraction (i.e., when A1 → A2 is finitely representable with
a tabulated representation).

We focused in this paper on the compositional construction of abstract do-
mains and ignored algorithmic issues, as well as the choice of basic abstract do-
mains. The relational function-abstraction described in the paper has actually
been implemented in [8] in the shape-analysis framework of [14], for abstracting
real-valued fields of dynamically allocated data structures. More recently, [9] has
addressed the problem of abstracting arrays of reals, viewed as functions of sig-
nature [0..n] → R. Both [8] and [9] address the difficult problem of abstracting
the domain U of a function space in a suitable way. It appears than using a fixed
partition of U is useless; instead, [8] and [9] support dynamic partitioning of U .

We compared our solution to the classical solutions described in [4] and their
refinement with the disjunctive-completion method. We review here other re-
finement methods. The tensor product of [12] combines in a relational way
two different abstract domains L1 and L2 that abstract the same concrete
domain C; it is denoted L1 ⊗ L2. The tensor product satifies the equation
℘(S1) ⊗ ℘(S2) = ℘(S1 × S2) for powersets, and extends such an operation to
more general lattices. The reduced cardinal power [2] and reduced relative power
[6] combine L1 and L2 in a different way, by considering lattices of functions
L1 → L2, which captures dependencies, or in a more logical setting, implica-
tions [7]. In the particular case where L1 = L2 = L, this refinement allows to
capture autodependencies, which is in general incomparable with the disjunctive
completion of L. We did not fully explore whether the above refinements can
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be used to generate relational function-abstraction Φ from classical abstractions
for functions. However, we believe that even if it were possible, the construction
would be more complicated than our approach:

– the functional structure of concrete states would not be exploited;
– the“syntactic”structure of the obtained abstract lattice (L1⊗L2 or L1 → L2)

would be quite different from A2[n], even if an isomorphism exists.
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Abstract. We present our experience of combining, in a realistic set-
ting, a static analyzer with a statistical analysis. This combination is
in order to reduce the inevitable false alarms from a domain-unaware
static analyzer. Our analyzer named Airac(Array Index Range Analyzer
for C) collects all the true buffer-overrun points in ANSI C programs.
The soundness is maintained, and the analysis’ cost-accuracy improve-
ment is achieved by techniques that static analysis community has long
accumulated. For still inevitable false alarms (e.g. Airac raised 970 buffer-
overrun alarms in commercial C programs of 5.3 million lines and 737
among the 970 alarms were false), which are always apt for particular
C programs, we use a statistical post analysis. The statistical analysis,
given the analysis results (alarms), sifts out probable false alarms and
prioritizes true alarms. It estimates the probability of each alarm being
true. The probabilities are used in two ways: 1) only the alarms that
have true-alarm probabilities higher than a threshold are reported to the
user; 2) the alarms are sorted by the probability before reporting, so that
the user can check highly probable errors first. In our experiments with
Linux kernel sources, if we set the risk of missing true error is about 3
times greater than false alarming, 74.83% of false alarms could be fil-
tered; only 15.17% of false alarms were mixed up until the user observes
50% of the true alarms.

1 Introduction

When one company’s software quality assurance department started working
with us to build a static analyzer that automatically detect buffer overruns1 in
� This work was supported by Brain Korea 21 Project of Korea Ministry of Education

and Human Resources, by IT Leading R&D Support Project of Korea Ministry of
Information and Communication, by Korea Research Foundation grant KRF-2003-
041-D00528, and by National Security Research Institute.

1 Buffer overruns happen when an index value is out of the target buffer size. They are
common bugs in C programs and are main sources of security vulnerability. From
1/2[2] to 2/3[1] of security holes are due to buffer overruns.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 203–217, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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their C softwares, they challenged us with three goals: they hoped the analyzer
1) to be sound, detecting all possible buffer overruns; 2) to have a reasonable
cost-accuracy balance; and 3) not to assume a particular set of programming
style about the input C programs because they handle a wide spectrum of
C softwares to be embedded in various electronic devices. Building a realistic
C buffer-overrun analyzer that satisfies all the three requirements was a hard
challenge. In the literature, we have seen impressive static analyzers yet their
application targets seem to allow them to drop one of the three requirements
[7,4,13,9]. The major challenge is how to reduce the number of inevitable false
alarms from a realistic, sound static analyzer that cannot assume a particular
style for the input C programs.

In respond to the challenge, we decided to try the following path: design a
sound static analysis whose accuracy is stretched to a point where the analy-
sis cost remains acceptable, then use a statistical post analysis in order to sift
out alarms that are probable to be false. The analyzer named Airac(Array In-
dex Range Analyzer for C) collects all the true buffer-overrun points in ANSI
C programs. The soundness is maintained, and the analysis’ cost-accuracy bal-
ance is stroke with techniques that static analysis community has long accumu-
lated. Now for still inevitable false alarms, which are always apt for particular C
programs, we use a statistical post analysis. The statistical analysis, given the
analysis results (alarms), sifts out some alarms that are probable to be false. It
estimates the probability of each alarm being true. The probabilities are used
in two ways: 1) only the alarms that have true-alarm probabilities higher than
a threshold are reported to the user. The threshold is determined by the user-
provided ratio of the risk of silencing true alarms to that of false alarming. 2)
By sorting the alarms to be reported in descending order, it allows the user to
examine highly probable alarms first.

Airac targets the full set of ANSI C constructs as indexing expressions: from
simple arithmetics to arbitrary expressions involving function calls, pointer arith-
metics, and aliases. Airac handles buffers that are dynamically allocated consec-
utive memory cells of dynamic lengths as well as static arrays. “buffer overrun”
happens when an index value denotes an address outside the target buffer area.
Striking a cost-accuracy balance of Airac is done by the following techniques: for
accuracy improvement we use narrowing after widening, flow-sensitivity, poly-
variance, context pruning (an instance of trace partitioning[11]) and static loop
unrolling. For cost reduction, we used stack obviation (removal of the stack from
our abstract state), selective memory join (point-wise join for abstract memory
is applied only to the changed entries), and wait-at-join (a work-list iteration
does not continue to pass a join point until all threads arrive). For commercial
C programs of 5.3 million LOC, Airac raises 970 buffer-overrun alarms, among
which 233 alarms are true. For some parts of the Linux kernel of 18,760 LOC,
Airac raises 26 alarms, among which 16 are true.

The statistical method aiming to sift out false alarms is designed by the
Bayesian data analysis framework[8], implemented by the Monte Carlo method
[12], and parameterized by a simple decision theory[3]. We define a conditional
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probability formula for an alarm to be true given the set of symptoms observed
for the alarm. This probability formula has parameter probabilities, whose dis-
tributions are determined by Bayesian analysis from the “training set” (or “past
experience knowledge”). The parameter probabilities are obtained by the Monte
Carlo method. The training set, which consists of alarms and their conditional
probabilities of having symptoms given that they are either true or false, is
obtained by running our analyzer for a set of Linux kernel, and textbook C
programs and manually classifying the alarms into either true or false. Having
computed the probability of each alarm being true, we report only the alarms
that have the true-alarm probabilities higher than a threshold. The threshold
is determined by the user-provided ratio of the risk of silencing true alarms to
that of raising false alarms. The ratio, for each alarm, determines the expected
risks of silencing it or alarming it. The action with a smaller risk is chosen. This
statistical engine’s effectiveness is promising. If the user set the risk of missing
true error is 3 times greater than false alarming, then 74.83% of false alarms
could be sifted out. Meanwhile, by ranking the alarms by higher probabilities
and examining from the top, the user encounters only 15.17% of false alarms
until he or she reaches 50% of the true ones.

2 Airac, the Analyzer

Airac is an abstract interpreter. To find out all possible buffer overruns in pro-
grams, Airac considers all states which may occur during programs executions. It
computes a sound approximation of dynamic program states occurring at each
program point and reports possible buffer overruns by examining the approxi-
mate states.

A concrete array block is abstracted as a triple that consists of abstract base
address, offset, and size. Abstract base address is one for each memory allocation
site in C programs. Abstract offset and size are integer intervals. For example,
for the following C code:

int p[5];
int *q = p + 3;
*(q+3) = 1;

The pointer p’s abstract value is 〈l, [0, 0], [5, 5]〉 where name l is the abstract
base address for the declared array. [0, 0] and [5, 5] are respectively the cur-
rent offset and size as intervals. After the pointer arithmetic, q is initialized as
〈l, [3, 3], [5, 5]〉; then the value of q+3 is 〈l, [6, 6], [5, 5]〉 whose offset exceeds its
size, where our analyzer raises a buffer overrun alarm.

2.1 Semantics and Its Abstraction

C program’s collecting semantics is defined as the set of transition sequences
of machine states. A machine state is a tuple of a program point, data stack,
environment, memory, and control stack (dump). A C program’s semantics is the
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least fixed point of the following function that transforms the machine transition
traces:

F : 2Machineω

→ 2Machineω

F(X) = {m0} ∪ {t ↪→ mn+1 | t let= · · · ↪→ mn ∈ X, mn ↪→ mn+1}

where Machine = Edge × State, the program points Edge = Lab × Lab are the
set of edges between two program labels, and m0 is the initial machine state.
Labels are uniquely assigned to all the expressions and commands of the input
C program.

We approximate the collecting semantics by T ∈ Edge → Ŝtate that maps
each program point to an abstract state

Ŝtate = Ŝtack × M̂em × D̂ump

The abstract state at each program point approximates all the states occurring
at the point in all the concrete transition sequences. The map is defined as the
least fixed point of the following function:

F̂ : (Edge → Ŝtate) → (Edge → Ŝtate)
F̂(T ) = λ〈l, l′〉.s where 〈l,

⊔
{s′|p ∈ pred(l), T 〈p, l〉 = s′}〉 ↪→# 〈l′, s〉

where pred(l) is the set of predecessors of label l in the transition sequences and
↪→# is an abstraction of the concrete transition relation ↪→.

2.2 Fixpoint Algorithm

The fixpoint algorithm is a chaotic working set algorithm. The working set con-
sists of labels of expressions whose abstract state has to be re-computed. When
a computed machine state for T 〈l, l′〉 is changed, we add l′ to the working set,
to re-compute the states of the edges from l′. The working set is a stack, hence
each abstract transition step follows the program’s execution flow in a depth-first
order of the flow graph. When the next program points to evaluate are multiple
(as when we compute conditional expressions), those two points are grouped to-
gether and pushed as a single unit to the working set stack. This grouping adds
a flavor of breadth-first traversal of the flow graph. The working set algorithm
selectively applies the widening and narrowing operations at the heads of flow
cycles.

2.3 Accuracy Improvement

We use some techniques to improve the analysis accuracy: 1) we use widening and
narrowing for interval domain[5]; 2) we use destructive assignment to achieve flow
sensitive analysis except for within cyclic call chains; 3) we use context pruning
to confine interval values; 4) we use function-inlining for polyvariant analysis;
5) we use static loop unrolling. Though each technique is independent of others,
using all the techniques in combination results in a synergy for improving the
analysis accuracy.
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Table 1. Experiment result of cost reduction techniques

Version Timea(s) Speed-Up Timeb(s) Speed-Up

none 18317.55 0% 16253.18 0%

selective join 16055.58 12.35% 14286.72 12.1%

wait-at-join 19317.67 -5.45% 13153.43 19.98%

stack obviation 3717.06 79.71% 3247.79 81.02%

all 3461.57 81.11% 2320.58 85.73%

a the sum of analysis time for 43 Linux kernel programs.
b same as a except one program that wait-at-join has bad influ-

ence upon work list algorithm.

2.4 Cost Reduction

We used three techniques for cost reduction of Airac. They are stack obviation,
selective join and wait-at-join. From experiment results on parts of the Linux
kernel, we could observe that stack obviation is a very powerful technique for
cost reduction. The wait-at-join technique works well for most programs with
some exceptions.

Stack Obviation. Comparing(') and joining(�) abstract states, which take
most of the analysis time, involves applying the operations to the abstract stack
component. If the abstract stack component is always reflected in other com-
ponents of the machine states then we can skip applying the operations to the
stack component.

Before analysis begins, Airac transforms the input program to have all stack
variations of each transition be reflected on the memory. For example, conditional
expression

(x > 0) ? 1 : 2

is transformed to

{ var tmp; if (x > 0) tmp = 1; else tmp = 2; tmp; }

Note that the original expression’s branches are to push different values to the
stack component. Hence estimating the final value must join the stack compo-
nents from the branches. On the other hand, for the transformed expression, we
don’t have to consider joining the stack components because the state difference
of the two branches are to be reflected by the memory component because of
the assignments to the temporary variable tmp. This transformation costs only
one more location in the abstract memory, while it avoids scanning the abstract
stack component. This technique reduced our analysis time by 79.71%.

Selective Memory Join. Airac keeps track of information that indicates
changed entries in abstract memory. Join operation is applied only to those
changed values. Comparing with pre-state, Airac reduces size of the information
by removing unchanged entries. This technique, which was also mentioned in [4],
reduced our analysis time by 12.35%.
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Wait-at-Join. For program points where many control-flows join, Airac delays
the computation for current point until all computations for the incoming edges
are done. By this, Airac can reduce redundant computations after the junction
point. However, it is very costly to decide whether all threads have reached
current point or not. So Airac chooses a simple strategy which waits until the
working stack becomes empty. This technique is very effective for C programs
that have a many junction points, e.g., large switch statements. This technique
reduced our analysis time by 19.98% for most programs.

2.5 Airac’s Cost, Accuracy and Scalability

We implemented Airac using nML2 and analyzed various softwares from toy
C programs to serious ones such as GNU softwares, Linux kernel sources and
commercial softwares. All these commercial softwares are embedded softwares3.
Airac found some fatal bugs in these softwares which were under development.
Table 2.5 shows the result of our experiment.

“#Lines” is the number of lines of the C source files before preprocessing
them. “Time” is the user CPU time in seconds. “#Buffers” is the number of
buffers that may be overrun. “#Accesses” is the number of buffer-access expres-
sions that may overrun. “#Real Bugs” is the number of buffer accesses that are
confirmed to be able to cause real overruns. Two graphs in Figure 1 show Airac’s
scalability behavior. X axis is the size (number of lines) of the input program
to analyze and Y axis is the analysis time in seconds. (b) is a microscopic view
of (a)’s lower left corner. Experiment was done on a Linux system with a single
Pentium4 3.2GHz CPU and 4GB of RAM.
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Fig. 1. Airac’s scalability

Airac is scalable enough to analyze real world softwares. Airac can analyze
programs of up to about 10,000 lines at once. GNU softwares such as grep, gzip
and sed were analyzed as a whole. And these analyses took less than an hour to
finish.
2 Korean dialect of ML programming language. http://ropas.snu.ac.kr/n
3 Their real names cannot be disclosed due to the contract.
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Table 2. Analysis speed and accuracy of Airac

Time #Airac Alarms #Real
Software #Lines

(sec) #Buffers #Accesses bugs

GNU S/W tar-1.13 20,258 576.79s 24 66 1
bison-1.875 25,907 809.35s 28 50 0
sed-4.0.8 6,053 1154.32s 7 29 0
gzip-1.2.4a 7,327 794.31s 9 17 0
grep-2.5.1 9,297 603.58s 2 2 0

Linux kernel vmax302.c 246 0.28s 1 1 1
version xfrm user.c 1,201 45.07s 2 2 1
2.6.4 usb-midi.c 2,206 91.32s 2 10 4

atkbd.c 811 1.99s 2 2 2
keyboard.c 1,256 3.36s 2 2 1
af inet.c 1,273 1.17s 1 1 1
eata pio.c 984 7.50s 3 3 1
cdc-acm.c 849 3.98s 1 3 3
ip6 output.c 1,110 1.53s 0 0 0
mptbase.c 6,158 0.79s 1 1 1
aty128fb.c 2,466 0.32s 1 1 1

Commercial software 1 109,878 4525.02s 16 64 1
Softwares software 2 17,885 463.60s 8 18 9

software 3 3,254 5.94s 17 57 0
software 4 29,972 457.38s 10 140 112
software 5 19,263 8912.86s 7 100 3
software 6 36,731 43.65s 11 48 4
software 7 138,305 38328.88s 34 147 47
software 8 233,536 4285.13s 28 162 6
software 9 47,268 2458.03s 25 273 1

3 Statistical Taming of False Alarms

Reducing the number of false alarms is the key issue in sound analyses. Sound
analyzers that cannot assume a particular style for the input programs can of-
ten have a high false-alarm rate. Controlling the abstraction level of the analysis
will work but not very effectively. It is clear that by using less abstract domains
we can distinguish more concrete values, but practically, relying solely on this
approach will soon hit an unacceptable cost. Furthermore, if the analyzer must
handle unlimited set of input programs, there can always be some programs that
fool the analyzer. User annotation in source codes can be a powerful method [7]
yet is always less desirable than being fully automatic. And, that the analyzer
blindly repair its accuracy based on the annotations makes the approach vulner-
able to annotation bugs. Heuristics can be applied to classify alarms into true
and false ones[10]. However, unless heuristics have a strong basis, we can hardly
be confident with their classifications. Heuristics can be used even during the
analysis itself and may tempt us to give up the soundness and claim that such
sacrifice is inevitable in order to increase the analysis precision. But, if possi-
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ble with a comparable price, it is always better to know all possible bugs than
knowing only some of them.

Without giving up its soundness, Airac handles the inevitable false alarms
by using statistical post analysis built on top of a firm theoretical basis. The
statistical analysis, given the analysis results (alarms), estimates the probability
of each alarm being true. Only the alarms that have true-alarm probabilities
higher than a threshold are reported to the user. Though the statistical analysis
phase still has the risk of sifting out true alarms, it can reduce the risk at the
user’s desire. Because the underlying analyzer is sound, if the user is willing to,
(s)he can receive a report that contain all the real alarms.

3.1 Bayesian Analysis

We use Bayesian statistics[8] to compute the probability of an alarm being true.
Let ⊕ denote the event an alarm raised is true, and let 2 denote it is false.
Si denotes that a single symptom is observed in the raised alarm and S is a
vector of such symptoms. The set of symptoms that we used for Airac will be
presented in 3.4. P (E) denotes the probability of an event E, and P (A | B) is
the conditional probability of A given B. We call the probability P (⊕ | S) of an
alarm being true given its symptoms as the trueness of the alarm.

Bayes’ theorem is used to predict the probability of a new event from prior
knowledge. To set up such knowledge base we classify alarms into true and
false manually and count occurrences of each symptom in true and false alarms
respectively. From this knowledge we are able to compute the trueness of new
alarms using their symptoms. Using Bayes’ theorem, the trueness P (⊕ | S) can
be computed as the following:

P (⊕ | S) =
P (S | ⊕)P (⊕)

P (S)
=

P (S | ⊕)P (⊕)
P (S | ⊕)P (⊕) + P (S | 2)P (2)

.

By assuming each symptom in S occurs independently under each class, we have

P (S | c) =
∏

Si∈S

P (Si | c) where c ∈ {⊕,2}.

Here, P (Si | ⊕) is estimated by ψ̂ using Bayesian analysis of our empirical
data. We assume prior distributions are uniform on [0, 1]. Let p be the estimator
of the ratio P (⊕) of true alarms to all raised alarms. Each P (Si | ⊕) and P (Si |
2) is estimated by θi and ηi respectively. Assuming that each Si are independent
in each class, the posterior distribution of P (⊕ | S) taking our empirical data
into account is established as following:

ψ̂j =
(
∏

Si∈S θi) · p
(
∏

Si∈S θi) · p+ (
∏

Si∈S ηi) · (1 − p)
(1)

where p, θi and ηi have beta distributions as

p ∼ Beta(N(⊕) + 1, n−N(⊕) + 1)
θi ∼ Beta(N(⊕, Si) + 1, N(⊕,¬Si) + 1)
ηi ∼ Beta(N(2, Si) + 1, N(2,¬Si) + 1)
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and N(E) is the number of events E counted from our empirical data. Now the
estimation of p, θi,ηi are done by Monte Carlo method. We randomly generate
pi, θij , ηij values N times from the beta distributions and compute N instances
of ψj . Then the 100(1− 2α)% credible set of ψ̂ is (ψjα·N , ψj(1−α)·N ) where ψj1 <

ψj2 < · · · < ψjN . We take the upper bound ψj(1−α)·N for ψ̂, since the maximal
probability being true is our concern as seen later.

3.2 Sifting Out False Alarms

We can use the estimated trueness for sifting out false alarms systematically.
To decide whether we should sift out an alarm or not, we need a threshold
to compare with the estimated ψ̂ with 100(1 − 2α)% credibility. To choose a
reasonable threshold, the user supplies two parameters defining the magnitude
of risk: rm for missing true alarms and rf for reporting false alarms. Only their
ratio, not their absolute values matter.

⊕ 2
risk of reporting 0 rf

risk of not reporting rm 0

Given an alarm whose trueness is ψ, the expectation of risk when we raise an
alarm is rf · (1 − ψ), and rm · ψ when we don’t. To minimize the risk, we must
choose the smaller side. Hence, the threshold of trueness to report the alarm can
be chosen as:

rm · ψ ≥ rf · (1 − ψ) ⇐⇒ ψ ≥ rf

rm + rf
.

If the trueness of an alarm can be greater than or equal to such threshold, i.e.
if the upper bound of trueness ψ̂ is greater than such threshold, then the alarm
should be raised with 100(1−2α)% credibility. For example, the user can supply
rm = 3, rf = 1 if he or she believes that not alarming for true errors have risk
3 times greater than raising false alarms. Then the threshold for the probability
being true to report becomes 1/4 = 0.25 and whenever the estimated trueness
of an alarm is greater than 0.25, we should report it.

We have done some experiments with our samples of programs and alarms.
Some parts of the Linux kernel and programs that demonstrate classical al-
gorithms were used for the experiment. For a single experiment, samples were
first divided into learning set and testing set. 50% of the alarms were randomly
selected as learning set, and the others for testing set. Each symptom in the
learning set were counted according to whether the alarm was true or false.
With these pre-calculated numbers, ψ̂ for each alarm in the testing set was es-
timated using the 90% credible set constructed by Monte Carlo method. Using
Equation (1), we computed 2000 ψj ’s from 2000 p’s and θi’s and ηi’s, all ran-
domly generated from their distributions. We can view alarms in the testing set
as alarms from new programs, since their symptoms didn’t contribute to the
numbers used for the estimation of ψ̂.
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Fig. 2. Frequency of trueness in true and false alarms. False alarms are counted in

negative numbers. 74.83% of false alarms have trueness less than 0.25.

The histogram in Figure 2 was constructed from the data generated by re-
peating the experiment 15 times. Dark bars indicate true alarms and lighter ones
are false. 74.83% (≈ 1504/2010) of false alarms have trueness less than 0.25, so
that they can be sifted out. For users who consider the risk of missing true error
is 3 times greater than false alarming, almost three quarters of false alarms could
be sifted out, or preferably just deferred.

For a sound analysis, it is considered much riskier to miss a true alarm than
to report a false one, so it is recommended to choose the two risk values rm 3 rf

to keep more soundness. For the experiment result Figure 2 presents, 31.40% (≈
146/465) of true alarms had trueness less than or equal to 0.25, and were also
sifted out with false alarms. Although we do not miss any true alarm by lowering
the threshold down to 0.07 (rm/rf ≈ 13) for this case, it does not guarantee any
kind of soundness in general. However, to obtain a sound analysis result, one
can always set rf = 0, i.e. allowing none of the alarms to be sifted out.

3.3 Ranking False Alarms

We can rank alarms by their trueness to give effective results to the user. This
ranking can be used both with and without the previous sifting-out technique.
By ordering alarms, we let the user handle more probable errors first. Although
the trueness of true alarms are scattered over 0 through 1, we can see that most
of the false alarms have small trueness. Hence, sorting by trueness and showing
in decreasing order will effectively give true alarms first to the user. Figure 3
shows the cumulative percentage of observed alarms starting from trueness 1 and
down using the same data in Figure 2. When the user inspects alarms having
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Fig. 3. Cumulative percentage of observed alarms starting from trueness 1 and down.

Only 15.17% of false alarms get mixed up until 50% of the trues are observed.

high trueness first, only 15.17% (=305/2010) of false alarms gets mixed up until
50% of the true alarms are observed, where the trueness equals 0.3357.

3.4 Symptoms

We use both syntactic and semantic symptoms that may influence the analysis
accuracy. The symptoms can be classified into three types: 1) syntactic context of
the alarmed expressions; 2) general factors that influence the analysis accuracy;
and 3) properties of the analysis results(estimated array indices).

Syntactic Context. Syntactic symptoms describe the syntactic context around
the alarmed expressions. For a given alarmed expression we gather the following
symptoms from the function body that contains the alarmed expression:

AfterLoop AfterBranch
AfterReturn InNestedLoopBodyN
InNestedBranchBodyN InLoopCond
InBranchCond InFunParam
InNestedFunParam InRightOfAnd

AfterLoop and AfterBranch are respectively turned on when loops and branches
appear before the alarmed expressions. These symptoms are for false alarms;
loop and branch can decrease analysis accuracy due to the join operations at
their flow-join points. AfterReturn is on when a return statement precedes the
alarmed expression. This symptom is for false alarms; while the return state-
ments in the middle of function body are often for exiting on erroneous cases
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static analysis can blindly propagate such erroneous cases to independent yet
later array access expressions. InNestedLoopBodyN and InNestedBranchBodyN
are for true alarms because programmer are easy to mistake inside nested loops
and branches. Since we found that simple nested structures were common in both
true and false alarms we refined symptoms by their nesting depth N = 1, 2, 3, or
>3. InLoopCond and InBranchCond are on when alarms are inside the condition
expressions, and InFuncParam and InNestedFuncParam are on when alarms are
inside function’s actual argument expressions. These four symptoms are for true
alarms because it is likely that expressions in those contexts are more carefully
checked by programmers than expressions in other contexts. InRightOfAnd is for
alarms in the right hand side of the logical-and && operator. This symptom is
for false alarms because C’s short-circuit semantics can skip executing the &&
operator’s rhs expressions.

General Accuracy Factors. Symptoms that can be detected only during the
analysis can be useful indicators. Following symptoms are collected during the
fixed point iterations:

JoinN Pruned
Narrowed PassedVal InStructure

The number of program points where the join operation occurs affects the anal-
ysis accuracy. This situation is captured by symptom JoinN . N is the number of
such program points before an alarmed expression. N ranges over {1, . . . , 10, >
10}. The context pruning and the narrowing operations too are influencing fac-
tors for the analysis accuracy. Pruned and Narrowed are on when those operations
are successful. PassedValue is on when array index values are passed as argu-
ments, and InStructure is on when the target arrays are pointed to from some
data structures (e.g. record fields). These two symptoms are for true alarms
because such complicated use of the target arrays and indices are likely to be
confused.

Properties of Estimated Array Indices. The analysis results themselves
are used as symptoms too:

TopIndex HalfInfiniteIndex FiniteIndex

If an estimated array index is the whole integer interval it is likely to be a false
alarm (TopIndex). HalfInfiniteIndex is on when an index interval is half-infinite
like [1,∞]. Conversely, array indices with exact boundaries(FiniteIndex) strongly
suggest true alarms.

4 Related Work

Reducing false alarms has always been a critical problem in static analysis. Ex-
isting tools have addressed the false alarm problem by 1) giving up the soundness
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of analysis (e.g. SPLINT[14], ARCHER[13]); 2) depending on user annotations
(e.g. CSSV[7], SPLINT[14]); 3) limiting the target programs (e.g. ASTRÉE[4,6]);
4) heuristically classifying the alarms into either true ones or false ones (e.g. Z-
ranking[10]).

Airac differs from existing tools in that it uses Bayesian statistical analysis
to classify the alarms by their probabilities being true. Our Bayesian approach
can be orthogonally used with the user annotation approach. As of the analysis
itself, it is sound, does not rely on user annotations, covers the full set of ANSI
C constructs, and scale up to several 10K LOC.

CSSV[7] and SPLINT[14] rely on user annotations to reduce the false alarms.
With imprecise or null user annotation, these tools have rapidly increasing false-
alarm rate. ARCHER[13] is not sound, having a low detection-rate for bugs.
ASTRÉE[4,6] is a static program analyzer aiming at verifying the absence of
run time errors in a limited number of avionics controller programs in C. This
analyzer reports zero or very few false alarm. It excludes several C features
(e.g. union types, dynamic memory allocation, and unbounded recursive function
calls).

The one most directly related to our Bayesian approach is Z-ranking[10]. It
ranks alarms by heuristics. It first partitions successes (e.g. safe buffer accesses)
and failures (e.g. buffer overrun alarms) into groups. In each group, using a three
heuristics, it computes “z-score” for each alarm being true. Alarms in decreasing
order of z-scores are presented to the user. This approach has two drawbacks.
The heuristics are only about the relative numbers of successes and failures in
each group and they do not mention about any systematic method on how to
partition the alarms. Thus if the partitioning happen to group alarms about
which the heuristics fail to reflect the reality, Z-ranking can be ineffective. In
comparison, our statistical approach is more robust. Our method has no arbitrary
parameter like the “partitioning” in Z-ranking; it’s competence does not rely on
a particular factor of the method because the set of symptoms, which correspond
to our method’s heuristics, are extensive covering both the analyzer’s internal
behaviors and the input programs’ syntactic characteristics; and lastly, thanks
to the Bayesian framework’s learning capability, our method’s competence will
improve as the analysis results are accumulated.

5 Conclusion and Discussion

We present that combining, in a realistic setting, a domain-unaware static ana-
lyzer with a Bayesian analysis can be a viable approach to handle false alarms.
Our analyzer Airac, which collects all the true buffer-overrun points in ANSI C
programs, is sound and its cost-accuracy improvement is achieved by techniques
that static analysis community has long accumulated. For still inevitable false
alarms we design a Bayesian post analysis. The statistical analysis, given the
analysis results (alarms), estimates the probability of each alarm being true.
The probabilities are used to sift out probable false alarms and prioritize true
alarms. Only the alarms that have trueness higher than a threshold are reported
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to the user, and the alarms are sorted by the probability before reporting, so that
the user can check highly probable errors first. In our experiments with Linux
kernel sources and some textbook programs, if the user set the risk of missing
true error is about 3 times greater than false alarming, 74.83% of false alarms
could be filtered; and only 15.17% of false alarms were mixed up until the user
observes 50% of the true alarms.

The Bayesian analysis’ competence heavily depends on how we define symp-
toms. Since the inference framework is known to work well, better symptoms and
feasible size of pre-classified alarms is the key of this approach. We think promis-
ing symptoms are tightly coupled with analysis’ weakness and/or its preciseness,
and some fair insight into the analysis is required to define them. However, since
general symptoms, such as syntactic ones, are tend to reflect the programming
style, and such patterns are well practiced within organizations, we believe local
construction and use of the knowledge base of such simple symptoms will still
be effective. Furthermore, we see this approach easily adaptable to possibly any
kind of static analysis.

Another approach to handling false alarms is to equip the analyzer with all
possible techniques for accuracy improvement and let the user choose a right
combination of the techniques for her/his programs to analyze. The library of
techniques must be extensive enough to specialize the analyzer for as wide spec-
trum of the input programs as possible. This approach lets the user decide how
to control false alarms, while our Bayesian approach lets the analysis designer
decide by choosing the symptoms based on the knowledge about the weakness
and strength of his/her analyzer. We see no reason we cannot combine the two
approaches.

Acknowledgements. We thank Jaeyong Lee for helping us design our Bayesian
analysis, Hakjoo Oh and Yikwon Hwang for collecting and identifying false alarm
cases, and anonymous referees for helpful comments.
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David Monniaux, and Xavier Rival. The astrée analyzer. In M. Sagiv, editor,
European Symposium on Programming (ESOP’05), volume 3444 of Lecture Notes
in Computer Science, pages 21–30. Springer-Verlag, 2005.

7. Nurit Dor, Michael Rodeh, and Mooly Sagiv. Cssv: towards a realistic tool for
statically detecting all buffer overflows in c. In PLDI ’03: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and implementation,
pages 155–167. ACM Press, 2003.

8. Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian
Data Analysis. Text in Statistical Science. Chapman & Hall/CRC, second edition
edition, 2004.

9. David Hovemeyer and William Pugh. Finding bugs is easy. SIGPLAN Not.,
39(12):92–106, 2004.

10. Ted Kremenek and Dawson Engler. Z-ranking: Using statistical analysis to counter
the impact of static analysis approximations. In Radhia Cousot, editor, SAS ’03:
Proceedings of the 10th Annual International Static Analysis Symposium, volume
2694 of Lecture Notes in Computer Science, pages 295–315. Springer, 2003.

11. Laurent Mauborgne and Xavier Rival. Trace partitioning in abstract interpreta-
tion based static analyzers. In M. Sagiv, editor, European Symposium on Program-
ming (ESOP’05), volume 3444 of Lecture Notes in Computer Science, pages 5–20.
Springer-Verlag, 2005.

12. N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the American
Statistical Association, 44(247):335–341, September 1949.

13. Yichen Xie, Andy Chou, and Dawson Engler. Archer: using symbolic, path-
sensitive analysis to detect memory access errors. In ESEC/FSE-11: Proceedings
of the 9th European software engineering conference held jointly with 11th ACM
SIGSOFT international symposium on Foundations of software engineering, pages
327–336. ACM Press, 2003.

14. Misha Zitser, Richard Lippmann, and Tim Leek. Testing static analysis tools
using exploitable buffer overflows from open source code. In SIGSOFT ’04/FSE-
12: Proceedings of the 12th ACM SIGSOFT twelfth international symposium on
Foundations of software engineering, pages 97–106. ACM Press, 2004.



Banshee: A Scalable Constraint-Based

Analysis Toolkit�

John Kodumal1 and Alex Aiken2

1 EECS Department, University of California, Berkeley
2 Computer Science Department, Stanford University

Abstract. We introduce Banshee, a toolkit for constructing constraint-
based analyses. Banshee’s novel features include a code generator for
creating customized constraint resolution engines, incremental analysis
based on backtracking, and fast persistence. These features make Ban-
shee useful as a foundation for production program analyses.

1 Introduction

Program analyses that are simultaneously scalable, accurate, and efficient re-
main expensive to develop. One approach to lowering implementation cost is to
express the analysis using constraints. Constraints separate analysis specification
(constraint generation) from analysis implementation (constraint resolution). By
exploiting this separation, designers can benefit from existing algorithms for
constraint resolution. This separation helps, but leaves several problems unad-
dressed. A generic constraint resolution implementation with no knowledge of
the client may pay a large performance penalty for generality. For example, the
fastest hand-written version of Andersen’s analysis [12] is much faster than the
fastest version built using a generic toolkit [2]. Furthermore, real build systems
require separate analysis to fit with separate compilation. Small edits to projects
are the norm; reanalyzing an entire project for each small change is unrealistic.

We have built Banshee, a constraint-based analysis toolkit that addresses
these problems [14]. Banshee succeeds Bane, our first generation toolkit for
constraint-based program analysis [2]. Banshee inherits several features from
Bane, particularly support for mixed constraints, which allow several constraint
formalisms to be combined in one application (Section 2). Banshee also provides
a number of innovations over Bane that make it more useful and easier to use:

– We use a code generator to specialize the constraint back-end for each pro-
gram analysis (Section 3). The analysis designer describes a set of constructor
signatures in a specification file, which Banshee compiles into a specialized
constraint resolution engine. Specialization allows checking a host of correct-
ness conditions statically. Software maintenance also improves: specialization
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allows the designer to modify the specification without wholesale changes to
the handwritten part of the analysis. Finally, Banshee is truly modular;
new constraint formalisms (or sorts) can be added without changing exist-
ing sorts.

– We have added support for a limited form of incremental analysis via back-
tracking, which allows constraint systems1 to be rolled back to any previous
state (Section 4). Backtracking can be used to analyze large projects incre-
mentally: when a source file is modified, we roll back the constraint system to
the state just before the analysis of that file. By choosing the order in which
files are analyzed to exploit locality among file edits, we show experimentally
that backtracking is very effective in avoiding reanalysis of files.

– We have added support for efficient serialization and deserialization of con-
straint systems (Section 5). The ability to save and load constraint systems is
important for integrating Banshee-derived analysis into real build processes
as well as for supporting incremental analysis. This feature is nontrivial, es-
pecially in conjunction with backtracking; our solution exploits Banshee’s
use of explicit regions for memory management.

– We have written Banshee from the ground up, implementing all important
optimizations in Bane, while the code generation framework has enabled us
to add a host of engineering and algorithmic improvements. In a case study,
we show how Banshee’s specification mechanism allows various points-to
analyses to be easily expressed (Section 6) while the performance is nearly
100 times faster than Bane on some standard benchmarks (Section 7).

Banshee has reached the point of being a productive tool for developing exper-
imental and production-quality program analyses. As evidence, we cite several
Banshee applications. A Banshee-based polyvariant binding-time analysis for
partial evaluation of graphics programs has been used in production at a major
effects studio [19,20]. Banshee has been used as part of a software updateability
analysis tool [27]. A Banshee-based type inference system for Prolog has been
developed [23]. Also, for two years a Banshee pointer analysis was used as a
prototype global alias analysis in a development branch of the gcc compiler.

2 Mixed Constraints

Banshee is built on mixed constraints, which allow multiple constraint sorts in
one application. A sort s is a tuple (Vs, Cs, Os, Rs) where Vs is a set of variables,
Cs is a set of constructors, Os is a set of operations, and Rs is a set of constraint
relations. Each n-ary constructor cs ∈ Cs and operation ops ∈ Os has a signature
ι1 . . . ιn → s where ιi is either si or si for sorts si. Overlined arguments in a sig-
nature are contravariant; all other arguments are covariant. A n-ary constructor
cs is pure if the sort of each of its arguments is s. Otherwise, cs is mixed. For

1 Note that Banshee’s solvers are all online, so existing constraints are maintained in
a partially solved form as new constraints are added.
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C ∧ {X ⊆Set X} → C C ∧ {c(. . .) ⊆Set d(. . .)} → inconsistent
C ∧ {eSet ⊆Set 1} → C C ∧ {c(. . .) ⊆Set 0} → inconsistent
C ∧ {0 ⊆Set eSet} → C C ∧ {1 ⊆Set c(. . .)} → inconsistent

C ∧ {1 ⊆Set 0} → inconsistent
C ∧ {c(es1 , . . . , esn) ⊆Set c(e′s1 , . . . , e′sn)} →

C ∧
∧

i

{
{esi ⊆si e′si} c covariant in i

{e′si ⊆si esi} c contravariant in i

Fig. 1. Constraint resolution for the Set sort

a sort s, a set of variables, constructors, and operations defines a language of
s-expressions es:

es ::=
| v v ∈ Vs

| cs(es1 , . . . , esn
) cs with signature ι1 . . . ιn → s

and ιi is si or si

| ops(es1 , . . . , esn
) ops with signature ι1 . . . ιn → s

and ιi is si or si

Constraints between expressions are written e1s rs e2s where rs is a constraint
relation (rs ∈ Rs). Each sort s has two distinguished constraint relations: an
inclusion relation (denoted ⊆s ) and a unification relation (denoted =s ). A
constraint system C is a finite conjunction of constraints.

To fix ideas, we introduce two Banshee sorts and informally explain their
semantics. A formal presentation of the semantics of mixed constraints is given
in [8]. We leave the set of constructors Cs unspecified in each example, as this
set parameterizes the constraint language and is application-specific.

Example 1. The Set sort is the tuple: (VSet, CSet, {∪,∩, 0, 1}, {⊆,=}).

Here VSet is a set of set-valued variables, ∪,∩, ⊆, and = are the standard set
operations, 0 is the empty set, and 1 is the universal set. Each pure Set expression
denotes a set of ground terms : a constant or a constructor cSet(t1, . . . , tn) where
each ti is a ground term. A subset of the resolution rules for the Set sort is shown
in Figure 1; Banshee implements these as left-to-right rewrite rules.

Example 2. The Term sort is the tuple: (VTerm, CTerm, {0, 1}, {≤,=}).

Here VTerm is a set of term-valued variables, and = and ≤ are unification and
conditional unification [25], respectively. The meaning of a pure Term expression
is, as expected, a constant or a constructor cTerm(t1, . . . , tn) where ti are terms.
A subset of the resolution rules for the Term sort is shown in Figure 2.2

A system of mixed constraints defines a directed graph where nodes are
expressions and edges are atomic constraints between expressions. A constraint
2 We use “term” to mean both a sort and ground terms (trees) built by constructor

application. The intended meaning should be clear from context.
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C ∧ {X =Term X} → C

C ∧ {c(es1 , . . . , esn) =Term c(e′s1 , . . . , e′sn)} → C ∧
∧

i{esi =si e′si}
C ∧ {eTerm ≤ e′Term} → C ∧ {eTerm = e′Term} if eTerm is not 0

C if eTerm is 0
C ∧ {c(. . .) =Term d(. . .)} → inconsistent

Fig. 2. Constraint resolution for the Term sort

is atomic if the left- or right-hand side is a variable. To solve the constraints,
the constraint graph is closed under the resolution rules for each sort as well as
a transitive closure rule.

3 Specialization

This section describes the compilation strategy used in Banshee. We omit the
low-level details, which are straightforward, and focus on explaining the advan-
tages of our approach.

To use Banshee, the analysis designer writes a specification file defining the
constructor signatures for the analysis. Consider a constructor fun modeling a
function type in a unification-based type inference system with an additional set
component to track the function’s latent effect, in the style of a type and effect
system. The signature is:

fun : Term ∗ Term ∗ Set → Term

which is specified in Banshee as follows (see Section 6 for more explanation):

data l_type : term = fun of l_type * l_type * effect
and effect : set

In Bane, this signature can be declared at run-time, even during constraint
resolution. Bane is an interpreter for a language of constructors and resolution
rules, and as such it has the overhead of an interpreter. For example, to apply
the constructor fun, Bane checks at run-time that there are the right number
of arguments of the correct sorts. There is also interpretive overhead in con-
straint resolution. Consider implementing the rule for constraints between two
fun expressions:

C ∧ {fun(eTerm1 , eTerm2 , eSet) =Term fun(e′Term1
, e′Term2

, e′Set)} →
C ∧ {eTerm1 =Term e′Term1

} ∧ {eTerm2 =Term e′Term2
} ∧ {eSet =Set e

′
Set}

To implement this rule, Bane uses the signature to choose the correct con-
straint relation and the directionality for each component. Because this work
is done dynamically, both require either run-time tests or dynamic dispatch to
implement.
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From experience we have learned that analyses rely on a small, fixed number
of constructors that can be specified statically. Banshee uses static signatures to
implement customized versions of the constructors and the constraint resolution
rules, which allows us to eliminate many kinds of dynamic checks statically.
For example, consider again the signature of the fun constructor, now declared
statically in Banshee. From this signature, Banshee generates a C function
with the following prototype:

l_type fun(l_type e0, l_type e1, effect e2)

Notice that the dynamic arity and sort checks are no longer necessary—the
C type system guarantees that calls to this function have the correct number of
arguments (the arity check) and that the types of any actuals match the formal
arguments (the sort checks). Similarly, Banshee can statically discharge the
dynamic checks in resolution rules discussed above.

One of the most important advantages of Banshee specifications is that they
make program analyses easier to debug and maintain. After writing a Banshee
specification, the analysis designer’s main task is to write C code to traverse ab-
stract syntax, calling functions from the generated interface to build expressions,
generate constraints, and extract solutions. This task is typically straightforward,
as there should be a tight correspondence between type judgments and the Ban-
shee code to implement them. Continuing with the type and effect example, we
might wish to implement the following rule for function application:

Γ # e1 : τ1; ε1 Γ # e2 : τ2; ε2
τ1 = τ2 →ε α α, ε fresh
Γ # e1 e2 : α; ε1 ∪ ε2 ∪ ε

(App)

Assuming a typical set of AST definitions, the corresponding Banshee code
to implement this rule is3:

struct type_and_effect analyze(env gamma, ast_node n) {
if (is_app_node(n)) {
l_type tau1, tau2, alpha;
effect epsilon1, epsilon2, epsilon;
(tau1, epsilon1) = analyze(gamma,n->e1);
(tau2, epsilon2) = analyze(gamma,n->e2);
alpha = l_type_fresh();
epsilon = effect_fresh();
l_type_unify(tau1, fun(tau2,alpha,epsilon));
return (alpha, effect_union([epsilon1;epsilon2;epsilon]));

}
...

}

3 We use a little syntactic sugar for pairs and lists in C to avoid showing the extra
type declarations.
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Top-level Induced
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7 (4,6), (1,8)

8 (5,6)

(a) (b) (c)

Fig. 3. (a) Constraints. (b) Constraint graph. (c) Edge dependency list

This code is representative of the “handwritten” part of a Banshee analysis.
Banshee’s code generator makes the handwritten part clean: there is a close
correspondence between clauses in the type rules and the Banshee code to
implement them.

4 Incremental Analysis

Incremental analysis is important in large projects where it is necessary to main-
tain a global analysis in the face of small edits. In this section we describe Ban-
shee’s support for a form of incremental analysis via backtracking, a mechanism
that is efficient, simple to implement, and applicable to a wide variety of program
analysis systems besides Banshee.

We assume constraint additions, constraint deletions, and queries (testing
whether the constraints satisfy some fact) are arbitrarily interleaved. Additions
and queries are handled by on-line solving; the trick is handling deletions.

Consider adding constraints (1)-(3) in Figure 3(a) to an initially empty con-
straint system. Constraints (2)-(3) cause constraint (4) to be added (by transitive
closure). We say (1)-(3) are top-level constraints (added by the user, solid lines
in the constraint graph in Figure 3(b)) and (4) is an induced constraint (added
by the closure rules, dashed lines in Figure 3(b)).

At this point, if we delete constraint (2), then constraint (4) must be deleted
as well, as it would no longer be included in the closed constraint graph. We
say constraint(4) depends on constraints (2) and (3). The key to incremental
analysis is tracking such dependency information.

A straightforward way to track precise dependency information is to explicitly
maintain a list of constraints on which each induced constraint depends. For
example, adding constraint (5) adds edge (4) again, so the entry (1,5) must be
included in (4)’s dependency list. This approach is costly in space, because an
induced constraint often is added multiple times [28]. Figures 3(b) and (c) show
the closed constraint graph and edge dependencies after constraint (6) and its
induced constraints are added to the graph.

Besides the space cost, another major concern is the engineering effort re-
quired to support fine-grained incrementality. To our knowledge, there is no

.
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general, practical incremental algorithm for maintaining arbitrary data struc-
tures [7]. Adding ad-hoc support for incremental updates to each Banshee sort
is daunting, as the algorithms are highly optimized. For example, our set con-
straint solver uses a union-find algorithm to implement partial online cycle elim-
ination [9]. Adding incremental support to union-find alone is not easy—in fact,
some published solutions are incorrect [10].

Instead of computing precise dependencies, we use backtracking, which is
based on an approximation: each induced constraint depends on all constraints
introduced earlier. Thus, to delete constraint c, we delete c and all induced
constraints added after c. Because this notion of dependency is approximate, we
must solve the resulting constraint system to rediscover induced constraints that
should not have been deleted.

Backtracking is implemented by time stamping constraints. Deleting con-
straint i is done by scanning all constraints (edges), deleting any induced con-
straint with a timestamp greater than i, and solving. Consider again the example
in Figure 3, and take a constraint’s number to be its timestamp. We see that
deleting constraint (6) also deletes constraints (7) and (8), but because both (7)
and (8) only depend on (6), backtracking is as precise as tracking edge dependen-
cies in this case. Going further and also deleting constraint (3), however, deletes
induced constraint (4), which is rediscovered through the transitive path (1,5)
when the resulting system is solved. While backtracking can overestimate the set
of deleted constraints and incur extra work in rediscovering induced constraints,
it has practical advantages over computing edge dependencies. Backtracking uses
a linear scan of the constraint graph’s edges, while the precise incremental al-
gorithm is linear in the size of edge dependency lists, which may be quadratic
in the number of graph edges. The storage overhead of backtracking is just a
timestamp per edge, while edge dependency lists raise the worst case storage for
an n-node graph from O(n2) to O(n3).

We have also devised a new data type called a tracked reference that adds
efficient backtracking support to general data structures. This abstraction sim-
plified the task of incorporating backtracking into Banshee, especially in the
presence of optimizations like cycle elimination and projection merging [9,28].
A tracked reference is a mutable reference that maintains a repository of its old
versions. Each tracked reference is tied to a clock; each tick of the clock check-
points the reference’s state. When the clock is rolled back, the previous state
is restored. Rolling back is a destructive operation. Implementing tracked refer-
ences is simple: it suffices to maintain a stack of the references’ old contents. A
backtracking operation pops entries off the stack until the last clock tick. Ap-
pendix A includes a compilable O’Caml implementation of tracked references.
We have implemented backtracking by incorporating tracked references system-
atically into each Banshee data structure. Interestingly, we do not pay any
cost for this factoring. For example, applying tracked references to a standard
union-find algorithm yields an algorithm equivalent to a well-known algorithm
for union-find with backtracking [29].
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The basic approach to adding backtracking to a static analysis is as follows.
Given a fully analyzed program and a program edit, we backtrack to the first
constraint that changed as a result of the edit4 and re-analyze the program from
that point forward. For projects using standard version control systems, it is
natural to use file granularity for changes. An interactive development environ-
ment may provide granularity, and Banshee itself can backtrack at constraint
level granularity. Thus, we maintain a stack of analyzed files. If a file is modified,
we pop the stack to that file, backtrack, and re-analyze all popped files.

Files are pushed back on to the stack in the order they are (re-)analyzed,
but we have the flexibility to choose this order. We believe there is locality in
program modifications: developers work on one or a few files at a time, and
new code is more likely to be modified than old, stable code. When reanalyzing
files, the order of files on the stack is preserved except that the modified file is
analyzed last, thus placing it at the top of the stack, reflecting the belief that it is
most likely to be the next file modified. As long as there is locality among edits,
edited files will on average be close to the top of the stack under this strategy.

5 Persistence

We briefly explain our approach to making Banshee’s constraint systems persis-
tent. Persistence is useful when incorporating incremental analyses into standard
build processes. We require persistence (rather than a feature to save and load
in some simpler format) as we must reconstruct the representation of our data
structures to support online constraint solving and backtracking.

Persistence is achieved by adding serialization and deserialization to the
region-based memory management library used by Banshee [11]. Constraint
systems are saved by serializing a collection of regions, and loaded by deserial-
izing regions and updating pointer values stored in those regions. Initially, we
implemented serialization using a standard pointer tracing approach, but found
this strategy to be very slow because pointer tracing has poor spatial locality.
Region-based serialization writes sequential pages of memory to disk, which is
orders of magnitude faster. To handle deserialization, we associate an update
function with each region, which is called on each object in the region to update
any pointer-valued fields. With region-based serialization, we are able to serialize
a 170 MB constraint graph in 2.4 seconds vs. 30 seconds to serialize the same
graph by tracing pointers.

6 Case Study: Points-to Analysis

We continue with realistic examples derived from points-to analyses formulated
in Banshee, showing how Banshee can be used to explore different design
points and prototype variations of a given program analysis. In the first three
examples, we refine the degree of subtyping used in the points-to analysis; much
4 Here we also remove top-level constraints that may have changed due to the edit.



226 J. Kodumal and A. Aiken

Γ (x) = ref(�x,X�x ,X �x)

Γ � x : ref(�x,X�x ,X �x)
(Var)

Γ � e : τ

Γ � &e : ref(0, τ, 1)
(Addr)

Γ � e : τ τ ⊆ ref(1, T , 0)

Γ � *e : T
(Deref)

Γ � e1 : τ1 Γ � e2 : τ2
τ1 ⊆ ref(1, 1, T 1) τ2 ⊆ ref(1, T2, 0)

T2 ⊆ T1

Γ � e1 = e2 : τ2
(Assign)

Fig. 4. Constraint generation for Andersen’s analysis

research on points-to analysis has focused on this issue [5,24,25]. In the fourth
example, we extend points-to analysis to receiver class analysis in an object-
oriented language with explicit pointer operations (e.g. C++). This analysis
computes the function call graph on the fly instead of using a pre-computed call
graph obtained from a coarser analysis (e.g., class hierarchy analysis).

6.1 Andersen’s Analysis

Andersen’s points-to analysis constructs a points-to graph from a set of abstract
memory locations {�1, . . . , �n} and set variables X�1 , . . . ,X�n . Intuitively, a ref-
erence is an object with an abstract location and methods get : void → X�x and
set : X�x → void, where X�x represents the points-to set of the location. Up-
dating the location corresponds to applying the set function to the new value.
Dereferencing a location corresponds to applying the get function. References
are modeled by a constructor ref with three fields: a constant �x representing
the abstract location, a covariant field X�x representing the get function, and a
contravariant field X �x representing the set function.

Figure 4 shows a subset of the inference rules for Andersen’s analysis for
C programs. The type judgments assign a set expression to each program ex-
pression, possibly generating some side constraints. To avoid having separate
rules for l-values and r-values, each type judgment infers a set denoting an l-
value. Hence, the set expression in the conclusion of (Var) denotes the location
of program variable x, rather than its contents.

In Banshee, Andersen’s analysis is specified as follows:

specification andersen : ANDERSEN =
spec
data location : set
data T : set = ref of +location * +T * -T

end

We outline Banshee’s specification syntax, which is inspired by ML recursive
data type declarations. Each data declaration defines a disjoint alphabet of con-
structors. For example, the declaration data location : set defines location
to be a collection of constructors of sort Set. The location alphabet serves only
as a source of fresh constants, modeling the statically unknown set of abstract lo-
cations. While static constructor signatures are an important idea in Banshee,
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dynamic sets of constants are useful in many analyses. But all constants have a
fixed, known signature, so generating them dynamically does not interfere with
any of our static optimizations.

Each data declaration may be followed by an optional list of |-separated
constructor declarations defining the (statically fixed) set of n-ary constructors.
In this example, we define a single ternary constructor ref, which uses variance
annotations. A signature element prefixed with + (resp. -) denotes a covariant
(resp. contravariant) field. By default, fields are nonvariant.

6.2 Steensgaard’s Analysis and One Level Flow

Andersen’s analysis has cubic time complexity. Steensgaard’s coarser, near-linear
time analysis is implemented using the Term sort. The Andersen’s specification is
modified by eliminating the duplicate T field in the ref constructor and removing
variance annotations:

specification steensgaard : STEENSGAARD =
spec
data location : set
data T : term = ref of location * T

end

Experience shows the lack of subtyping in Steensgaard’s analysis leads to
many spurious points-to relations. Another proposal is to use one level of sub-
typing. Restricting subtyping to one level is nearly as accurate as full subtyping
[5]. Altering the specification to support the new analysis is again simple:

specification olf : OLF
spec
data location : set
data T : set = ref of +location * T

end

Recall the location field models a set of abstract locations. Making this field
covariant allows subtyping at the top level. However, the T field is nonvariant,
which restricts subtyping to the top level: at lower levels, the engine performs
unification. An alternative explanation is that this signature implements the
following sound rule for subtyping with updateable references [1]:

�x ⊆ �y X�x = X�y

ref(�x,X�x) ≤ ref(�y,X�y)
(sub-ref)

6.3 Receiver Class Analysis

Now that we have explored subtyping in points-to analysis, we focus on adding
new capabilities to the analysis. We use the points-to information as the basis
of a receiver class analysis (RCA) for an object-oriented language with explicit
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pointer operations. RCA approximates the set of classes to which each expression
in the program can evaluate. In a language like C++, the analysis must also use
points-to information to track the effects of pointer operations.

In addition to modeling object initialization and pointer operations, our anal-
ysis must accurately simulate the effects of method dispatch. To accomplish
these tasks, new constructors representing class definitions and dispatch tables
are added to our points-to analysis specification. To simplify the example, we
assume that methods have a single formal argument in addition to the implicit
this parameter. Here is the Banshee specification for this example, using An-
dersen’s analysis as our base points-to analysis:

specification rca : RCA =
spec
data location : set
data T : set = ref of +location * +T * -T

| class of +location * +dispatch
and dispatch : row(method)
and method : set = fun of -T * -T * +T

end

The class constructor contains a location field containing the name of the
class and a dispatch field representing the dispatch table for that class’ ob-
jects. Notice that dispatch uses a new sort, Row [8]. We first explain how this
abstraction is intended to work before describing the Row sort.

An object’s dispatch table is modeled as a collection of methods (each in
turn modeled by the method constructor) indexed by name. Given a dispatch
expression like e.foo(), our analysis should compute the set of classes that e
may evaluate to, search each class’s dispatch table for a method named foo, and
execute it (abstractly) if it exists. Methods are modeled by the fun constructor.
Methods model the implicit this parameter with the first T field, the single
formal parameter by the second T field, and a single return value by the third T
field. Recall that the function constructor must be contravariant in its domain
and covariant in its range, as reflected in the specification.

For this approach to work, our dispatch table abstraction must map between
method names and method terms, which we do using the Row sort. A Row of
base sort s (written Row(s)) denotes a partial function from an infinite set of
names to terms of sort s. Row expressions, which we do not further explain here,
are used to model record types with width and depth subtyping.

Figure 5 shows new rules for object initialization and method dispatch. These
rules in conjunction with the rules in Figure 4 comprise our receiver class anal-
ysis. For a class C, rule (New) returns a class expression with label �C . The
dispatch component of this expression is a row mapping labels �mi to methods
for each method mi defined in C. To remain consistent with the type judgments
for Andersen’s analysis (where the result of each type judgment is an l-value)
we wrap the resulting class in a ref constructor. Note that since our analysis is
context-insensitive, each instance of new C occurring in the program yields the
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Γ � new C : ref(0, class(�C , < �mi : fun(Xthis,Xarg,Xret) . . . >), 1)
(New)

Γ � e1 : τ1 Γ � e2 : τ2

τ1 ⊆ ref(1, T1, 0) τ2 ⊆ ref(1, T2, 0)
T1 ⊆ class(1, < �m : fun(T1, T2, Tret) . . . >)

Γ � e1.m(e2) : ref(0, Tret, 1)
(Dispatch)

Fig. 5. Rules for receiver class analysis (add to the rules from Figure 4)

Table 1. Benchmark data for Andersen’s analysis

Benchmark Description Preproc LOC Andersen(s)
Bane(+gc) Bane Banshee

gs Ghostscript 437211 35.5 27.0 6.9

spice Circuit simulation program 849258 14.0 11.3 3.0

pgsql PostgreSQL 1322420 44.8 34.9 6.0

gimp GIMP v1.1.14 7472553 1688.8 962.9 20.2

linux Linux v2.4 (default config) 3784959 — — 54.5

same class expression, which is created when the definition of C is analyzed.
In (Dispatch), e1 is analyzed and assumed to contain a set of classes. For each
class defining a method m (i.e. the associated dispatch row contains a mapping
for label �m), the corresponding method body is selected and constrained so
actual parameters flow into the formal parameters and the return value of the
function (lifted to an l-value) is the result of the entire expression.

We conclude the case study by noting that Banshee can be used to ex-
plore many analysis issues that we have not illustrated here. For example, field-
sensitive analyses can be implemented using Banshee’s Row sort to model
structures. Polymorphic recursive analyses can be implemented using a Ban-
shee-based library for context-free language reachability [15]. Banshee also
has a modular design that allows new sorts to be added to the system in case
an analysis demands a customized set of resolution rules.

7 Experiments

To demonstrate the scalability and performance of Banshee, we implemented
field- and context-insensitive Andersen’s analysis for C and tested it on sev-
eral large benchmarks.5 We also ran the same analysis implemented with the
Bane toolkit. While Bane is written in SML and Banshee in C, among other
low-level differences, the comparison does demonstrate Banshee’s engineering

5 All experiments were run on a 2.80 GHz Intel Xeon machine with 4 GB of memory
running Red Hat Linux.
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improvements. Table 1 shows wall clock execution times in seconds for the bench-
marks. Benchmark size is measured in preprocessed lines of code (the two largest
benchmarks, gimp and Linux, are approximately 430,000 and 2.2 million source
lines of code, respectively). We compiled the Linux benchmark using a “default”
configuration that answers “yes” to all interactive configuration options. All re-
ported times for this experiment include the time to calculate the transitive lower
bounds of the constraint graph, which simulates points-to queries on all program
variables [9]. Parse times are not included. Interestingly, a significant fraction of
the analysis time for the Bane implementation is spent in garbage collection,
which may be because almost all of the objects allocated during constraint reso-
lution (nodes and edges in the constraint graph) are live for the entire analysis.
We also report (in the column labeled Bane) the wall clock execution time for
Andersen’s analysis exclusive of garbage collection. The C front-end used in the
Bane implementation cannot parse the Linux source, so no number is reported
for that benchmark. Although it is difficult to compare to other implementations
of Andersen’s analysis using wall-clock execution time, we note that our perfor-
mance appears to be competitive with the fastest hand-optimized Andersen’s
implementation for answering all points-to queries [12].

We also evaluated the strategy described for backtracking-based incremental
analysis (Section 4) by running Andersen’s analysis on CQual, a type quali-
fier inference tool. CQual contains approximately 45,000 source lines of C code
(250,000 lines preprocessed). We chose CQual because of our familiarity with its
build process: without manual guidance, it is difficult to compile and analyze
multiple versions of a code base spanning several years. We looked at each of
the 13 commits made to CQual’s CVS repository from November 2003 to May
2004 that modified at least one source file and compiled successfully. For each
commit we report three different numbers (Figure 6(a))6:

– Column 3: Andersen’s analysis run from scratch; this is the analysis time
assuming no backtracking is available.

– Column 4: Incremental Andersen’s analysis, assuming that analysis of the
previous commit is available. To compute this number, we take the previous
analysis, backtrack (pop the analysis stack) to the earliest modified file, and
re-analyze all files popped off of the stack, placing the modified files on top
(as described in Section 4). The initial stack (for the full analysis of the first
commit) contained the files in alphabetical order.

– Column 5: Incremental Andersen’s analysis, assuming that the files modified
during this commit are already on the top of the analysis stack. To compute
this number, we pop and reanalyze just the modified files.

Column 4 gives the expected benefit of backtracking if the analysis is run only
once per commit. However, if the developer runs the analysis multiple times
before committing (each time the code is compiled, or each time the code is
edited in an interactive environment) then Column 5 gives a lower bound on the
eventual expected benefit. To see this, assume that a single source file is modified
6 These times do not include the time to serialize or deserialize the constraints.
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Commit Files All Cross Modified
Date Modified Files(s) Commit Only(s)

11-16 0/58 2.0 - -

11-17 1/58 2.0 0.9 0.05

12-03 1/58 2.0 0.9 0.15

12-10 1/58 2.0 1.0 0.04

12-11 1/58 2.3 2.0 0.09

12-12 5/58 2.3 1.8 0.51

2-29 1/58 2.0 0.5 0.08

3-05 1/58 2.0 0.9 0.06

3-05 25/59 2.0 2.0 1.0

3-05 5/60 2.0 2.4 0.27

3-11 4/60 2.4 1.0 0.5

3-22 3/61 2.0 0.14 0.14

5-03 2/61 2.0 1.2 0.13

(a) Data for CQual experiment (b) OpenSSL files modified per commit

Fig. 6. Backtracking experiments

during an editing task. The first time the analysis is run, that source file may be
placed on the bottom of the stack, so after a program edit, a complete reanalysis
might be required. Subsequently, however, that file is on top of the stack and we
only pay the cost of reanalyzing a single file. In general, if n files are modified in
an editing task, at worst we analyze the entire code base n times (to move each
file one by one from the bottom to the top of the stack) and subsequently only
pay (at most) the cost to reanalyze the n modified files.

Backtracking, then, can be an effective incremental analysis technique as long
as only a small fraction of the files in a code base is modified per editing task.
Figure 6(a) shows this property holds for CQual. To test this hypothesis on a
larger, more active code base with more than a few developers, we looked at the
CVS history for OpenSSL, which contains over 4000 commits that modify source
code. For each commit, we recorded the percentage of source files modified.
Figure 6(b) shows a plot of the sorted data. The percentage of files modified
obeys a power law: very infrequently, between 5 and 25 percent of the files are
modified, but in the common case, less than .1 percent of the files are modified.
We have confirmed similar distributions hold for other code bases as well.

8 Related Work

Many related frameworks have been used to specify static analyses. In [26], modal
logic is used as a specification language to compile specialized implementations
of dataflow analyses. Datalog [4] is a database query language based on logic
programming that has recently received attention as a specification language for
static analyses. The subset of pure set constraints implemented in Banshee is
equivalent to chain datalog [31] and also context-free language reachability [18].
There are also obvious connections to bottom-up logic [17]. Implementations of
these frameworks have been applied to solve static analysis problems. The bddb-
ddb system is a deductive database that uses a binary-decision diagram library
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as its back-end [30]. Other toolkits that use BDD back-ends include CrocoPat [3]
and Jedd [16]. An efficient algorithm for Dyck context-free language reachability
has been shown to be useful for solving various flow analysis problems [21]. A
demand-driven version of the algorithm also exists [13], though we have not so
far seen a fully incremental algorithm described. Our description of a precise
incremental algorithm, as well as our backtracking algorithm, can be applied to
Dyck-CFLR problems via a reduction in [15].

We are not aware of previous work on incrementalizing set constraints, though
work on incrementalizing transitive closure is abundant and addresses related is-
sues [6,22]. The CLA (compile, link, analyze) [12] approach to analyzing large
code bases supports a form of file-granularity incrementality similar to tradi-
tional compilers: modified files can be recompiled and linked to any unchanged
object files. This approach has some advantages. For example, since CLA doesn’t
save any analysis results, object file formats are simpler, and there is no need for
persistence. However, CLA defers all analysis work until after the link phase, so
the only savings is the cost of parsing and producing object files.
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A Tracked Reference Implementation

We include a complete listing of the tracked reference datatype in OCaml.

module S = Stack
exception Tick

type clock = {
mutable time : int;
repository : (unit −> unit) S.t

}
type ’a tref = clock * ’a ref

let tref (clk: clock) (v :’a) : ’a tref =
(clk, ref v)

let read (clk,r: ’a tref) : ’a =
!r

let write (clk,r: ’a tref) (v : ’a) : unit =
let old v = !r in
let closure = fun () −> r := old v in

begin
S.push closure clk.repository;
r := v

end
let clock () : clock =

{
time = 0;

repository = S.create ()

}
let time (clk : clock) : int =

clk.time

let tick (clk : clock) : unit =

let closure =

fun () −> raise Tick in

begin

S.push closure clk.repository;

clk.time <− clk.time + 1;

end

let rollback (clk : clock) : unit =

try

while (not (S.is empty clk.repository)) do

let closure = (S.pop clk.repository) in

closure()

done

with Tick −> (clk.time <− clk.time − 1)
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Abstract. In his seminal paper [5], Granger presents an analysis which infers lin-
ear congruence relations between integer variables. For affine programs without
guards, his analysis is complete, i.e., infers all such congruences. No upper com-
plexity bound, though, has been found for Granger’s algorithm. Here, we present
a variation of this analysis which runs in polynomial time. Moreover, we provide
an interprocedural extension of this algorithm. These algorithms are obtained by
means of multiple instances of a general framework for constructing interproce-
dural analyses of numerical properties. Finally, we indicate how the analyses can
be enhanced to deal with equality guards interprocedurally.

1 Introduction

In recent years, a growing interest in the design of very precise analyses of numerical
properties of programs could be observed. On the one hand, this comes from a revived
interest in aggressive program optimizations as demanded by low-cost embedded pro-
cessors. On the other hand when designing and implementing critical applications, we
are faced with a need for certifying absence of certain program errors [2,11] or security
vulnerabilities such as buffer-overflows [3,15].

Here, we concentrate on equality-based numerical properties. Such properties are
particularly useful, e.g., for induction variable detection or identification of data align-
ments [1]. This type of analysis has been pioneered by Karr in [9] where he presents a
first intraprocedural analysis of valid affine relations over a field. Karr’s analysis main-
tains for every program point a vector space of valid affine relations. Fifteen years later,
his analysis was generalized by Granger [4,5]. Since Granger uses Z instead of Q, his
intraprocedural analysis not only returns valid affine relations but also valid affine con-
gruence relations — with the draw-back, perhaps, that no upper complexity bound is
known. Granger’s analysis also differs from Karr’s in that Granger first determines a
linear (in fact affine) abstraction of the sets of intraprocedurally reachable states from
which the set of valid relations then is derived in a second step. A forward accumu-
lation of the abstracted collecting semantics is also used by Müller-Olm and Seidl in
[12] where (in absence of equality guards) the run-time of Karr’s analysis algorithm is
improved and also the sizes of occurring numbers is bounded. The same authors also
provide the first precise interprocedural extension of Karr’s analysis [13] and show how

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 235–250, 2005.
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it can be adapted to work not only over fields but also over modular rings Zm where
m = 2w as used by standard programming languages like Java [14]. In [6,7], Gulwani
and Necula re-consider Karr’s analysis problem. In order to improve on the complexity
of the analysis, they propose randomization. In particular, sizes of occurring numbers
are bounded by computing modulo random primes.

In this paper, we present general methods how intraprocedural analyses of numerical
properties can be constructed which naturally extend to interprocedural analyses of the
same properties. Our framework is parametric in the ring within which the computation
of the analysis is performed. For the case of affine relations over fields or modular
rings Zm (m a power of 2), we subsume versions of the intra- and interprocedural
analyses from [12,13] and [14], respectively. Beyond these known analyses, we succeed
in deriving an interprocedural extension of Granger’s analysis [5] that determines not
only all valid affine relations but also all valid congruence relations. We also indicate
how the analyses can be enhanced to deal with equality guards interprocedurally.

The immediate interprocedural extension of Granger’s analysis as provided by the
general framework shares with Granger’s original algorithm the draw-back of perform-
ing fixpoint iterations over complete lattices with unbounded (though finite) ascending
chains. In order to improve on this, we propose a new algorithm which, in absence of
procedures, runs in polynomial time. The new algorithm is based on a careful inspection
of Granger’s analysis problem which allows us to divide the analysis into one analysis
over the field Q together with several analyses over carefully chosen modular rings.

The paper is organized as follows. In section 2 we introduce affine programs to-
gether with their collecting semantics. In section 3 we introduce, for every ring R, the
R-linear abstraction and show how it can be used to determine valid R-linear relations
and also (in case of R = Z) valid linear congruence relations. In section 4, we then show
for every principal ideal ring R that the R-linear abstraction of the collecting semantics
can be computed precisely and provide complexity bounds for fields and modular rings
Zm. In section 5, we particularly deal with the case R = Z and provide an alternative
algorithm which (at least in absence of equality guards) determines all intraprocedu-
rally valid linear congruence relations in polynomial time. In the interprocedural case,
the new algorithm is polynomial if the length of intermediately occurring numbers is
polynomially bounded. In section 6, we finally extend the proposed approach to take
equality guards into account. Finally, section 7 summarizes and gives hints on direc-
tions of future research.

2 The General Set-Up

We use similar conventions as in [13] and [14] which we recall here for reasons of
selfcontainedness. Thus, programs are modeled by systems of non-deterministic flow
graphs that can recursively call each other as in Figure 1. Let X = {x1, . . . ,xk} be
the set of (global) variables the program operates on. In order to cover the various
computational domains of interest, we assume that the variables take values in some
commutative ring R with 1 element. In the programs we analyze, we assume the ba-
sic statements either to be affine assignments of the form xj := t0 +

∑k
i=1 tixi (with

ti ∈ R for i = 0, . . . , k and xj ∈ X) or non-deterministic assignments of the form xj :=?
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Main :

q()

x2 := 0
x1 := 2

q :

q()

x2 := x1 + x2

x2 := x1 + x2

x1 := 3 ∗ x1

x1 := 5 ∗ x1

Fig. 1. An interprocedural program

(with xj ∈ X). It is to reduce the number of program points in the example, that we
annotated the edges in Figure 1 with sequences of assignments. Also, we use assign-
ments xj := xj which have no effect onto the program state as skip-statements and omit
these in pictures. For the moment, skip-statements are used to abstract guards. Later, we
will present methods which treat equality guards more precisely. Non-deterministic as-
signments xj :=? can be used as a safe abstraction of statements in a source program
which our analysis cannot handle precisely, for example of assignments xj := t with
non-affine expressions t or of read statements.

In this setting, an affine program comprises a finite set Proc of procedure names
together with one distinguished procedure Main. Execution starts with a call to Main.
Each procedure q ∈ Proc is specified by a distinct edge-labeled control flow graph with
a single start point stq and a single return point retq where each edge is either labeled
with an assignment or a call to some procedure.

The basic approach of [13,12,14] which we take up here is to construct a precise
abstract interpretation of a constraint system characterizing the concrete program se-
mantics. Similar to [5,12], we find it convenient to start from the collecting semantics.
For that, we model a state attained by program execution when reaching a program
point or procedure by a k-dimensional (column) vector1 x = [x1, . . . , xk]t ∈ Rk of
ring elements where xi is the value assigned to variable xi. For convenience, we con-
sider extended states [1, x1, . . . , xk]t containing an extra 0-th component 1. Then ev-
ery assignment xj := t, xj ∈ X, t ≡ t0 +

∑k
i=1 tixi, induces a linear transformation

[[xj := t]] : Rk+1 → Rk+1 of the extended state which is described by the matrix:

[[xj := t]] =

⎡⎣ Ij 0

t0 . . . tj−1 tj . . . tk

0 Ik−j

⎤⎦
where Ij is the identity matrix in Rj2 . This definition is readily extended to sets of
extended states. Composition of transformations is captured by matrix multiplication.
Since linear mappings are closed under composition, the effect of a single run can be
represented by one matrix in R(k+1)2 . Since in general, procedures have multiple runs,
we model their semantics by sets of linear transformations. These are characterized by
the constraint system ER:

1 The superscript “t” denotes the transpose operation which mirrors a matrix at the main diago-
nal and changes a row vector into a column vector (and vice versa).
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[ER1] ER(q) ⊇ ER(retq)

[ER2] ER(stq) ⊇ {Ik+1}
[ER3] ER(v) ⊇ ER(u) · {[[xj := t]]} if edge (u, v) is labeled xj := t

[ER4] ER(v) ⊇ ER(u) · {[[xj := c]] | c ∈ R} if edge (u, v) is labeled xj :=?

[ER5] ER(v) ⊇ ER(u) · ER(q) if edge (u, v) calls q

The variable ER(q) is meant to capture the set of effects of the procedure q. By the con-
straints ER1, this value is obtained as the set of transformations ER(retq) for the return
point retq of q. According to ER2, this accumulation starts at the start point stq with the
identity transformation. The constraints ER3 and ER4 deal with affine and nondetermin-
istic assignments, respectively, while the constraints ER5 correspond to calls.

Given the effects of procedures, we characterize the sets of extended states reaching
program points and procedures by the constraint system CR:

[CR1] CR(Main) ⊇ {1} × Rk

[CR2] CR(q) ⊇ CR(u) if edge (u, ) calls q

[CR3] CR(stq) ⊇ CR(q)

[CR4] CR(v) ⊇ [[xj := t]](CR(u)) if edge (u, v) is labeled xj := t

[CR5] CR(v) ⊇
⋃
{[[xj := c]](CR(u)) | c ∈ R} if edge (u, v) is labeled xj :=?

[CR6] CR(v) ⊇ ER(q)(CR(u)) if edge (u, v) calls q

The constraint CR1 indicates that we start before the call of Main with the full (ex-
tended) state space. The constraints CR2 indicate that the extended states reaching a
procedure includes all extended states reaching its calls and the constraints CR3 state
that the extended states reaching a call to a procedure also reach its start point. The con-
straints CR4 through CR6 then are completely analogous to a usual forward propagating
definition of the intra-procedural collecting semantics only that at a call edge the set of
transformations obtained for the called procedure is applied (constraints CR6).

By the fixpoint theorem of Knaster-Tarski, the constraint systems ER and CR have
least solutions. For convenience, we denote the components of these least solutions by
ER(X), and CR(X), respectively (X a procedure name or program point).

3 The Linear Abstraction

Program analyses of numerical program properties are based on abstractions of subsets
of vectors. Here, we consider the abstraction of a set V ⊆ Rk+1 of extended states by
the R-linear closure of V :

αR(V ) = 〈V 〉R = {λ1v1 + . . . + λsvs | s ≥ 0, λi ∈ R, vi ∈ V } .

Due to the extension of states by an extra 0-th component, the abstraction adds all lin-
ear combinations of vectors in V – with the understanding that only those vectors in the
closure are meaningful whose 0-th components equal 1. We remark that αR(V ) is closed
under vector addition and multiplication with ring elements r ∈ R. Such sets are called
R-modules where the set 〈V 〉R is the R-module generated by V . It is well-known that for
any r, the R-submodules of Rr are closed under intersection. Ordered by set inclusion
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(which we denote by ' in the context of submodules) they thus form a complete lattice
Sub(Rr), like the linear subspaces of Fr for a field F. The least element of Sub(Rr) is
{0} consisting of the zero vector only, the greatest element is Rr itself. The least upper
bound of two R-submodules M1, M2 is

M1 �M2 = 〈M1 ∪M2〉R = {m1 + m2 | mi ∈ Mi} .

The linear abstraction has been extensively studied for different rings. In [5], it is used
with R = Z to analyze linear congruence relations. In [12], this abstraction is applied
for fields to speed up Karr’s analysis [9] of affine relations. Interestingly, the interproce-
dural analyses of affine relations [13,14] over fields and modular rings Zm, m = 2w, do
not directly rely on abstractions of the collecting semantics but on linear abstractions of
sets of weakest precondition transformers.

In general, we are interested in numerical properties P which invariantly hold for
all (extended) states x in the collecting semantics at a given program point. Clearly, the
linear abstraction can only be used to detect properties which are invariant under linear
combinations of the extended state or, equivalently, affine combinations of the program
state. In particular, this is the case for affine relations between program variables like,
e.g., 2− 4x1 + 3x2 = 0. Since we work with extended states, we can rely on the simpler
linear relations on extended states here. In general, a linear relation over a ring R is a
(row) vector a = [a0, . . . , ak] where x = [x0, . . . , xk]t satisfies a iff a·x =

∑k
i=0 aixi = 0.

The set of affine relations satisfied by a set of states coincides with the set of linear
relations satisfied by the corresponding set of extended states. We observe:

Fact 1. For every ring R the following holds:

1. For every row vector a, the set {x ∈ Rk+1 | a · x = 0} is an R-module.
2. For every set G ⊆ Rk+1,

〈G〉⊥R =def {a | ∀x ∈ G : a · x = 0} = {a | ∀x ∈ 〈G〉R : a · x = 0} .

Moreover, the set 〈G〉⊥R is an R-module. !�

Assume that the R-module 〈CR(X)〉R is generated by the finite set G ⊆ Rk+1. Then by
fact 1, we can determine the set of all valid linear relations at X as the set of all solutions
of the homogeneous system of equations:

a · x = 0 , x ∈ G

where a = [a0, . . . , ak] is a row vector of variables. Here, we are mostly interested in
principal ideal rings (or PIRs). A principal ring R is a commutative ring with 1 in which
every ideal is principal. Recall that an ideal I ⊆ R is a subset of R which is closed under
addition and multiplication with arbitrary ring elements, i.e., a+b ∈ I whenever a, b ∈ I

and r · a ∈ I whenever a ∈ I and r ∈ R. An ideal I is principal if it is generated by
a single element, i.e., I = {r · d | r ∈ R} for some d ∈ R. PIRs comprise not only
fields but also the integral domain Z as well as all modular rings Zm, m ≥ 2. In [8,16],
efficient methods are developed for computing various normal forms of matrices over
PIRs. The most notable property of PIRs is that they allow us to solve linear systems of
equations by a generalized Gaussian elimination algorithm. Of particular importance is
the integral domain Z. Assume G ⊆ Zk+1 is a set of integer vectors. Then the set of all
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linear relations which are valid for G is (up to multiplication with constants) identical
to the set of linear relations which are valid over the Q-module generated by G:

Fact 2. For every subset G ⊆ Zk+1 of column vectors and every row vector a ∈ Zk+1,
the following statements are equivalent:

1. a · x = 0 for all x ∈ G;
2. a · x = 0 for all x ∈ 〈G〉Z;
3. a · x = 0 for all x ∈ 〈G〉Q. ��

Assume we want to determine the set of valid Z-linear relations at a program point
X. By fact 2, it suffices to determine the linear relations which are valid for 〈CZ(X)〉Q.
Since Q is a field, these can be computed efficiently with the techniques from [13,12].
It therefore does not pay off to determine the (complicated) Z-linear closure of the
collecting semantics if we are interested in linear relations only.

In [5], however, Granger considers a more general form of properties, namely, linear
congruence relations. A linear congruence equation is an equation a · x ≡ 0 [m] where
a ∈ Z is a row vector and m > 0 is the integer modulus. The column vector x ∈ Zk+1

satisfies the congruence relation iff a · x ≡ 0 [m] or, equivalently, a · x + mz = 0 for
some z ∈ Z. A linear relation of the extended state can be seen as a particular linear
congruence relation if we allow m to equal 0. If m > 1, we can assume that all compo-
nents of a are in the range {0, . . . , m−1}. The set of all x satisfying a linear congruence
relation is closed under addition and multiplication with elements of Z and therefore a
Z-module. In [5], Granger shows that every Z-module can also be represented as the
set of solutions of a finite number of linear congruence relations. For later use, we pro-
vide a refinement of his characterization. We introduce the following auxiliary notions.
Assume that G ⊆ Zr is a set of q linearly independent2 column vectors. Let V ⊆ Zr·q

denote the matrix formed by the vectors in G. Using generalized Gaussian elimination,
some unimodular matrix3 T ∈ Zr2

can be constructed such that T · V =
[

D
0

]
for an

upper triangular square matrix D. Then we define det(G) as the absolute value of the
determinant of D. It follows from uniqueness of the Hermite normal form [17,16] that
this definition is independent of the choice of T . We obtain:

Theorem 1. Assume G ⊆ Zr is a set of linearly independent vectors where det(G)

divides m > 0. Let E0 and Em denote finite sets of generators for 〈G〉⊥Z and 〈G〉⊥Zm
,

respectively. Then the following holds:

1. 〈G〉Z is the set of solutions of the system

a · x = 0, a ∈ E0, b · x ≡ 0 [m], b ∈ Em

2. Another linear congruence relation b′ · x ≡ 0 [m′] is satisfied by all vectors in G

iff the following holds. If m′ = 0 then b′ ∈ 〈E0〉Z. Otherwise, let h denote the least
common multiple of m and m′ where m · d = h and m′ · d′ = h. Then d′ · b′ is
contained in 〈E0 ∪ {d · b | b ∈ Em}〉Zh

.

2 Recall that G is linearly independent over Q iff G is linearly independent over Z.
3 An integer matrix is unimodular iff its determinant equals ±1.
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For a proof of this theorem, see appendix A. By the second statement, the sets E0 and
Em allow us, for every other modulus m′, to determine a finite set E′ of generators of
all valid linear relations modulo m′. First, we construct the set E = E0∪{d ·b | b ∈ Em}
where h = d ·m is the least common multiple of m and m′. The idea is now to determine
E′ as a finite set of generators of all Zh-linear combinations of vectors in E which
contain d′ = h

m′ as a factor. For this, let V denote the matrix whose rows are formed
by the vectors in E. Then a vector v is a linear combination of the vectors in E which
contains d′ as a factor iff v = y · V for some y ∈ Z|E|

h such that m′ · (y · V ) ≡ 0 [h].
Thus, we first compute generators b1, . . . , bq ∈ Z|E|

h for the module of solutions of the
equation system y (m′ · V ) ≡ 0 [h]. The vectors bi V can be written as bi V = d′b′i —
giving us the set E′ = {b′1, . . . , b′q} of generators for all valid linear relations modulo m′.

Theorem 1 allows us to compute the linear congruence relations which are valid at
X from the Z-linear closure of CZ(X), the set of extended states reaching X. Our new
observation is that, instead of computing the Z-linear closure of the reachable states, we
can decompose the analysis into an analysis returning all valid linear relations plus an
analysis returning all valid linear relations modulo a carefully chosen m. If on the other
hand, we are interested in the linear closure of the reachable extended states at X, then
we can recover these from the linear equations together with the valid linear equations
modulo m by solving an appropriate homogeneous system of equations.

4 Constructing Interprocedural Analyses

We have seen that for affine programs, the effects of procedures are given by sets of
linear transformations, or matrices. Matrices in turn can be viewed as vectors — only
with quadratically many components. We therefore can use the same abstraction αR for
effects which we use for sets of extended state vectors. By applying αR to the constraint
systems ER and CR, we obtain constraint systems E


R and C

R:

[E

R1] E


R(q) � E

R(retq)

[E

R2] E


R(stq) � 〈{Ik+1}〉R
[E


R3] E

R(v) � E


R(u) · 〈{[[xj := t]]}〉R if edge (u, v) is labeled xj := t

[E

R4] E


R(v) � E

R(u) · 〈{[[xj := 0]], [[xj := 1]]}〉R if edge (u, v) is labeled xj :=?

[E

R5] E


R(v) � E

R(u) · E


R(q) if edge (u, v) calls q

As in [13,12], the abstract effect of a non-deterministic assignment xj :=? can be mod-
eled by the span of the two transformations [[xj := 0]] and [[xj := 1]].

The constraint system E

R closely resembles the corresponding constraint systems as

presented in [13] and [14]. There, however, the accumulated transformations are inter-
preted as weakest precondition transformers and therefore accumulated from the rear.
The constraint system now accumulates values in a forward fashion. Accordingly, the
second constraint system C


R is in the spirit of the forward intraprocedural accumulation
as used, e.g., in [12]. Thus, in contrast to [13,14], the second constraint system directly
speaks about abstract sets of values and not about abstract sets of transformations:
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[C

R1] C


R(Main) � Rk+1

[C

R2] C


R(q) � C

R(u) if edge (u, ) calls q

[C

R3] C


R(stq) � C

R(q)

[C

R4] C


R(v) � [[xj := t]] (C

R(u)) if edge (u, v) is labeled xj := t

[C

R5] C


R(v) � [[xj := 0]] (C

R(u))�

[[xj := 1]] (C

R(u)) if edge (u, v) is labeled xj :=?

[C

R6] C


R(v) � E

R(q)(C


R(u)) if edge (u, v) calls q

By the fixpoint theorem of Knaster-Tarski, the constraint systems E

R and C


R have least
solutions. Again, we denote the components of these least solutions by E


R(X) and
C


R(X), respectively (X a procedure or program point). Abstracting the collecting se-
mantics according to constraint system C


R has the advantage that it relies on matrices
only for procedure calls. This means that we can take advantage from any improve-
ments on the abstractions, e.g., for guards g = 0 (g an affine combination) or non-affine
assignments which have been proposed for the intraprocedural analysis [9,5].

Furthermore, we verify that the abstraction commutes with the application and with
the composition of transformations. By linearity we have:

Proposition 1. Let R denote a commutative ring with 1. Then:

1. 〈{A x | x ∈ V, A ∈ M}〉R = 〈{A x | x ∈ 〈V 〉R, A ∈ 〈M〉R}〉R
2. 〈{A1 A2 | Ai ∈ Mi}〉R = 〈{A1 A2 | Ai ∈ 〈Mi〉R}〉R

for every set of vectors V ⊆ Rk+1 and sets of matrices M, M1, M2 ⊆ R(k+1)2 . ��

By the fixpoint transfer lemma, we therefore obtain from proposition 1, for the con-
straint systems E


R and C

R:

Theorem 2. For a program interpreted over a ring R, the following holds:

1. E

R(q) = 〈ER(q)〉R for every procedure q;

2. C

R(X) = 〈CR(X)〉R for every procedure or program point X. ��

Theorem 2 gives a precise characterization of the linear closure of the collecting se-
mantics through a constraint system. Note that for principal ideal rings R, the lattice of
R-submodules of Rr satisfies the ascending chain condition. If R is a field, the length of
every strictly increasing sequence of R-submodules of Rr is bounded by r for dimen-
sional reasons. If R is a modular ring Zm, then the length of every strictly increasing
sequence of R-submodules of Rr can be shown to be bounded by r · log(m). If R is the
ring of integers, the lengths of strictly increasing sequences of R-submodules, though
finite, cannot be bounded.

Secondly, we note that every R-submodule M of Rr can be represented by M = 〈G〉R
for a set G of at most r generators. Accordingly, inclusion of R-submodules can be
reduced to deciding for a vector v ∈ Rr whether or not v ∈ 〈G〉R for a finite subset
G ⊆ Rr. If G = {v1, . . . , vs}, the latter problem consists in deciding whether there exist
λ1, . . . , λs ∈ R such that

λ1v1 + . . . + λsvs = v
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Thus, the problem reduces to solving inhomogeneous systems of linear equations. If R

is a field, this can be achieved, e.g., by standard Gaussian elimination. Instead, we may
rely on reduction to echelon form as discussed in [8,16]. Therefore, theorem 2 gives
rise to an effective analysis over any effective PIR R, i.e., every PIR R where 0 and 1,
equality as well as the arithmetic operations and the basic principal ideal operations are
computable. The ideal operations we need are a generalized gcd and effective methods
for solving one variable equations a · x1 = b with a, b ∈ R (see again [8,16] for details).
Summarizing, we have:

Theorem 3. Assume p is an affine program over an effective PIR R. Then the least
solutions of the constraint systems E


R and C

R are effectively computable. ��

In particular, we obtain interprocedural algorithms for computing the linear closures of
the collecting semantics for fields as well as for all modular rings — thus giving us algo-
rithms for computing all valid linear relations. The corresponding run-time complexities
for a program of size n with k variables are summarized in figure 2. For simplicity, we
have assumed unit cost for every arithmetic operation as well as for the principal ideal
operations. The first line reports the results obtained in [12,13], while the result on Zm

R intraprocedural interprocedural

field O(n · k3) O(n · k8)

Zm O(n · k3 · log(m)) O(n · k8 · log(m))

Fig. 2. Unit cost complexity of computing the R-linear closure

is the generalization of [14] to arbitrary modular rings. Theorem 3 also provides us
with an interprocedural generalization of Granger’s analysis. The complexity, however,
remains unclear here, since ascending chains of Z-modules can have arbitrary lengths.

5 Efficient Linear Congruence Analysis

In this section, we refine the general approach for PIRs for the case R = Z in order
to obtain a polynomial time algorithm for computing all intraprocedurally valid linear
congruence relations. This algorithm also extends to a fast interprocedural algorithm —
provided that mild restrictions on occurring numbers are satisfied.

Theorem 4. Assume p is an affine program over Z of size n with k variables.

1. For every program point or procedure X, we can compute a (finite) representation
of the set of all linear congruence relations valid at X.

2. Intraprocedurally, these representations can be computed in polynomial time.
3. Interprocedurally, these representations can be computed in exponential time.

Proof. Assume the program p has k program variables. The algorithm achieving the
explicit complexity bounds is based on theorem 1. It proceeds in three phases.
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Phase 1: We compute the least solutions of the constraint systems E

Q and C


Q. More
precisely, we compute for every program point or procedure X, linearly indepen-
dent subsets GE(X) ⊆ EZ(X), GC(X) ⊆ CZ(X) such that

E

Q(X) = 〈GE(X)〉Q C


Q(X) = 〈GC(X)〉Q

Then we determine for every X, a set of generators for the set of all Z-linear
relations which are valid at X.

Phase 2: For every X, we determine m(X) as the determinant det(GC(X)).
Phase 3: For every X, we solve the constraint systems E


Zm
and C


Zm
for m = m(X).

This allows us to determine the Zm-module C

Zm

(X) and compute a set of generators
of the Zm-linear relations which are valid at X.

We successively discuss the three phases of the algorithm. The first phase is readily im-
plemented by a variant of the algorithm proposed in [13] for solving constraint system
E


Q and (an adapted version of) [12] for then solving C

Q. These algorithms are based

on semi-naive fixpoint iteration and generate for every program point or procedure X a
basis consisting of matrices from EZ(X) and (extended) states from CZ(X), respectively.

Example 1. Consider, e.g., the program from section 2. We find the matrices:

Q0 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ Q1 =

⎡⎣ 1 0 0
0 15 0
0 18 1

⎤⎦ Q2 =

⎡⎣ 1 0 0
0 225 0
0 282 1

⎤⎦
which are contained in EZ(q) and together generate the vector space E


Q(q). Using these
matrices, we determine a set of generators for the vector-space C


Q(6) as:

z0 = [1, 2, 0]t z1 = [1, 30, 36]t z2 = [1, 450, 564]t

��

Since 〈CZ(X)〉Q = 〈CQ(X)〉Q, fact 1 implies that the Z-module 〈GC(X)〉⊥Z already equals
the Z-module 〈CZ(X)〉⊥Z , i.e., the set of valid linear equalities.

Let ΔE , ΔC denote the maximal absolute sizes of the entries of the matrices and
vectors, respectively, in the sets of generators used by the fixpoint computation over Q.
By inspecting the algorithms in [13,12], we find:

ΔE ≤ 22O(n·k2)
ΔC ≤ Δ

O(n·k)
E

In general, solving the constraint systems E

Q and C


Q over Q thus can be performed
by O(n · k8) operations using arithmetic for numbers bounded in length by O(n · k2 ·
log(ΔE)). In case of an intra-procedural analysis, we can completely abandon the con-
straint system E


Q. Adapting the algorithm from [12], we need just O(n · k3) arithmetic
operations on numbers of length O(n · k2).

We turn to phase 2. Given a linearly independent set GC(X) of cardinality q, we
compute the determinant m(X) = det(GC(X)) with a polynomial number of bit opera-
tions, e.g., using the methods of Storjohann [17,16]. In our application the length of the
computed determinant (and thus also of log(m(X))) is bounded by O(n · k2 · log(ΔE)).
Let G denote a linearly independent set of generators of C


Z(X) = 〈CZ(X)〉Z. Since
〈G〉Q = 〈GC(X)〉Q, G has cardinality q as well.

Claim: det(G) divides det(GC(X)).
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This central claim together with theorem 1 implies that the set of all linear congruence
relations valid at X can be derived from the set of all linear relations valid at X (as
computed in phase 1) together with all linear congruence relations modulo m(X) (as
computed in phase 3).

We turn to the proof of the claim. Let V ∈ Z(k+1)·q and V ′ ∈ Z(k+1)·q denote the
coefficient matrices formed by the vectors of GC(X) and G, respectively. By definition,
there are square unimodular matrices T, T ′ ∈ Z(k+1)2 such that T ·V =

[
D
0

]
and T ′ ·V ′ =[

D′

0

]
for square upper triangular matrices D, D′ where the product of the diagonal

elements of D and D′ equals det(GC(X)) and det(G), respectively. Since GC(X) ⊆
〈G〉Z, there is also a square matrix S ∈ Zq2

such that V = V ′ ·S. Therefore, D = T1 ·D′ ·S
where T1 is the left upper (q × q)-submatrix of T · (T ′)−1 and, thus, det(D) = det(T1) ·
det(D′) · det(S). Since T1 and S are integer matrices the claim follows.

Example 2. Starting from the vectors z0, z1, z2 for program point 6 of example 1, we
may apply elementary row transformations (over Z) each with determinant 1 to the
coefficient matrix of the zi. Thus, we obtain the matrix:⎡⎣ 1 1 1

0 4 700
0 0 −84

⎤⎦
Thus, the determinant equals m(6) = 1 · 4 · 84 = 336 — serving as the modulus for
the third stage. Since the three vectors z0, z1, z2 are linearly independent, they span
the complete vector space Q3. Therefore, no non-trivial linear relation holds for every
reachable state at program point 6. ��

In phase 3, it remains to determine the set of all linear relations modulo m(X) which
hold for all vectors in C


Z(X). Since taking integers modulo m(X) is a homomorphism,
we conclude that the Zm(X)-module 〈C


Zm(X)
(X)〉⊥Zm(X)

equals the set of all linear con-
gruence relations which are valid at X modulo m(X). Note further that the third phase
of fixpoint iteration for the constraint systems over Zm(X) need not start from scratch
but can use the generators computed in the first phase modulo m(X) as start value.

Example 3. We turn to phase 3 for our example program. Recall that the modulus for
program point 6 equals 336. Accordingly, we determine the least solutions of the con-
straint systems E


Z336
, C


Z336
. We start with the already obtained sets of generators —

modulo 336. In order to obtain a subsumption test for E

Z336

at variable q, we bring the
set of matrices {Q0, Q1, Q2} computed in example 1 into echelon form (modulo 336).
In our case this results in the matrices:

Q′
0 =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ Q′
1 =

⎡⎣ 0 0 0
0 14 0
0 18 0

⎤⎦ Q′
2 =

⎡⎣ 0 0 0
0 0 0
0 6 0

⎤⎦
Propagating, e.g., the matrix Q2 for the call at the edge (1, 2), we obtain:

Q3 =
⎡⎣ 1 0 0

0 15 0
0 192 1

⎤⎦
Matrix Q3 is already subsumed by the Q′

i. The same also holds for the propagation of
the matrices Q0 and Q1. Therefore, the set {Q0, Q1, Q2} already represents the fixpoint.
Accordingly, the module C


Z336
(6) is generated from the vectors:
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z′
1 = [1, 2, 0]t z′

2 = [1, 30, 36]t z′
3 = [1, 114, 228]t

Next, we determine the module of valid equalities modulo 336 as the set of solutions
of the following homogeneous system of equations over Z336:

[a0,a1,a2] ·
⎡⎣ 1 1 1

2 30 114
0 36 228

⎤⎦ = [0, 0, 0]

or, equivalently,

[a0,a1,a2] ·
⎡⎣ 1 0 0

2 28 0
0 36 84

⎤⎦ = [0, 0, 0]

The module of solutions is generated by the two vectors:

[312, 12, 0], [0, 0, 28]

This corresponds to the congruence equations:

312 · x0 + 12 · x1 ≡ 0 [336] 28 · x2 ≡ 0 [336] ��

Remark that all calculations on vectors or matrices in the third phase of the algorithm
are in fixed modular rings and thus do not incur extra swells of intermediate numbers.
In particular, we can use the complexity bounds from figure 2, to estimate the num-
ber of arithmetic and generalized gcd computations. For the intraprocedural case, we
thus obtain O(n · k3 · log(m(X))) operations. Since the length log(m(X)) of m(X) is
polynomially bounded in n and k, we obtain a polynomial algorithm.

In the interprocedural case, the number of operations is bounded by O(n · k8 ·
log(m(X)). The modulus m(X), though, can have exponential length. Therefore, we
obtain an exponential complexity bound as stated in assertion 2. ��

A subtle point in the algorithm over Q or Z is the potential swell of intermediate num-
bers. Our complexity analysis reveals that the total run-time of the interprocedural algo-
rithm is polynomial in the size n of the program, the number k of variables and log(ΔE).
Thus, the algorithm performs well if ΔE is found to be moderate. At the expense of loss
of precision, this can always be enforced. Assume we have given us a threshold Δ.
Whenever a matrix A with entry |Aij | > Δ is to be added to some fixpoint variable, we
instead add matrices A(0), A(1) which are obtained from A by replacing the too large
entry with 0 and d, respectively, for some divisor d of Aij (e.g., 1).

6 Guards

The draw-back of the interprocedural analyses of section 4 is that conditional branching
is abstracted by non-deterministic choice. A natural class of guards to be taken into
account are equality guards of the form g = 0 for g ≡ g0 + g1x1 + . . . + gkxk. In
presence of equality guards, however, already the problem of determining at a given
program point whether a variable always equals 0 is undecidable [12]. This holds even
in absence of procedures. Accordingly, any effective analysis of programs with guards
must be approximate. Intraprocedurally, an approximative treatment of equality guards
has been considered both by Karr for fields [9] and by Granger for Z [5]. In both cases,
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the effect of such a guard amounts to intersection of affine spaces. This idea also works
for R-modules of extended states and any ring R:

[[g = 0]] M = 〈M ∩ {[x0, . . . , xk]t | x0 = 1,
∑k

j=0gjxj = 0}〉R

Computing the intersection can be reduced to solving a pair of linear equations: Assume
M = 〈G〉R where G is a finite set of generators. Let V denote a matrix containing the
vectors of G as column vectors, let b denote the 0-th row of V . Then we obtain a system
of generators for [[g = 0]] M by solving the system:

(g′ V ) · y = 0 b · y = 1

for the row vectors g′ = [g0, . . . , gk] and b = [b1, . . . , bq] and a column vector y =

[y1, . . . ,yq]
t of variables.

It is not obvious, though, how intersections can be lifted to the transformer level.
Therefore, we suggest to postpone the decision taken at the guard. Instead of perform-
ing the intersection, we accumulate the value of the guard expression in an indicator
variable. More precisely, assume that the edges with guards are numbered k +1, . . . , m.
Then we instrument the original program by introducing fresh variables xk+1, . . . ,xm,
one for each guard. Initially, all these variables are assumed to have values 0. At the
j-th guard g = 0, we place the assignment xj := xj + g. This corresponds to the matrix:⎡⎢⎢⎣

Ik+1 0

0 Ij−k−1 0 0

g0 . . . gk 0 1 0

0 0 0 Im−j

⎤⎥⎥⎦
The extra values stored in the indicator variables are then used for an improved treat-
ment of calls in the constraint system C


R. As an invariant, we insist in C

R that all indica-

tor variables have values 0, since this is the case for all program runs permitted by the
guards. Thus the first constraint now reads:

[C

R1] C


R(Main) � Rk+1 × {0m−k}

Accordingly, we modify the constraints for calls to:

[C

R6] C


R(v) ⊇ 〈E

R(q)(C


R(u)) ∩ ({1} × Rk × {0m−k})〉R if edge (u, v) calls q

Thus, having applied the transformations from E

R(q), we select just those vectors from

the result whose indicator variables all equal 0. These can be determined by solving an
appropriate system of linear equations. Altogether, we obtain for every effective PIR R,
an enhanced interprocedural analysis which deals with equality guards and conserva-
tively extends the corresponding intraprocedural analysis. In particular, this technique
extends the known methods for fields, for modular rings Zm and also for Z.

The separation of computing valid affine relations from computing valid modular
relations as in section 5 also returns sound information. In presence of guards, however,
the latter may result in an extra loss of precision. Consider, e.g., the guard 8 − x1 = 0.
Assume that before the guard, we have the extended state x = [1, 3]t. Since 8−3 = 5 
= 0,
x does not pass the guard both in an analysis over Q and over Z. Assume, however, that
we perform the third stage of the algorithm modulo 5. Since x satisfies the guard modulo
5, x is propagated through the guard — thus incurring an extra loss in precision.
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7 Conclusion

We have provided a general framework for analyzing interprocedurally valid affine rela-
tions over any principal ideal ring R. In absence of guards, the analyses could be shown
to be complete, i.e., to infer all valid relations of the given form. In particular, our frame-
work covers the known cases of fields Q or Zp (p a prime) as well as modular rings Zm

(m composite) and also provides an interprocedural extension of Granger’s analysis of
linear congruence relations. In order to obtain a faster analysis, we then decomposed
the latter analysis into several instances of our framework. This new algorithm has the
advantage that its run-time complexity can be explicitly determined. In particular, its in-
traprocedural variant runs in polynomial time. Finally, we indicated how the proposed
techniques can be enhanced to deal interprocedurally with equality guards.

A key issue in designing efficient algorithms has been to bound potential swell of
intermediately occurring numbers. In case of linear congruence analysis, we therefore
refrained from computing the Z-affine abstraction of the collecting semantics directly.
Instead, we resorted to computations over modular rings. Remark that instead of per-
forming a separate analysis for each program point X of interest we could as well
perform one joint analysis using the lcm of the moduli for the X. The disadvantage,
however, is that lengths of occurring numbers could then again grow unacceptably.

In order to keep the presentation simple, we have considered parameterless proce-
dures and global variables only. Local variables, call-by-value passing of parameters
and return values can be handled along the lines of [13]. At the expense of an increase
in the complexity, our methods can also be used to determine valid polynomial rela-
tions up to a fixed degree d [12,13]. Further questions remain. It is still open whether it
is possible to determine all valid polynomial relations — independent of a given degree
bound. Also, it is desirable to design interprocedural analyses that deal precisely with
further arithmetic operators.
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18. O. Zariski and P. Samuel. Commutative Algebra, Vol. I. Nostrand, Princeton, NJ, 1958.

A Proof of Theorem 1

The proof of statement (1) is a refinement of Granger’s argument for computing a set
of congruence relations characterizing 〈G〉Z. Let V ∈ Zr·q denote the matrix whose
column vectors are the vectors from G. Then x ∈ 〈G〉Z iff V y = x for some (column)
vector y = [y1, . . . , yq]

t ∈ Zq. Since V is linearly independent, we can find a unimodular
matrix T ∈ Zr2

such that T ·V =
[

D
0

]
where D is an upper triangular (q×q)-matrix and

the product of the diagonal elements equals det(G) and thus divides m. In particular,
V y = x iff (T · V ) y = T x. In this matrix equation, the last r− q rows constitute linear
equations over Z whereas the first q rows can equivalently be formulated using linear
equations modulo m. In order to see this, let di denote the i-th diagonal element of D

and ti the i-th row of T . Then the q-th row of the equation reads dqyq = tq · x which is
equivalent to the linear congruence equation tq ·x ≡ 0 [dq ]. By multiplying the remaining
rows with dq and subtracting suitable multiples of the q-th row, we can remove the q-th
column of the remaining left-hand side of the equation system which leaves us with a
similar problem where q has been decreased by one. Thus, we successively construct
linear congruences with moduli di · . . . · dq for i = q down to i = 1. By scaling these
equations with the products pi = m

det(G)
·d1 · . . . ·di−1, we obtain equivalent congruences

modulo m which together with the m+ 1− q linear equations characterize all x ∈ 〈G〉Z.

Example 4. Consider the set G = {[2, 16, 34]t, [−2,−11,−24]t}. Let V denote the cor-
responding (3× 2)-matrix of coefficients. Then there is unimodular matrix T with:

T =

⎡⎣ −7 1 0
−8 1 0
−1 −2 1

⎤⎦ and V ′ = T · V =

⎡⎣ 2 3
0 5
0 0

⎤⎦
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From the last row of T we thus can read off the linear equation:

−x0 − 2x1 + x2 = 0

The first two rows of the matrix equation V ′ [y1, y2]
t = T [x0, x1, x2]

t give us:

2y1 + 3y2 = −7x0 + x1

5y2 = −8x0 + x1

Subtracting three times the second equation from 5 times the first one gives us:

10y1 = −11x0 + 2x1

5y2 = −8x0 + x1

This provides us with the following two congruence equations which together with the
linear relation characterize the Z-module generated by G:

−11x0 + 2x1 ≡ 0 [10]
−8x0 + x1 ≡ 0 [5] ��

It remains to consider statement 2. The case m′ = 0 is trivial. So let m′ > 0. As the linear
congruence equation b′ ·x ≡ 0 [m′] is satisfied for a vector v ∈ Zr iff (d′ · b′) ·x ≡ 0 [h] is
satisfied for v (recall that h = m′ · d′), it suffices to show that 〈E0 ∪ {d · b | b ∈ Em}〉Zh

characterizes the linear congruence relations valid for all vectors in G modulo h. Thus
we show: b′ · x ≡ 0 [h] is satisfied by all vectors in G iff b′ ∈ 〈E0 ∪ {d · b | b ∈ Em}〉Zh

.
First of all, if b′ ∈ E0, then b′ · x = 0 and hence also b′ · x = 0 [h] for all x ∈ G.

Moreover if b ∈ Em then b · x = 0 [m] and hence (d · b) · x = 0 [h] for all x ∈ G because
h = d · m. Thus, for any b′ ∈ 〈E0 ∪ {d · b | b ∈ Em}〉Zh

, b′ · x ≡ 0 [h] is satisfied by
all vectors in G because validity of linear congruence relations is preserved by linear
combinations. This shows the “if”-direction.

For the “only if”-direction, let again V ∈ Zr·q be the matrix whose columns are
formed by the vectors from G. Note that for any l > 0 and b ∈ Zr

l , the linear congruence
relation b · x ≡ 0 [l] holds for all x ∈ G iff b is a solution of the following equation
system E over Zl: y ·V = 0. Similarly, for b ∈ Zr the relation b ·x ≡ 0 is satisfied by all
vectors in G if b is a solution of the equation system E over Z. Let b′ be a solution of E

over Zh. We need to show that b′ = b′0 + d · b′1 where b′0 is a solution of E over Z and b′1
is a solution over Zm. As the columns of V are linearly independent, we can construct
a unimodular matrix T such that V ′ = T · V =

[
D
0

]
where D is upper triangular with

diagonal elements d1, . . . , dq and det(G) = d1 · . . . · dq divides m. Now we consider the
homogeneous system E′: y · V ′ = 0. The vector b′′ = b′ · T−1 is a solution of E′ over
Zh. We can write b′′ in the form b′′0 + b′′1 where all components i = 1, . . . , q of b′′0 and
all components i = q + 1, . . . , r of b′′1 are 0. By inspecting E′, we see that b′′0 is also a
solution of E′ over Z and b′′1 is also a solution over Zh. By induction for i = q down to
i = 1, we verify in addition that the i-th entry of b′′1 equals 0 modulo d · di+1 · . . . · dq.
Thus, b′′1 = d · y for some y ∈ Zr. Since d · y · V ′ = b′′1 · V ′ ≡ 0 [d ·m], we conclude that
also y · V ′ ≡ 0 [m]. Therefore, y is a solution of the system y · V ′ = 0 over Zm. Now,
we choose b′0 = b′′0 · T and b′1 = y · T such that b′ = b′′ · T = (b′′0 + d · y) · T = b′0 + d · b′1.
Moreover, we have b′0 · V = b′′0 · T · V = b′′0 · V ′ such that b′0 solves equation system E

over Z because b′′0 solves E′ over Z. Similarly, b′1 · V = b′′1 · T · V = b′′1 · V ′ such that b′1
solves E over Zm because b′′1 solves E′ over Zm. This completes the proof. ��
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Abstract. Having in mind the ultimate goal of translation validation for opti-
mizing compilers, we propose a new algorithm for solving the problem of find-
ing basic block and variable correspondence between two (low-level) programs
generated by a compiler from the same source using different optimizations. The
essence of our technique is interpretation of the two programs on random inputs
and comparing the histories of value changes for variables. We describe an ar-
chitecture of a system for finding basic block and variable correspondence and
provide experimental evidence of its usefulness.

1 Introduction

Verifying the optimizing phase of a compiler has become crucial as developers have
been relying on this phase to produce high performance code. However, proving the
correctness of the optimizing phase is infeasible due to its size, its sophisticated algo-
rithms and data structures, as well as ongoing evolution and modification. Translation
validation [7] is an alternative but feasible approach to compiler correctness, which
can be applied to the optimizing phase [6,10,8]. The idea of translation validation is as
follows: instead of proving the correctness of the optimizing phase for every possible
program, prove for a single program that the program and its optimized version are
semantically equivalent.

In this paper we take the following view of translation validation. We have two
programsP and P ′, and each of them is a result of compiling the same source program,
but unlike P , the compilation of P ′ involves the optimizing phase. Both programs are
written in the same intermediate language. We call the programP the original program,
and the program P ′ the optimized program.

Knowing that a variable in P corresponds to a variable in P ′ gives us a valuable
information that can be used to prove the equivalence of P and P ′ automatically. In-
tuitively, a variable x1 in the original programs corresponds to a variable x2 in the
optimized program if they have the same values at some control blocks for all possible
runs of the two programs on the same input values. We shall formulate the right notion
of correspondence in a formal way later.

In this paper block is a sequence of instructions that is always entered at the be-
ginning and exited at the end. With this definition, we consider a program point as a
block consisting of one instruction. A block is called a basic block if the sequence of
instructions is maximal.
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Consider the following simple programs:

P :
w1 := n;
while w1 > 0 do
w2 := w1 − 1;
w1 := w2 − 1;
call f(w1)

od

P ′ :
x1 := n;
while x1 > 0 do
x1 := x1 − 2;
call f(x1)

od

In these programs n is an argument and w1, w2, x1 are local variables. Suppose that
the function f does not have any side effect. If we can establish that the variable w1 in
P corresponds to the variable x1 in P ′, then we can verify that the two programs are
equivalent without generating loop invariants. Indeed, using this information we can
check that the two programs will perform the same sequence of calls of f(. . .) by the
following kind of reasoning. First, the values of w1 and x1 coincide at the entries of the
two loops. Second, if they coincide at some iteration of the loops, they also coincide
at the next iteration. Third, if they coincide at some iteration of the loops, the function
f will be called with the same arguments in both programs. Finally, if the loop exit
conditionw1 ≤ 0 is satisfied in P , the loop exit condition x1 ≤ 0 is also satisfied in P ′.

Note that this reasoning also proves that w1 in P and x1 in P ′ correspond to each
other. However, before performing this reasoning we must in some way guess that w1
in the original program corresponds to x1 in the optimized program. Moreover, we also
have to establish some correspondence between control blocks in the two programs:
blocks in which the corresponding variables always have the same values. This paper
deals with “guessing” a basic block and variable correspondence. We do not yet con-
sider the VC generation from a given correspondence or proving the VCs.

By only knowing that one program is an optimized version of the other, it is not triv-
ial to construct automatically a basic block and variable correspondence. Optimizations
can change the structure of a program, for instance, while-do loops are transformed to
do-while loops to be able to move loop invariants. Optimizations might also include
eliminating existing branches and introducing new branches to the program. In this pa-
per we do not try to address any reordering transformation, that is any transformation
that changes the order of execution of code, without adding or deleting any executions
of any statement [5].

This paper proposes a new technique in constructing a basic block and variable
correspondence between P and P ′. The idea of this new technique is to execute P
and P ′ separately with the same initial store, also called a memory state here. The
values stored in the memory are generated randomly upon demand. For example, when
a program accesses an uninitialized memory location, we can create a new piece of
memory and fill it with a random value. Furthermore, while executing the programs,
the values assigned to each variable and the blocks in which these assignments occur
are recorded. If the sequences of value changes of two variables are the same, then the
variables probably correspond to each other, and the block in which the changes occur
might also correspond to each other.

The problem of finding a basic block and variable correspondence between P and
P ′ is a hard problem. No single technique is able to cover all possible optimizations
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applied to the source program. The emphasis of our work here is to develop a cheap
technique that could help to find a basic block and variable correspondence. This cor-
respondence in turn can help us generate a verification condition which is sufficient to
prove the equivalence of P and P ′. Our technique is considerably cheap for the follow-
ing reasons. First, our technique amounts to building an interpreter to perform program
executions. As the language in which P and P ′ are written is usually simple, the in-
terpreter is easy to develop. Moreover, it does not take a sophisticated algorithm to
determine the sameness of value changes between two records. Another advantage of
our new technique is that it needs only the code of the original and the optimized pro-
grams but no further information from the optimizing phase. Therefore, it can be applied
to verify the optimizing phase of different compilers without instrumenting them any
further.

The remainder of this paper is organized as follows. Section 2 gives an overview
of some recent existing techniques in constructing basic block and variable correspon-
dences. Section 3 states formally the problem of finding basic block and variable corre-
spondence. In Section 4 the idea of the new technique is discussed. Afterwards, in Sec-
tion 5, we discuss the syntax and semantics of an intermediate language used throughout
this paper . Section 6 discusses a randomized interpreter used to evaluate programs writ-
ten in the intermediate language. Finally, section 7 describes some experimental results.
An extended version of this paper is available at http://www.cs.man.ac.uk/
˜voronkov/sas fullpaper.ps.

2 Related Work

One technique related to translation validation is Necula’s technique [6]. In this tech-
nique, each of the original and the optimized programs is firstly evaluated symbolically
into a series of mutually recursive function definitions. A basic block and variable cor-
respondence is inferred by a scanning algorithm that traverses the function definitions.
For example, when the scanning algorithm visits a branch condition e in the original
program, it determines whether e is eliminated due to the optimizations. If it is elimi-
nated, then the information collected is either e = 0 or ¬e = 0, depending on which
branch of e is preserved in the optimized program. If e is not eliminated, then it cor-
responds to another branch condition e′ in the optimized program. The information
collected is either e = e′ or e = ¬e′, depending on the correspondence of e’s and
e′’s branches. This shows that, besides symbolic evaluation, Necula’s technique has to
solve some equalities to determine which branches are eliminated and also to determine
the correspondence between branches in the two programs. Moreover, to find a basic
block correspondence Necula’s technique uses some heuristics which are specific to the
GNU C compiler. This limits the applicability of Necula’s technique to verifying other
compilers.

Another translation validation technique is VOC [11]. We overview VOC for struc-
ture preserving transformations only. Such transformations admit a mapping between
some program points in P and P ′. In VOC a basic block and variable correspondence
is represented by a mapping from some blocks in P ′ to some blocks in P , and also by
a data abstraction. The domain and range of the block mapping form sets of control
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blocks. VOC chooses the first block of each loop body as a control block. The data
abstraction is constructed as follows. For each block Bi in P ′, and for every path from
block Bj leading to Bi, a set of equalities v = V is computed, where v and V are vari-
ables in P and P ′ respectively. The equalities are implied by invariants reaching Bj ,
transition system representing the path from Bj to Bi and its counterpart in P , and the
current constructed data abstraction. This requires the implementation of VOC to use a
prover to generate a data abstraction. Moreover, an implementation of VOC for Intel’s
ORC compiler, VOC-64, tries the variable equalities for every pair of variables except
for the temporaries introduced by the compiler. This trial is performed by scanning the
symbol table produced by the compiler [2]. However, not every compiler provides the
symbol table as a result of compilation, thus this limits the applicability of VOC-64.

A quite recent translation validation technique is Rival’s technique [9]. The tech-
nique provides a unifying framework for the certification of compilation and of com-
piled programs. Similarly to Necula’s technique, the framework is based on a symbolic
representation of the semantics of the programs. Rival’s technique extracts basic block
and variable correspondence from the standard debugging information if no optimiza-
tions are applied. However, when some optimizations are involved in the compilation,
the optimizing phase has to be instrumented further to debug the optimized code and
generate the correspondence between the original and the optimized programs. One
technique to automatically generate such a correspondence is due to Jaramillo et. al [4].
In this technique, the optimized programs initially starts as an identical copy of the orig-
inal one, so that the mapping starts as an identity. As each transformation is applied, the
mapping is changed to reflect the effects of the transformation. Thus, in this technique,
one needs to know what and in which order the transformations are applied by the
optimizing phase.

3 Basic Block and Variable Correspondence

In this section we formalize the problem we are trying to solve. We will only be dealing
with programs divided into blocks. A concrete notion of program will be defined later
in Section 5. We assume that every program defines a transition relation with two kinds
of transition: (i) transitions (β1, σ1) → (β2, σ2); (ii) transitions (β1, σ1) → σ2, where
β1, β2 are blocks and σ1, σ2 are stores. Intuitively, the second kind of transition brings
the program to a terminal state. The run of such a program is either an infinite sequence
(β0, σ0), (β1, σ1), . . . or a finite sequence (β0, σ0), (β1, σ1), . . . , (βn, σn), σn+1. Here
β0, β1, . . . is the sequence of blocks visited in this run and σi is the store when the run
reaches βi.

Let b̄ be a sequence of distinct blocks in P and R be a run. Denote by R|b̄ the
subsequence of R consisting of the blocks occurring in b̄.

Let P and P ′ be two programs, b̄ = b1, . . . , bk be a sequence of distinct blocks in P
and b̄′ = b′1, . . . , b

′
k be a sequence of distinct blocks in P ′ of the same length. Let also

x̄ = x1, . . . , xm be a sequence of variables1 in P and x̄′ = x′1, . . . , x
′
m be a sequence

of variables in P ′, also of the same length. In the sequel we will refer to b̄ and b̄′ as
control blocks and to x̄ and x̄′ as control variables.

1 For simplicity, we consider variables as memory locations.
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We say that there is a block and variable correspondence between (b̄; x̄) and (b̄′; x̄′)
if, for every pair of runs R = (β0, σ0), (β1, σ1), . . . and R′ = (β′

0, σ
′
0), (β

′
1, σ

′
1), . . . of

the programsP and P ′, respectively, on the same inputs and the same initial store, (that
is, β0 = β′

0 and σ0 = σ′
0) the following conditions hold. Let

R|b̄ = (βi0 , σi0), (βi1 , σi1 ), . . . R′|b̄′ = (β′
j0
, σ′

j0
), (β′

j1
, σ′

j1
), . . .

Then R|b̄ and R′|b̄′ have the same length and for every non-negative integer n the
following conditions hold:

1. βin = b� if and only if β′
jn

= b′�, for all �;
2. σin(x1) = σ′

jn
(x1), . . . , σin(xm) = σ′

jn
(xm);

3. σin+1(x1) = σ′
jn+1

(x1), . . . , σin+1(xm) = σ′
jn+1(xm).

That is, in R and R′ the control blocks are visited in the same order, and the values of
the control variables at the entries and exits of the visited control blocks are the same.

Our main goal is to find, in a fully automatic way, a correspondence between pro-
gram points and variables of P and P ′. Note that we always have a correspondence
when b̄ is an empty sequence. Likewise, we always have a correspondence when x̄ is
an empty sequence. As a consequence, there is no largest correspondence. However,
we are interested in correspondences in which b̄ is “as large as possible”, and similarly
for x̄.

The definition of basic block and variable correspondence above allows us to trade
variable correspondence for block correspondence and vice versa. Consider the follow-
ing programs with n as their arguments:

Program P :
b0 : if n ≤ 0 then

b2 : x1 := n
x2 := 0

else
b3 : x1 := n

x2 := 1
b4 : x1 := n

x3 := x2

Program P ′:
b′0 : if n > 0 then

b′2 : x′2 := 1
else
b′3 : x′2 := 0

b′4 : x′1 := n
x′3 := x′2

The program P ′ can be obtained by applying dead code elimination to P . If we can
establish that x1, x2, and x3 in P correspond to their primed counterparts in P ′, we
could only construct a block correspondence between b0 and b′0, and also between b4
and b′4. The block b2 does not correspond to the block b′3 since the values of x1 and
x′1 after executing these blocks are different. When we sacrifice the correspondence
between x1 and x′1, we obtain a larger block correspondence, that is between b2 and b′3,
and also between b3 and b′2. The resulting block correspondence is crucial if we have to
establish a branch correspondence.

We can introduce variations on the basic block and variable correspondence prob-
lem. For example, if a variable is initialized inside a block, we can restrict the definition
to its value at the block exit only. We can change the definition so that a single block
in one of the programs will correspond to several blocks in another program. This will
help us to cope with such optimizations as loop invariant hoisting. Likewise, we can
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consider the single static assignment (or SSA) [1] form of programs in which a variable
may change its value only inside a single basic block. The technique we discuss in this
paper is equally applicable to these modifications.

4 Random Interpretation

In this section we introduce the technique of random interpretation that allows one
to address the block and variable correspondence problem. The idea of the technique
is to evaluate both the original program and its optimized version separately with the
same initial randomly generated memory state. A memory state can be thought of as
a function mapping memory locations to the content of the memory at these locations.
While evaluating each program, we record the values assigned to each variable and the
program points at which the assignments occur. This record forms a history of values
assigned to a variable. Let us define the notion of history formally.

As usual, we say that a block b defines a variable x if b contains an assignment to
x. Consider a run R of a program P and let x be a variable occurring in P . Let b̄ be the
set of all blocks in P defining x and R|b̄ = (β0, σ0), (β1, σ1), . . .. Then β0, β1, . . . are
the only blocks in this run which may change the value of x. We call the history of x in
R the sequence of pairs

(v0, β0), (v1, β1), . . . (1)

where each vi is the value of x at the exit of βi. Now, given the history hx of x in R of
the form (1) we call the value change sequence of x in R any subsequence of (1)

(vj0 , βj0), (vj1 , βj1), . . .

that can be obtained from (1) by repeated applications of the following transformation:
if the sequence contains two consecutive pairs with the same value:

. . . , (v, βi), (v, βi+1), . . . ,

then remove either (v, βi) or (v, βi+1) from it. This transformation is applied until there
are no such pairs.

Let h = (v0, β0), . . . and h′ = (v′0, β
′
0), . . . be two sequences of value changes. We

write h � h′ if the sequence of values v0, v1, . . . is a prefix of v′0, v
′
1, . . .. In other words,

the length of h is smaller than or equal to the length of h′ and for all k such that (vk, βk)
occur in h we have vk = v′k. We write h � �h′ if h � h′ and h′ � h. We will use the same
notation for histories. Let h and h′ be two histories. Then we write h � h′ if the relation
� holds on the sequences of value changes corresponding to h and h′, and similar for
�� in place of �. For example if the history of a variable x in a run R is

h = (1, b1), (2, b2), (2, b′2), (3, b3), (4, b4), (5, b5),

then there are two value change sequences of x in R:

h1 = (1, b1), (2, b2), (3, b3), (4, b4), (5, b5) and
h2 = (1, b1), (2, b′2), (3, b3), (4, b4), (5, b5).
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Obviously h � �h1 and h � �h2 (the relation �� always holds between a history and the
value change sequence obtained from this history).

Consider another example. Assume that the histories of variables x and x′ in runs
of P and x′ in P ′ with the same initial store are, respectively

h = (1, b1), (2, b2), (3, b3), (4, b4), (5, b5), and
h′ = (1, b′1), (2, b

′
2,1), (2, b

′
2,2), (3, b

′
3), (4, b

′
4), (5, b

′
5).

Then we have h � �h′. This suggests that there may be a correspondence between
(b1, b2, b3, b4, b5;x) and (b′1, b

′
2,1, b

′
3, b

′
4, b

′
5;x

′) and also between (b1, b2, b3, b4, b5;x)
and (b′1, b′2,2, b

′
3, b

′
4, b

′
5;x′).

We are going to use the notions of history and sequence of value changes in trans-
lation validation as follows:

1. Run an interpreter several times on P and P ′ on a randomly generated store, record
histories of variables and guess a block and variable correspondence using the cor-
responding histories.

2. Prove that the guessed correspondence is, indeed, a correspondence;
3. Using this correspondence, prove the equivalence of P and P ′.

This paper is only concerned with the first part of this process. Note that in the first part
we only guess a correspondence, verification of this correspondence is not described
here. Since we only guess a correspondence, we will refer to it in the sequel as a guessed
correspondence.

On interpreting a program, if the content of a memory location is used without any
prior initialization, then that memory location is initialized with a random value. This
is the reason for calling this technique random interpretation. Moreover, since there is
no guarantee that random interpretation terminates, we abort it after some number of
steps.

We guess a correspondence by making several runs of the two programs and mem-
orizing histories of variables. These histories are then compared using the relation ��
for terminated runs and � for aborted ones.

Of course, after guessing a correspondence the verification may fail, after which
we can try to guess another correspondence. We think that our technique can nicely
complement other existing techniques for the following reasons.

(i) The notion of correspondence (as formalized here, or similar notions) seems
to be fundamental in all approaches to translation validation. If one wants to im-
plement a validating compiler, then the compiler should produce a correspondence.
However, translation validation of third-party compilers requires some way of find-
ing a correspondence. (ii) Our technique for guessing a correspondence does not
use symbolic evaluation or proofs and is, therefore, cheap. Moreover, the space
of all possible correspondences is huge, while our techique normally guesses a
reasonably-sized correspondence after a small number of runs. (iii) Other tech-
niques can be combined with ours. For example, if each of the two programs con-
tains a single copy of a call of the same function, we can require that every corre-
spondence includes the blocks with the function calls. In general, one can combine
random interpretation with a symbolic interpretation.
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One can argue that the relationship between histories of variables and correspon-
dences is loose. For example, one might argue that the same variable in the optimized
program may correspond to several variables in the original one. To tackle this problem,
the original program P and the optimized program P ′ are transformed into their SSA
forms prior to interpreting them. In SSA form a block in which a variable can changes
its value is uniquely identified by this variable, therefore the notion of correspondence
can be simplified by using only sequences of variables. Moreover, in SSA form, instead
of using value change sequences, we can simply consider the histories of variables to
guess a variable correspondence.

5 The Intermediate Language IL and the Memory Model

The Syntax of IL. The original program and its optimized version are written in the
same low-level intermediate language, which is subsequently called IL. This section
discussed the syntax and semantics of this language.

Figure 1 describes the syntax of IL. Instructions consist of move instruction, jump
instruction, conditional jump instruction, and return instruction. Every instruction has
a unique label l1, and all of them but jump have the label l2 of the next instruction.
We sometimes denote an instruction by its label. At this early stage, the IL language
does not include function calls. Expressions in the IL language are of the following
forms: integer constant, register2, global variable, escaping memory location3, binary
arithmetic operation, and relational operation.

The Chunk Memory Model. Hitherto, a memory has usually been modelled as an
infinitely long array. In this model its is assumed that memory locations for global
variables do not overlap with each other and with other memory locations. Similarly to
memory locations for registers. Moreover, each stack frame is represented by a finite
sub-array of the infinitely long array.

To prove program equivalences, we sometimes have to provide evidence that up-
dating a variable does not change the values of other variables. For instance, updating
a global variable does not affect the values of other global variables, that is two global
variables g1 and g2 never refer to the same memory location. In the IL language global
variables g1 and g2 are written as [g1] and [g2], where g1 and g2 are memory addresses.
In the above memory model, to provide evidence that the memory locations do not
overlap, we have to show that there exist integers g1 and g2 such that for every integer
n, g1 + n �= g2. This statement is obviously false.

In this section a new memory model is proposed. One may think of this model as
corresponding to the memory model of C. The model describes a memory as a col-
lection of chunks. A chunk is a finite, contiguously allocated set of objects. In this
memory model a register can be considered as a chunk of size one. Thus, there is no
difference between registers and ordinary memory pieces. The values stored in chunks
can either be constants or references to some chunks. Furthermore, in this paper we

2 In this paper the notions of register and temporary are used interchangeably.
3 An escaping memory location is a memory location whose address can be taken.
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Instruction i ::= l1 : mi l2 | l1 : jump(o) | l1 : cjump(rel, l) l2
| l1 : ret

Move Instruction mi ::= lval ← e
Left Value lval ::= r | [a]
Return ret ::= return | return r
Expression e ::= o | rel
Relational Operation rel ::= o1 rel o2

Relational Operator rop ::= >|≥|<|≤|=|
=| . . .
Arithmetic Operation arith ::= o1 bop o2

Arithmetic Operator bop ::= + | − | ∗ | / | . . .
Operand o ::= n | r | g | [a] | arith
Address a ::= r | g | a + ao | ao + a | a− ao
Address Offset ao ::= r | n | ao1 bop ao2

Integer Constant n ::= Z
Register r ::= r1 | r2 | . . .
Global Name g ::= 〈identifiers〉
Label l ::= N

Fig. 1. The intermediate Language IL

b0

r0 ← [FP + 8]
r17 ← r0
r17 = 0

b1

return 0

b2

r0 ← [r0 + 4]
r17 ← r0
r17 
= 0

f

t f
t

Fig. 2. The linked list traversal program of Exam-
ple 1

cFP csf

r �
r + 8

· · ·

· · ·

· · ·

r1

r2

r3

r1 + 4

r2 + 4

�

�

�· · ·

c1

c2

Fig. 3. The chunk-based mem-
ory after interpreting the pro-
gram in Figure 2

focus on intra-procedural optimizations, and thus there is one chunk dedicated to rep-
resenting the current stack frame. Memory locations on this particular chunk are often
called stack memory locations. The new memory model is called the chunk memory
model. This model can be used to provide evidence that some variables never refer to
the same location. For example, such information can be provided by a language stan-
dard (pointers to two incompatible types cannot coincide, memory allocation operator
always returns a new piece of memory etc.).

Example 1. Consider the program in Figure 2. Here, FP denotes the frame pointer. In a
higher-level language the program can be viewed as a program that walks over a linked
list. With this understanding, the memory selection [r0 + 4] denotes the next element
of a node in the linked list.
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The memory after interpreting the program is depicted in Figure 3. The chunk cFP
represents the frame pointer, and the chunk csf is the one dedicated to representing the
current stack frame. The length of the chained chunks depends on

– the random initial value r1 assigned to the chunk csf at the address r + 8, where
r is the random initial value for the frame pointer FP and r1 is a reference to the
chunk c1; and

– the random initial value ri+1 assigned to the chunk ci at address ri +4, where ri+1
is a reference to the chunk ci+1, for i > 1.

Formal Semantics of IL. First we introduce a notion of values. Evaluation of an
expression results in a value, which can either be an integer constant or a reference to a
chunk. The following definition describes values formally:

Value v ::= n | ref ; Reference ref ::= (c, n); Chunk c ::= c1 | c2 | . . .

A reference is a pair (c, n), where c denotes the chunk to which the reference points
and n denotes an index of the chunk. References are considered as memory location.

To describe the semantics, we introduce two operations on memory states. Denote
by M , R, and V the sets of all memory states, references, and values, respectively. The
functions

sel : M ×R→ V and upd : M ×R× V →M

access (respectively, update) memory states. The value sel(m, r) is the content of the
memory state m at the address r, where r is a reference. The memory state upd(m, r, v)
is obtained from the memory state m by updating m at the address r with the value v.

To define the dynamic semantics of IL, we consider registers and names of global
variables as references (c, 0) for some chunk c. The association between them and such
references is formalized using the notion of static environment. The environment con-
sists of two partial injective functions: Envn, which maps names of global variables
and registers to references; and Env l, which maps integers to instructions.

The dynamic semantics of IL is specified in terms of operational semantics given
by a simultaneous inductive definition of the following relations:

Instruction interpretation : (m, i) �→ (m′, i′);
Expression interpretation : (m, e) �→ v.

The instruction interpretation (m, i) �→ (m′, i′) means the following: interpreting the
instruction i with the memory state m yields a new memory state m′, and the inter-
pretation is followed by interpreting the instruction i′ with the new memory state m′.
Likewise for the expression interpretation, but the evaluation does not change the mem-
ory state.

Due to lack of space, we only show some rules in the inductive definition. First,
memory can only be accessed through references. In Example 1 the evaluation of FP+8
in [FP + 8] must result in a reference. The following rule describes this situations:

(m, a) �→ ref sel(m, ref) = v

(m, [a]) �→ v
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Arithmetic operations on references are only applied to the index. Adding two refer-
ences and subtracting a reference from a constant do not make any sense. Thus, the
rules describing binary operations have to distinguish the evaluation results of their
operands, for example:

(m, o1) �→ (c, n1) (m, o2) �→ n2

(m, o1 + o2) �→ (c, n1 + n2)
(m, o1) �→ (c, n1) (m, o2) �→ (c, n2)

(m, o1 − o2) �→ n1 − n2

The right-hand side rule above specifies that subtracting a reference from another refer-
ence is allowed as long as both references point to the same chunk.

Rules for instructions can be described similarly. For example, assigning a value to
a register is described by the following rule for move instructions:

Envn(r) = ref (m, e) �→ v Env l(l2) = i

(m, l1 : r ← e l2) �→ (upd(m, ref, v), i)

The memory location where the value is stored is obtained by looking up Envn.

6 Randomized Interpreter

This section discussed a randomized interpreter that imitates the work of the interpreter
except that the memory state is generated using random number generator.

The Algorithm of the Randomized Interpreter. Consider again the program in Fig-
ure 2. The content of memory location denoted by FP+ 8 is used but without any prior
initialization, so the value of evaluating [FP + 8] for the first time is not known. To
denote the unknown value resulting from expression evaluation, we extend the set of
values by introducing an undefined value •. Initially, when the randomized interpreter
evaluates a program, every location in the memory state contains •. The behavior of the
randomized interpreter can be defined by extending the semantics of IL to work with
the undefined value. However, the extension is not so straightforward for two reasons.
First, reading a location containing • results in a change of memory since the location
will be filled with a random generated value. Second, IL has no type information, so
the randomized interpreter does not know if the location should be initialized with a
constant or a reference.

The first problem is solved by changing the relation of expression evaluation to
allow updating memory states, that is (m, e) �→r (m′, v). To solve the second problem,
we introduce a new kind of value called conditional value. This kind of value is denoted
by (ref1 ? n : ref2), which means that the definite value is n if the content of ref1
was firstly initialized to a reference, or otherwise ref2. Both n and ref2 are often called
the definite forms of the conditional value. Furthermore, we also introduce a function
rand that generates random pairs (ref, n), where ref is a reference to a new chunk.
The content of a newly created chunk is • everywhere.

A conditional value might become definite at some point during an interpretation.
For example, multiplication can only be applied to integer operands. Thus, in multiply-
ing a conditional value (ref ? n1 : ref1) with an integer n2, the conditional value gets
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definite to the integer n1, and the content of ref is known to be firstly initialized with a
reference. To capture this, we introduce a new operation on memory:

def : M ×R× {0, 1} →M.

The operation def(m, ref, b) returns a new memory state m′ obtained from m by up-
dating with a definite value defv every reference ref ′ in m at which sel(m, ref ′) is
(ref ? defv1 : defv2) for some definite values defv1 and defv2, such that, if b is one,
then defv is equal to defv1, otherwise defv2.

Due to lack of space, we only show some rules describing the algorithm of the
randomized interpreter. Suppose, on evaluating [a] with a memory state m, a evaluates
to a reference va, but the memory selection sel(m, va) yields the undefined value. The
interpreter then generates a random conditional value as described by the following
rule:

(m, a) �→r (m′, refa) sel(m′, refa) = • rand() = (ref, n)
(m, [a]) �→r (upd(m′, refa, (refa ? ref : n)), (refa ? ref : n))

If va is a conditional value, then at least one of its definite forms is a reference, and
in turn, va becomes definite to one of its definite references, as shown in the following
rule:

(m, a) �→r (m′, (ref ′ ? refa : na)) sel(def(m′, ref ′, 1), refa) = v v �= •
(m, [a]) �→r (def(m′, ref ′, 1), v)

In the case that both definite forms are references, the interpreter has to make a ran-
dom choice, which can easily described by non-deterministic rules. For instructions,
the following rule describes the algorithm for interpreting move instructions:

(m, a) �→r (m′, va) (m, e) �→r (m′′, v) (m′′, a) �→r (m′′, ref) Env l(l2) = i

(m, l1 : [a] ← e l2) �→r (upd(m′′, ref, v), i)

The address a of [a] above is evaluated twice in order to make the order of interpretation
irrelevant.

Again, due to limited space, we omit the proofs of soundness and completeness of
the interpreter with respect to the IL semantics.

Escaping Memory Locations in SSA. In order to preserve SSA property we have
to ensure that each memory word is written only once. In many compiler textbooks,
memory is considered as a “variable”. We assume to have two new expressions to the
IL syntax, one is store expression for creating a new value (of the entire memory), and
the other is load which is similar to sel but occurs in the syntactic level.

Consider an excerpt of a program below and its SSA form:

r1 ← [r2] ⇒ r1 ← load(M0, r2)
[r2] ← r1 ⇒ M1 ← store(M0, r2, r1)

This SSA form does not conform to the IL semantics. Recall that in the chunk mem-
ory model registers are part of the memory. Thus, the first instruction above updates
memory M0, but the second instruction uses the old M0 as an argument of store.
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An alternative solution to this problem is to leave the assignment [a] ← e intact, but
dynamically create and evaluate a new temporary t and an assignment t← e whenever
the former assignment is evaluated. In detail, for every assignment [a] ← e, suppose a
and e evaluate to ref and v respectively, we create an assignment of v to some chunk.
The chunk is associated with ref and the point where [a] ← e occurs.

First, we introduce a new environment Envp which maps pairs of references and
instruction labels (program points) to references. The resulting reference is said to be
associated with the pair of reference and label given as arguments to Envp. The fol-
lowing rule describes formally the above solution to the SSA problem:

(m, a) �→ ref (m, e) �→ v Env l(l′) = i′ Envp(ref, l) = ref ′

m, l1 : [a] ← e l2 �→ (upd(upd(m, ref, v), ref ′, v), i′)

Note that, for the sake of clarity, the above rule assumes that we do not deal with any
conditional value.

Introducing a new temporary for every escaping variable yields many histories to
be analyzed. To reduce the number of histories, first we do not record values stored in
memory locations of the current stack frame. These memory locations represent vari-
ables in the program. Since we dynamically create a new temporary every time we write
to a stack memory location, the resulting temporaries are the SSA form of the variables
represented by these memory locations. This condition also holds when a stack memory
location represents more than one variable in the program.

Second, it is not necessary to create a new temporary if the escaping memory lo-
cation is not represented by any stack memory location. That is, for any instruction
l1 : [a] ← e l2 where a evaluates to (c, n) for some index n, but chunk c does not rep-
resent the stack, we do not create a new temporary. Again, for simplicity, the following
definition assumes that we do not deal with any conditional value:

(m, a) �→ ref ref = (csf , n) (m, e) �→ v Env l(l2) = i′ Envp(ref, l1) = ref ′

m, l1 : [a] ← e l2 �→ (upd(upd(m, ref, v), ref ′, v), i′)

(m, a) �→ ref ref = (c, n) c 
= csf (m, e) �→ v Env l(l2) = i′

m, l1 : [a] ← e l2 �→ (upd(m,ref, v), i′)

The chunk csf is the chunk representing the current stack frame.
Third, recall that writing to a memory location like (c, n) above gives rise to a

program’s side-effect. To be equal, the original program P and the optimized program
P ′ must have the same side-effects. That is, for every instruction l1 : [a] ← e l2 in
P there is a corresponding instruction l′1 : [a′] ← e′ l′2 in P ′ such that evaluations
of a and a′ yield the same sequence of references, and also evaluations of e and e′

yield the same sequence of values. For this purpose, we statically add a new instruction
l0 : r ← a l1 before the instruction l1, and a new instruction l′0 : r′ ← a′ l′1 before the
instruction l′1, where r and r′ are new registers. Thus, in order to be equivalent, r and
r′ must correspond to each other. Moreover, having r and r′, we do not have to create
histories for the memory locations referred by a and a′ above. Hence, the number of
histories to be analyzed decreases.

The data produced by the randomized interpreter are then processed by an analyzer.
The analyzer implements an algorithm for examining the value change sequences of all



264 I. Narasamdya and A. Voronkov

variables, and guessing a basic block and variable correspondence. A full description
of the analyzer is given in the extended version of this paper.

7 Experimental Results

This section describes the results of some experiments that have been conducted. The
compiler used in the experiments is the GNU C compiler (GCC) 3.3.3. In every compi-
lation, the compiler is instructed to dump the RTL, which is the intermediate represen-
tation used by the GCC, after performing the machine dependent reorganization. Then,
the RTL dump is translated into the IL language, which in turn is interpreted by the
randomized interpreter.

More precisely, in each experiment, programs are compiled twice, the first compi-
lation is performed without any optimization (O0), and the second one with the (O3)-
level optimization. The latter optimizations typically include constant folding, copy and
constant propagation, dead code and unreachable code elimination, algebraic simpli-
fication, local and global common subexpression elimination followed by jump opti-
mization, partial redundancy elimination, loop invariant hoisting, induction variable
elimination and strength reduction, branch optimization, loop inversion, loop reversal,
and loop unrolling.

For more extensive experiments we ran the randomized interpreter on the source
code of GCC 3.3.3. The interpreter is developed incrementally, and the current im-
plementation only supports 4-byte integer mode. The interpreter at the moment could
interpret 299 functions out of 5, 714 functions which comprise the core of GCC. We
are still developing the interpreter further to make it able to interpret all functions in the
source of GCC. Most of the GCC functions that can be interpreted by the randomized
interpreter are small functions; in average 25 lines of code.

Table 1 shows the result of running the interpreter on the source of GCC. We divide
the table into several columns based on the size of the functions. Information that we
obtain from the experiments is the number of points and variables in the correspon-
dence, the number of visited variables during the interpretations, percentage of code
coverage, visited branches, and time statistics. In the experiments the interpreter is set
to execute at most 10, 000 lines of code.

For small functions whose sizes are less than 10 lines of code, the original and the
optimized versions are almost the same. Table 1 shows that the interpreter could cover
almost all code and visit all branches in these functions. Thus, the analyzer could pro-
duce a high percentage of block correspondence. For functions whose sizes are greater
than 10 but less than 50 lines of code, the interpreter could still cover a large portion
of the functions and also visit most of their branches. The code coverage is important
since more lines of code that can be covered, the clearer the behaviors of the functions
can be described, and the more block correspondence can be produced. Moreover, most
of control variables are those used in the conditional expressions in the branches, so the
more branches are visited the more point correspondence can be produced.

For functions, whose sizes are greater than 50 lines of code, the interpreter has
problem with covering all code in these functions. Table 1 shows that more than 80% of
code is not covered. This causes the percentage of point correspondence small. The code



Finding Basic Block and Variable Correspondence 265

Table 1. The result of running the randomized interpreter and the analyzer on the source of GCC

loc ≤ 10 10 < loc ≤ 25 25 < loc ≤ 50
P P ′ P P ′ P P ′

Blocks in correspondence 83.77% 81.92% 35.05% 29.56% 17.92% 20.43%

Variables in correspondence 91.97% 93.16% 76.55% 73.72% 87.90% 86.04%

Number of visited variables 12.28 10.46 26.2 18.61 19.33 20.4

Code coverage 90.16% 88.82% 50.37% 51.58% 30.71% 24.65%

Visited branches 97.74% 96.62% 72.66% 75.99% 41.21% 43.33%

Interpretation time 0.056s 0.022s 0.170s 0.090s% 0.155s 0.046s

Analysis time 0.110s 0.102s 0.579s 0.617s 1.083s 0.653s

50 < loc ≤ 100 loc > 100
P P ′ P P ′

Blocks in correspondence 11.24% 9.06% 8.06% 6.03%

Variables in correspondence 90.04% 67.01% 95.23% 67.08%

Number of visited variables 19.0 18.5 21.0 20.0

Code coverage 14.61% 15.81% 8.83% 10.67%

Visited branches 23.81% 25.25% 14.34% 17.34%

Interpretation time 0.004s 0.002s 0.004s 0.001s

Analysis time 0.001s 0.002s 0.002s 0.001s

coverage problem has long been known in program testing, that is to produce test cases
that could cover all code in the function. We plan to tackle this problem by interpreting
the function and its optimized version from points that are known to correspond to
each other, and also combining our technique with symbolic interpretation to produce
random inputs that can cover all code in these functions.

8 Discussion and Conclusion

Compared to the technique proposed in other papers, our technique is cheap since it
requires no theorem proving or symbolic evaluation. Moreover, our technique can give
reasonable results even in cases where other techniques do not work. For example, in
the case of the loop reversal optimization our technique can still find correspondence
between variables before and after the loop. But the price to pay is that the guessed
correspondence has to be verified by a theorem prover. In most examples we studied
such a verification was trivial. However, to get a full understanding of the technique,
our system has to be combined with a VC generator and VC checker.

There are also examples when our technique may not be appropriate. For example,
using random values may be inappropriate when one of the branches is “hard” to reach.
Gulwani and Necula [3] propose a very interesting technique, also based on random
inputs, for solving this problem, but it is only applicable to a very special class of
programs. We believe that our technique can be improved both by “correcting” random
values as in [3] and also by mixing symbolic interpretation with the random one.
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The definition of basic block and variable correspondences in Section 3 does not
capture some optimizing transformations. For example, consider the following
programs:

P :
x1 := 0;
do
i := i+ 1;
x1 := 1;
x2 := i+ x1;

while i < n
x3 := x1;

P ′ :
x1 := 1;
do
i := i+ 1;
x2 := i+ x1;

while i < n
x3 := x1;

P ′ is obtained by applying loop invariant hoisting and dead code elimination to P . The
loop bodies of the two programs correspond to each other. Moreover, the loop body of
P also corresponds to the assignment x1 := 1 in P ′ since an instance of this assign-
ment is executed many times in P . However, our definition of correspondence does not
capture this case. Indeed, it is hard to give a simple but general formal definition of
basic block and variable correspondence that can capture all existing optimizing trans-
formations. Our definition can be extended further to capture more transformations. For
example, by adding some properties into the definition to allow a block to correspond
to more than one other block in the runs will capture the correspondence of the above
programs. Although our definition of correspondence does not capture the above case,
in the SSA form, the randomized interpreter and the analyzer can produce the corre-
spondence of the loop body of P and the assignment x1 := 1 in P ′.

We are still improving the definition of correspondence. The definition we provide
in this paper is considerably simple and easy-to-understand, but nonetheless captures
the notion of correspondence needed to prove the equivalence of two programs. Partic-
ularly in the above example, without the correspondence of x1, but as long as we can
establish the correspondence of variables i, n, x2, and x3, the equivalence of P and P ′

can easily be proved. Indeed, the randomized interpreter and the analyzer can establish
such a correspondence.
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Abstract. We show that the idea of predicates on heap objects can be
cast in the framework of predicate abstraction. This leads to an alterna-
tive view on the underlying concepts of three-valued shape analysis by
Sagiv, Reps and Wilhelm. Our construction of the abstract post operator
is analogous to the corresponding construction for classical predicate ab-
straction, except that predicates over objects on the heap take the place
of state predicates, and boolean heaps (sets of bitvectors) take the place
of boolean states (bitvectors). A program is abstracted to a program
over boolean heaps. For each command of the program, the correspond-
ing abstract command is effectively constructed by deductive reasoning,
namely by the application of the weakest precondition operator and an
entailment test. We thus obtain a symbolic framework for shape analysis.

1 Introduction

The transition graph of a program is formed by its states and the transitions
between them. The idea of predicate abstraction [6] (used in a tool such as
SLAM [2]) is to abstract a state by its evaluation under a number of given
state predicates; each edge between two concrete states in the transition graph
gives rise to an edge between the two corresponding abstract states. One thus
abstracts the transition graph to a graph over abstract states.

For a program manipulating pointers, each state is represented by a heap
graph. A heap graph is formed by the allocated objects in the heap and pointer
links between them. The idea of three-valued shape analysis [13] is to apply to the
heap graph the same abstraction that we have applied to the transition graph.
One abstracts an object in the heap by its evaluation under a number of heap
predicates ; edges between concrete objects in the heap graph give rise to edges
between the corresponding abstract objects. One thus abstracts a heap graph to
a graph over abstract objects.

The analogy between predicate abstraction and the abstraction proposed in
three-valued shape analysis is remarkable. It does not seem helpful, however,
when it comes to the major challenge: how can one compute the abstraction of
the transition graph when states are heap graphs and the abstraction is defined
on objects of the heap graph? This paper answers a refinement of this question,
namely whether the abstraction can be defined and computed in the formal setup
and with the basic machinery of predicate abstraction.

Our technical contributions that are needed to accomplish this task are sum-
marized as follows:

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 268–283, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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– We omit explicit edges between abstract objects in the abstract state, since
we observe that one can also encode edge relations implicitly using appropri-
ate heap predicates on objects. This makes it possible to define the abstract
post operator by local updates of the values of heap predicates.

– We show that one can implement the abstraction by a simple source-to-
source transformation of a pointer program to an abstract finite-state pro-
gram which we call a boolean heap program. This transformation is analogous
to the corresponding transformation in predicate abstraction, except that
predicates over objects on the heap take the place of state predicates and
boolean heaps (sets of bitvectors) take the place of boolean states (bitvec-
tors).

– We formally identify the post operator of a boolean heap program as an
abstraction of the best abstract post operator on an abstract domain of
formulas. For each command of the program, the corresponding abstract
command is constructed by the application of a weakest precondition opera-
tor on heap predicates and an entailment test (implemented by a syntactic
substitution resp. by a call to a theorem prover).

Outline. In Section 2 we give related work; in particular, we summarize the key
concepts of predicate abstraction. Section 3 gives the algorithmic description of
our analysis. Section 4 defines the formal semantics of programs manipulating
pointers. In Section 5 we give a theory of heap predicates that extends the no-
tion of state predicates and state predicate transformers to predicates on heap
objects and heap predicate transformers. Section 6 provides a formal definition
of our analysis in the framework of abstract interpretation. In Section 7 we for-
mally identify the abstract system described in Section 3 as a composition of
additional abstraction functions with the best abstract post operator on our ab-
stract domain. Section 8 concludes. Omitted proofs can be found in the extended
version of this paper1.

2 Related Work

In [13] Sagiv, Reps and Wilhelm describe a parametric framework to shape anal-
ysis based on three-valued logic. They abstract sets of states by three-valued logi-
cal structures. The abstraction is defined in terms of equivalence classes of objects
in the heap that are induced by a finite set of predicates on heap objects. We
use several ideas from this approach. In particular, there is a strong connection
between their abstract domain and ours: a translation from three-valued logical
structures, as they arise in [13], into formulas in first-order logic is given in [15].
Shape analysis constraints [10] extend this translation to a boolean algebra of
state predicates that is isomorphic to the class of three-valued logical structures
in [13]; our abstract domain is a fragment of shape analysis constraints.

1 Available on the web at http://www.mpi-inf.mpg.de/~wies/papers/boolean-

heaps-extended.pdf
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In [16] a symbolic algorithm is presented that can be used for shape analysis
à la [13]. It is based on an assume operation that is implemented using a de-
cision procedure. The assume operation allows inter-procedural shape analysis
based on assume-guarantee reasoning. Moreover, assume can be instantiated to
compute best abstraction functions, most-precise post operators, and the meet
operation for abstract domains of three-valued logical structures. In our frame-
work we do not depend on an intermediate representation of sets of states in
terms of three-valued logical structures. We work exclusively on formulas.

PALE [12] is a Hoare-style system for the analysis of pointer programs that
is based on weak monadic second order logic over trees. Its degree of automation
is restricted, because loops in the program have to be manually annotated with
loop invariants. Also the class of data structures that PALE is able to handle
is restricted to graph types [9]. In our approach we synthesize loop invariants
automatically. Furthermore, our analysis is not restricted a priori to a particular
class of data structures; which data structures our analysis is able to treat only
depends on the capabilities of the underlying theorem prover that is used to
compute the abstraction.

Software model checkers such as SLAM [2] use predicate abstraction [6]
to abstract the concrete transition system into a finite-state boolean program.
A state of the resulting boolean program, i.e. an abstract state, is given by a
bitvector over the abstraction predicates. Each transition of the concrete system
gives rise to a corresponding simultaneous update of the predicate values in the
boolean program.

General scheme
Concrete command:
c

Example
Concrete command:

var x : integer

x := x + 1

State predicates:
P = {p1, . . . , pn}

State predicates:

p1
def
= x = 0, p2

def
= x > 0

Abstract boolean program:

var p1, . . . , pn : boolean

for each pi ∈ P do

if wp# c pi then pi := true

else if wp# c (¬pi) then pi := false

else pi := ∗

Abstract boolean program:

var p1, p2 : boolean

if false then p1 := true

else if p1 ∨ p2 then p1 := false

else p1 := ∗
if p1 ∨ p2 then p2 := true

else if ¬p1 ∧¬p2 then p2 := false

else p2 := ∗

Fig. 1. Construction of a boolean program from a concrete command via predicate

abstraction. All predicates are updated simultaneously. The value ’*’ stands for non-

deterministic choice.
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Figure 1 shows the transformation of a concrete command to the corre-
sponding predicate updates in the abstract boolean program. The actual ab-
straction step lies in the computation of wp# c p – the best boolean under-
approximation (in terms of abstraction predicates) of the weakest precondition
of predicate p and command c (for example false is the best under-approximation
of wp#(x := x + 1) (x = 0) with respect to p1 and p2). One of the advantages
of predicate abstraction is that the computation of this operator can be done
offline in a pre-processing step (using a decision procedure or theorem prover).
Therefore, one has a clear separation between the abstraction phase and the
actual fixed point computation of the analysis.

There are several approaches that use classical predicate abstraction for shape
analysis; see e.g. [5] and [1]. As discussed in [11], if one wants to gain the same
precision with classical predicate abstraction as for the abstract domain proposed
in [13] then in general one needs an exponential number of state predicates
compared to the number of predicates on heap objects that are used in [13].
This seems to be the major drawback of using standard predicate abstraction
for shape analysis. We solve this problem by combining the core ideas from
both frameworks. In particular, we use Cartesian abstraction in a way that is
reminiscent of the approach described in [3]. However, we restrict our attention
to safety properties, whereas in [1] also liveness properties are considered.

3 Boolean Heap Programs

Our analysis proceeds as follows: (1) we choose a set of predicates over heap
objects for the abstraction (defining the abstract domain); (2) we construct an
abstract finite-state program in analogy to predicate abstraction (the abstract
post operator); and (3) we apply finite-state model checking to the abstract
program (the fixed point computation). In the following we explain in detail
how the abstract domain and the construction of the abstract program look like.

For an abstract domain given by graphs over abstract objects it is difficult to
compute the abstract post operator as an operation on the whole abstract state.
Instead one would like to represent the abstract post operator corresponding
to a pointer command by local updates. Local means that one updates each
abstract object in isolation. However, pointer commands update pointer fields.
The problem is: how can one account for the update of pointer fields by local
updates on abstract objects?

The key idea is that we use a set of abstract objects to represent an abstract
state, i.e. we omit edges between abstract objects. A state s is represented by
a set of abstract objects, if every concrete object in s is represented by one ab-
stract object in the set. Instead of having explicitly-encoded pointer relations in
the abstract state, pointer information is implicitly encoded using appropriate
predicates on heap objects for the abstraction. In particular, the presence or
absence of an edge between two abstract objects can be encoded into heap pred-
icates on objects. Adding these predicates to the set of abstraction predicates
will preserve this information in the abstraction; see [14].
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General scheme
Concrete command:
c

Example
Concrete command:

var x, y, z : list

x.next := y

Unary heap predicates:
P = {p1(v), . . . , pn(v)}

Unary heap predicates:

p1(v)
def
= x = v, p2(v)

def
= y = z

p3(v)
def
= next(v) = z

Boolean heap program:

var V : set of bitvectors over P
for each p ∈ V do

for each pi ∈ P do

if p |= hwp# c pi

then p.pi := true

else if p |= hwp# c (¬pi)

then p.pi := false

else p.pi := ∗

Boolean heap program:

var V : set of bitvectors over {p1, p2, p3}
for each p ∈ V do

if p |= p1 then p.p1 := true

else if p |= ¬p1 then p.p1 := false

if p |= p2 then p.p2 := true

else if p |= ¬p2 then p.p2 := false

if p |= ¬p1 ∧ p3 ∨ p1 ∧ p2 then

p.p3 := true

else if p |= ¬(¬p1 ∧ p3 ∨ p1 ∧ p2)

then p.p3 := false

Fig. 2. Transformation of a concrete command into a boolean heap program

The set of abstract objects defining the abstract state is represented by a
set of bitvectors over abstraction predicates; we call such a set of bitvectors a
boolean heap. We abstract a pointer program by a boolean heap program as de-
fined in Fig. 2. The construction naturally extends the one used in predicate
abstraction which is given in Fig. 1. The difference is that a state of the abstract
program is not given by a single bitvector, but by a set of bitvectors, i.e a boolean
heap. Transitions in boolean heap programs change the abstract state via local
updates on abstract objects (p.pi := true) rather than global updates on the
whole abstract state (pi := true). Consequently, we replace the abstraction of
the weakest precondition operator on state predicates wp# by the abstraction of
a weakest precondition operator on heap predicates hwp#. While causing only
a moderate loss of precision, this construction avoids the exponential blowup
in the construction of the abstract program that occurs when standard pred-
icate abstraction is used to simulate a graph based abstract domain with an
appropriate set of state predicates.

In the rest of the paper we give a formal account of boolean heap programs.
In particular, we make precise what it means to compute the operator hwp#.
Furthermore, we identify the post operator that corresponds to a boolean heap
program as an abstraction of the best abstract post operator on boolean heaps.
This way we identify the points in the analysis where we can lose precision.
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4 Pointer Programs

We consider the language of pointer programs defined in Fig. 3. In order to
highlight our main observations, we make several simplifications: (1) we do not
model the program counter; (2) we do not consider allocation or deallocation
of objects; and (3) we do not treat null pointers explicitly; in particular, we do
not treat dereferences of null pointers. However, none of these simplifications
imposes inherent restrictions of our results.

A state of the program is represented as a logical structure over the vocab-
ulary of program variables Var and pointer fields Field . Since we do not treat
allocation and deallocation of objects, we fix a set of objects Heap that is not
changed during program execution and serves as the common universe of all
program states. Therefore, a state degenerates to an interpretation function, i.e.
a valuation of program variables to elements of Heap and pointer fields to total
functions over Heap. Note that we define states as a Cartesian product of inter-
pretation functions, but for notational convenience we implicitly project to the
appropriate component function when a symbol is interpreted in a state.

The transition relation of a pointer program gives rise to the definition of
the standard predicate transformers. The predicate transformers post (strongest
postcondition) and wp (weakest precondition) are defined as usual.

5 Heap Predicates

We will abstractly represent sets of program states using formulas. We consider
a logic given with respect to the signature of program variables Var and pointer
fields Field . Terms in formulas are built from constant symbols x ∈ Var that are
interpreted as heap objects and function symbols f ∈ Field that are interpreted
as functions on heap objects. Formulas are interpreted in states (together with
a variable assignment for the free variables). The following discussion is not
restricted to a particular logic. The only further assumption we make is that the
logic is closed under syntactic substitutions.

Formulas may contain free first-order variables v1, . . . , vn. There are two
equivalent ways to define the denotation of such formulas. As a running example
consider the formula ϕ(v) with free variable v given by:

ϕ(v) ≡ f(v) = z .

The intuitive way of defining the denotation [[ϕ(v)]] of ϕ(v) is a function mapping
a state s to the set of heap objects that when assigned to the free variable v
satisfy ϕ in s:

λ s ∈ State . { o ∈ Heap | s f o = s z } .

For technical reasons we use an equivalent definition. Namely, we define [[ϕ(v)]]
as a function mapping an object o to the set of all states in which ϕ holds if v
is assigned to o:

[[ϕ(v)]] = λ o ∈ Heap . { s ∈ State | s f o = s z } .
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Syntax of expressions and commands:

x ∈ Var − set of program variables

f ∈ Field − set of pointer fields

e ∈ OExp ::= x | e.f
b ∈ BExp ::= e1 = e2 | ¬b | b1 ∧ b2

c ∈ Com ::= e1 := e2 | assume(b)

Semantics of expression and commands:

o ∈ Heap − nonempty set of allocated objects

s ∈ State
def
= (Var → Heap)× (Field → Heap → Heap)

[[x]] s
def
= s x

[[e.f ]] s
def
= s f ([[e]] s)

[[e1 = e2]] s
def
= [[e1]] s = [[e2]] s

[[¬b]] s
def
= ¬([[b]] s)

[[b1 ∧ b2]] s
def
= [[b1]] s ∧ [[b2]] s

[[x := e]] s s′
def
= s′ = s[x �→ [[e]] s]

[[e1.f := e2]] s s′
def
= s′ = s[f �→ (s f)[[[e1]] s �→ [[e2]] s]]

[[assume(b)]] s s′
def
= [[b]] s ∧ s = s′

Predicate transformers:

post, wp ∈ Com → 2State → 2State

post c S
def
= { s′ | ∃s. [[c]] s s′ ∧ s ∈ S }

wp c S
def
= { s | ∀s′. [[c]] s s′ ⇒ s′ ∈ S }

Fig. 3. Syntax and semantics of pointer programs

Definition 1 (Heap Formulas and Heap Predicates). Let ϕ(v) be a for-
mula with n free first-order variables v = (v1, . . . , vn). The denotation [[ϕ(v)]] of
ϕ(v) is defined by:

[[ϕ(v)]]
def
= λ o ∈ Heapn . { s ∈ State | s, [v �→ o] |= ϕ(v) } .

We call the denotation [[ϕ(v)]] an n-ary heap predicate. The set of all heap
predicates is given by:

HeapPred [n]
def
= Heapn → 2State .

We skip the parameter n for heap predicates whenever this causes no confusion.
Moreover, we consider 0-ary heap predicates as state predicates and call closed
heap formulas state formulas.
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We want to implement predicate transformers (which are operations on sets
of states) through operations on heap formulas. However, heap formulas denote
heap predicates rather than sets of states. We now exploit the fact that for a
heap predicate p we have that p o is a set of states. This allows us to generalize
the predicate transformers from sets of states to heap predicates.

Definition 2 (Heap Predicate Transformers). The predicate transformers
post and wp are lifted to heap predicate transformers as follows:

hpost, hwp ∈ Com → HeapPred → HeapPred

hpost c p
def
= λ o . post c (p o)

hwp c p
def
= λ o . wp c (p o) .

Since the heap predicate transformers are obtained from the standard pred-
icate transformers via a simple lifting, their characteristic properties are pre-
served. In particular, the following proposition holds.

Proposition 1. Let c be a command. The heap predicate transformers hpost
and hwp form a Galois connection on the boolean algebra of heap predicates, i.e.
for all p, p′ ∈ HeapPred [n] and o ∈ Heapn:

hpost c p o ⊆ p′ o ⇐⇒ p o ⊆ hwp c p′ o .

The operator hwp is one of the ingredients that we need to construct boolean
heap programs. Therefore, it is important that it can be characterized in terms of
a syntactic operation on formulas. Ideally this operation does not introduce ad-
ditional quantifiers. Such a characterization of hwp exists, because the transition
relation is deterministic. For the command c = (x.f := y) we have e.g.:

hwp c [[ϕ(v)]] = λ o . { s | ∀s′. [[c]] s s′ ⇒ s′ ∈ ([[ϕ(v)]] o) }
= [[ϕ(v)[f := λ v . if v = x then y else f(v)]]]
= [[v = x ∧ y = z ∨ v �= x∧ f(v) = z]] .

The resulting formula denotes the object in a state s whose f -successor is pointed
to by z in the successor state of s under c. The correctness of the above trans-
formation is justified by the following proposition.

Proposition 2. Let ϕ(v) be a heap formula. The operator hwp applied to the
denotation of ϕ(v) reduces to a syntactic operation:

hwp (x := e) [[ϕ(v)]] = [[ϕ(v)[x := e]]]
hwp (e1.f := e2) [[ϕ(v)]] = [[ϕ(v)[f := λ v . if v = e1 then e2 else f(v)]]]
hwp (assume(b)) [[ϕ(v)]] = [[b → ϕ(v)]] .

Note that the lambda terms do not cause any problems even if we restrict
to first-order logics. The function symbols that are substituted by lambda terms
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always occur in β-redexes, i.e. as in the example above, it is always possible to
rewrite the result of the substitution to an equivalent lambda-free formula.

Due to Prop. 2 it is convenient to overload hwp both to a function on heap
predicates as well as a function on heap formulas. Whenever we apply hwp to a
heap formula we refer to the corresponding syntactic operation given in Prop. 2.

6 Heap Predicate Abstraction

We systematically construct an abstract post operator by following the frame-
work of abstract interpretation [4]. Hence, we need to provide an abstract do-
main, as well as an abstraction and meaning function.

We propose an abstract domain that is given by a set of state formulas and
is parameterized by unary heap predicates. For the rest of the paper we fix
a particular finite set of unary heap predicates P . We consider P to be given
as a set of heap formulas with one dedicated free variable v. For notational
convenience we consider P to be closed under negation.

Definition 3 (Boolean Heaps). A boolean heap over P is a formula Ψ of the
form:

Ψ = ∀v.
∨
i

Ci(v)

where each Ci(v) is a conjunction of heap predicates in P. We denote the set of
all boolean heaps over P by BoolHeap.

In order to allow our analysis to treat joins in the control flow adequately,
we take the disjunctive completion over boolean heaps as our abstract domain.

Definition 4 (Abstract Domain). The abstract domain over P is the pair
〈AbsDom, |=〉, where AbsDom is given by all disjunctions of boolean heaps:

AbsDom
def
= {

∨
Ψ∈F

Ψ | F ⊆fin BoolHeap } .

The partial order |= on elements in AbsDom is the entailment relation on for-
mulas.

A boolean heap can be represented as a set of bitvectors over P , one bit-
vector for each conjunction. Hence, it is easy to see that the abstract domain is
isomorphic to sets of sets of bitvectors over P . Moreover, the abstract domain is
finite and both closed under disjunctions and conjunctions2. Therefore, it forms
a complete lattice.

The meaning function γ that maps elements of the abstract domain to sets
of states is naturally given by the denotation function, i.e. each formula Ψ of the
abstract domain is mapped to the set of its models:

γ ∈ AbsDom → 2State

γ Ψ
def
= [[Ψ ]] .

2 Conjunctions distribute over the universal quantifiers in boolean heaps.
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The abstraction function α is determined by:

α ∈ 2State → AbsDom

α S
def
=
∧

{Ψ ∈ AbsDom | S ⊆ [[Ψ ]] } .

The function γ distributes over disjunctions and is thus a complete meet mor-
phism. Together with the fact that we defined α as the best abstraction function
with respect to γ, we can conclude that α and γ form a Galois connection be-
tween concrete and abstract domain:

〈2State ,⊆〉 α−→←−γ 〈AbsDom, |=〉 .

If we consider a state s, the abstraction function α maps the singleton {s}
to the smallest boolean heap that is valid in s. This boolean heap describes the
boolean covering of heap objects with respect to the heap predicates P .

In order to describe these smallest boolean coverings, we assign an abstract
object αs(o) to every object o and state s. This abstract object is given by a
monomial (complete conjunction) of heap predicates and represents the equiva-
lence class of all objects that satisfy the same heap predicates as o in s:

αs(o)
def
=
∧

{ p(v) ∈ P | s, [v �→ o] |= p(v) } .

The smallest boolean heap that abstracts s consists of all abstract objects αs(o)
for objects o ∈ Heap. Formally, the abstraction of a set of states S is characterized
as follows:

α S ≡
∨
s∈S

∀v.
∨

o∈Heap

αs(o) .

o αs1(o)

Heap

oαs2(o)

Heap

Fig. 4. The boolean heaps for two states s1 and s2. The same object o ∈ Heap falls

into different equivalence classes αs1(o) and αs2(o) for each of the states s1 and s2.

This leads to a different boolean covering of the set Heap in the two states and hence

to different boolean heaps.
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7 Cartesian Abstraction

According to [4] the best abstract post operator post# is given by the compo-
sition of α, post and γ. In the following, we fix a command c and consider all
applications of predicate transformers with respect to this particular command.
Using the characterization of α from the previous section, we get:

post#(Ψ)
def
= α ◦ post ◦γ(Ψ) ≡

∨
s∈[[Ψ ]]

∀v.
∨

o∈Heap

αpost({s})(o) .

In order to compute the image of Ψ under post# we need to check for each
boolean heap whether it appears as one of the disjuncts in post#(Ψ). Given that
n is the number of (positive) heap predicates in P , considering all 22n

boolean
heaps explicitly results in a doubly-exponential running time for the computation
of post#. Therefore, our goal is to develop an approximation of the best abstract
post operator that can be easily implemented. However, we require this operator
to be formally characterized in terms of an abstraction of post#.

Since the best abstract post operator distributes over disjunctions, we char-
acterize the abstraction of post# on boolean heaps rather than their disjunctions.
In the following, consider the boolean heap Ψ given by:

Ψ = ∀v.ψ(v) .

As illustrated in Fig. 5, the problem is that even if we apply post# to the single
boolean heap Ψ , its image under post# will in general be a disjunction of boolean
heaps. We first abstract a disjunction of boolean heaps by a single boolean heap.
This is accomplished by merging all coverings represented by boolean heaps
in post#(Ψ) into a single one. That means the resulting single boolean heap
represents a covering of all objects for all states that are models of post#(Ψ).

We define the best abstractions of the heap predicate transformers with re-
spect to the set of all boolean combinations of heap predicates in P (denoted by
BC(P)):

hpost#(ψ(v))
def
=
∧

{ϕ(v) ∈ BC(P) | ψ(v) |= hwp(ϕ(v)) }

hwp#(ψ(v))
def
=
∨

{ϕ(v) ∈ BC(P) | ϕ(v) |= hwp(ψ(v)) } .

By Prop. 1 and the definition of hpost# respectively hwp# it is easy to see that
these two operators again form a Galois connection on the set of all boolean
combinations of heap predicates in P .

Formally, the approximation of the best abstract post that we described
above corresponds to the application of the best abstraction of the operator
hpost to the heap formula ψ(v).

Proposition 3. Let Ψ = ∀v.ψ(v) be a boolean heap. Applying hpost# to ψ(v)
results in an abstraction of post#(Ψ):

post#(Ψ) |= ∀v. hpost#(ψ(v)) .
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Heap

Ψ = ∀v.ψ(v)

post# ∨

Heap

hpost#

post#(Ψ)

Heap

Heap

∀v. hpost#(ψ(v))

Fig. 5. Application of post# to a single boolean heap Ψ and its approximation using

hpost#

Since the operator hpost# again distributes over disjunctions, we can com-
pute the new covering by applying hpost# locally to each disjunct in ψ(v). That
is, if ψ(v) is given as a disjunction of abstract objects:

ψ(v) =
∨
i

Ci(v)

then for each Ci(v) we compute the new covering hpost#(Ci(v)) of objects rep-
resented by Ci(v) for the states satisfying post#(Ψ).

However, computing this localized post operator is still an expensive oper-
ation. The result of hpost# applied to an abstract object will in general be a
disjunction of abstract objects. We face the same problem as before: we would
have to consider all 2n monomials over heap predicates, in order to compute the
precise image of a single abstract object under hpost#.

A disjunction of conjunctions over abstraction predicates can be represented
as a set of bitvectors. In the context of predicate abstraction one uses Cartesian
abstraction to approximate sets of bitvectors [3]. For a set of bitvectors repre-
sented by a boolean formula ψ(v), the Cartesian abstraction αCart(ψ(v)) is given
by the smallest conjunction over abstraction predicates that is implied by ψ(v):

αCart(ψ(v))
def
=
∧

{ p(v) ∈ P | ψ(v) |= p(v) } .

Figure 6 sketches the idea of Cartesian abstraction in our context. It abstracts
all abstract objects in the image under the operator hpost# by a single conjunc-
tion. Composing the operator hpost# with the Cartesian abstraction function
gives us our final abstraction of the best abstract post operator.
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o1

o2

Heap

C

hpost#

o1

o2

hpost#(C)

Heap

αCart

o1

o2

αCart ◦ hpost#(C)

Heap

Fig. 6. Application of hpost# to a single abstract object C and the approximation

under αCart

Definition 5 (Cartesian Post). Let Ψ = ∀v.
∨

i Ci(v) be a boolean heap. The
Cartesian post of Ψ is defined as follows:

post#Cart(Ψ)
def
= ∀v.

∨
i

αCart ◦ hpost#(Ci(v)) .

We extend the Cartesian post to a function on AbsDom in the natural way by
pushing it over disjunctions of boolean heaps.

Theorem 1 (Soundness of Cartesian Post). The Cartesian post is an ab-
straction of post#:

∀Ψ ∈ BoolHeap. post#(Ψ) |= post#Cart(Ψ) .

Proof. Let Ψ = ∀v.
∨

i Ci(v) be a boolean heap. The statement follows immedi-
ately from Prop. 3 and the fact that for everyCi(v) we have Ci(v) |= αCart(Ci(v)).

Theorem 2 (Characterization of Cartesian Post). Let Ψ = ∀v.
∨

iCi(v)
be a boolean heap. The Cartesian post of Ψ is characterized as follows:

post#Cart(Ψ) ≡ ∀v.
∨
i

∧
{ p(v) ∈ P | Ci(v) |= hwp#(p(v)) } .

Proof. Using the fact that hpost# and hwp# form a Galois connection (∗) we
have:

post#Cart(Ψ) ≡ ∀v.
∨
i

αCart ◦ hpost#(Ci(v)) Def. of post#Cart

≡ ∀v.
∨
i

∧
{ p(v) ∈ P | hpost#(Ci(v)) |= p(v) } Def. of αCart

≡ ∀v.
∨
i

∧
{ p(v) ∈ P | Ci(v) |= hwp#(p(v)) } by (∗) .

Summarizing the above result, the image of a boolean heap Ψ under post#Cart

is constructed by updating for each monomial Ci in Ψ the values of all heap
predicates in Ci. These updates are computed by checking for each heap predi-
cate p whether Ci implies the weakest precondition of p or its negation. Hence,



Boolean Heaps 281

the Cartesian post operator post#Cart corresponds to a boolean heap program as
it is defined in Fig. 2. The crucial part in the construction of the boolean heap
program lies in the computation of the operator hwp#. It is implemented using
a syntactic operation on formulas (the operator hwp) and by calls to a theorem
prover for the entailment tests.

Discussion. Already the first abstraction of the best abstract post operator that
we gave above can be formally characterized in terms of a Cartesian abstraction.
This leads to a slightly more precise abstraction of post#; see [14] for details.
However, this abstraction is more expensive and introduces a dependency of the
operator hwp# on the abstract state Ψ for which we compute the post. This
dependency violates our goal to have a decoupling of the abstraction phase from
the fixed point computation of the analysis.

Focus and Coerce. Cartesian abstraction does not introduce an additional loss
of precision as long as the abstract system behaves deterministically, i.e. every
abstract object is mapped again to a single abstract object under the operator
hpost#. However, for some commands, e.g. when one iterates over a recursive
data structure, the abstract system will behave inherently nondeterministically.
In some cases the loss of precision that is caused by this nondeterminism can-
not be tolerated. A similar problem occurs in the context of three-valued shape
analysis. In [13] so called focus and coerce operations are used to solve this prob-
lem. These operations split three-valued logical structures according to weakest
preconditions of predicates and thereby handle the nondeterminism in the ab-
straction.

Though the focus and coerce operations are conceptually difficult, it is possi-
ble to define a simple corresponding splitting operation in our framework. This
operation can be explained in terms of a temporary refinement of the abstract
domain. Namely, for splitting one first refines the abstraction by adding new
abstraction predicates given by the weakest preconditions of the abstraction
predicates that cause the nondeterminism. The refinement causes a splitting
of abstract objects and boolean heaps, such that each abstract object in each
boolean heap has precise information regarding the weakest preconditions of
the problematic predicates. This guarantees that the Cartesian post computes
precise updates for these predicates. After computing the Cartesian post the re-
sult is mapped back to the original abstract domain by removing the previously
added predicates. For a more detailed discussion again see [14].

8 Conclusion

We showed how the abstraction originally proposed in three-valued shape anal-
ysis can be constructed in the framework of predicate abstraction. The conse-
quences of our results are:

– a different view on the underlying concepts of three-valued shape analysis.
– a framework of symbolic shape analysis. Symbolic means that the abstract

post operator is an operation over formulas and is itself constructed solely
by deductive reasoning.
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– a clear phase separation between the computation of the abstraction and
the computation of the fixed point. Among other potential advantages this
allows the offline computation of the abstract post operator.

– the possibility to use efficient symbolic methods such as BDDs or SAT
solvers. In particular, the abstract post operator itself can be represented
as a BDD.

Our framework does not a priori impose any restrictions on the data struc-
tures implemented by the analyzed programs. Such restrictions only depend on
the capabilities of the underlying theorem prover which is used for the entail-
ment tests. There is ongoing research on how to adapt or extend existing theorem
provers and decision procedures to the theories that are needed in the context
of shape analysis; see e.g. [7,8]. This is a challenging branch for further research.

Another direction for future work is to study refinements of our abstract
domain that are even closer to the abstract domain used in three-valued shape
analysis. Evidently our framework extends from unary heap predicates to heap
predicates of arbitrary arity. If we allow binary relations over heap objects in the
abstract domain, we obtain the universal fragment of shape analysis constraints
[10].

Extending the abstract domain to the full boolean algebra of shape analysis
constraints and thus having exactly the same precision as using three-valued
logical structures is more involved. In that case we allow both universally and
existentially quantified boolean combinations of heap predicates as base formulas
for our abstract domain. Normal forms of conjunctions of these base formulas are
an extension of boolean heaps. They correspond to possible boolean coverings
of objects with nonempty monomials over heap predicates. These normal forms
can again be represented as sets of bitvectors over heap predicates. However, in
this case it is not clear how Cartesian abstraction can be applied in a way that
is similar to the case where we restrict to the universal fragment.

Acknowledgments. We thank Viktor Kuncak, Patrick Lam, and Alexander
Malkis for comments and suggestions.
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Abstract. We present a framework for interprocedural shape analysis, which is
context- and flow-sensitive with the ability to perform destructive pointer updates.
We limit our attention to cutpoint-free programs—programs in which reasoning
on a procedure call only requires consideration of context reachable from the
actual parameters. For such programs, we show that our framework is able to
perform an efficient modular analysis. Technically, our analysis computes proce-
dure summaries as transformers from inputs to outputs while ignoring parts of
the heap not relevant to the procedure. This makes the analysis modular in the
heap and thus allows reusing the effect of a procedure at different call-sites and
even between different contexts occurring at the same call-site. We have imple-
mented a prototype of our framework and used it to verify interesting properties
of cutpoint-free programs, including partial correctness of a recursive quicksort
implementation.

1 Introduction

Shape-analysis algorithms statically analyze a program to determine information about
the heap-allocated data structures that the program manipulates. The algorithms are
conservative (sound), i.e., the discovered information is true for every input. Handling
the heap in a precise manner requires strong pointer updates [6]. However, performing
strong pointer updates requires flow-sensitive context-sensitive analysis and expensive
heap abstractions that may be doubly-exponential in the program size [36]. The pres-
ence of procedures escalates the problem because of interactions between the program
stack and the heap [34] and because recursive calls may introduce exponential factors
in the analysis. This makes interprocedural shape analysis a challenging problem.

This paper introduces a new approach for shape analysis for a class of imperative
programs. The main idea is to restrict the “sharing patterns” occurring in procedure
calls. This allows procedures to be analyzed ignoring the part of the heap not reachable
from actual parameters. Moreover, shape analysis can conservatively detect violations
of the above restrictions, thus allowing to treat existing programs. A prototype of this
approach was implemented and used to verify properties that could not be automat-
ically verified before, including the partial correctness of a recursive quicksort [16]
implementation (i.e., show that it returns an ordered permutation of its input).
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Our restriction on programs is inspired by [33]. There, Rinetzky et. al. present a
non-standard semantics for arbitrary programs in which procedures operate on local
heaps containing only the objects reachable from actual parameters. The most complex
aspect of [33] is the treatment of sharing between the local heap and the rest of the
heap. The problem is that the local heap can be accessed via access paths which bypass
actual parameters. Therefore, objects in the local heap are treated differently when they
separate the local heap (that can be accessed by a procedure) from the rest of the heap
(which—from the viewpoint of that procedure—is non-accessible and immutable). We
call these objects cutpoints [33]. We refer to an invocation in which no such cutpoint
object exists as a cutpoint-free invocation. We refer to an execution of a program in
which all invocations are cutpoint-free as a cutpoint-free execution, and to a program
in which all executions are cutpoint-free as a cutpoint-free program. (We define these
notions more formally in the following sections).

While many programs are not cutpoint-free, we observe that a reasonable number
of programs, including all examples used in [13, 34, 19] are cutpoint-free, as well as
many of the programs in [12, 37]. One of the key observations in this paper, is that we
can exploit cutpoint-freedom to construct an interprocedural shape analysis algorithm
that efficiently reuses procedure summaries.

In this paper, we present LCPF , an operational semantics that efficiently handles
cutpoint-free programs. This semantics is interesting because procedures operate on
local heaps, thus supporting the notion of heap-modularity while permitting the usage
of a global heap and destructive updates. Moreover, the absence of cutpoints drastically
simplifies the meaning of procedure calls. LCPF checks that a program execution is
indeed cutpoint-free and halts otherwise. As a result, it is applicable to any arbitrary
program, and does not require an a priori classification of a program as cutpoint-free.
We show that for cutpoint-free programs, LCPF is observationally equivalent to the
standard global-heap semantics.

LCPF gives rise to an efficient interprocedural shape-analysis for cutpoint-free
programs. Our interprocedural shape-analysis is a functional interprocedural analy-
sis [10, 38, 20, 29, 11, 19, 2]. It tabulates abstractions of memory states before and after
procedure calls. However, memory states are represented in a non-standard way ignor-
ing parts of the heap not relevant to the procedure. This reduces the complexity of the
analysis because the analysis of procedures does not represent information on refer-
ences and on the heap from calling contexts. Indeed, this makes the analysis modular
in the heap and thus allows reusing the summarized effect of a procedure at different
calling contexts. Finally, this reduces the asymptotic complexity of the interprocedural
shape analysis. For programs without global variables, the worst case time complex-
ity of the analysis is doubly-exponential in the maximum number of local variables
in a procedure, instead of being doubly-exponential in the total number of local vari-
ables [34].

Technically, our algorithm is built on top of the 3-valued logical framework for pro-
gram analysis of [23, 36]. Thus, it is parametric in the heap abstraction and in the con-
crete effects of program statements, allowing to experiment with different instances of
interprocedural shape analyzers. For example, we can employ different abstractions for



286 N. Rinetzky, M. Sagiv, and E. Yahav

singly-, doubly-linked lists, and trees. Also, a combination of theorems in [35] and [36]
guarantees that every instance of our interprocedural framework is sound (see Sec. 3).

This paper also provides an initial empirical evaluation of our algorithm. Our em-
pirical evaluation indicates that the analysis is precise enough to prove properties such
as the absence of null dereferences, preservation of data structure invariants such as
list-ness, tree-ness, and sorted-ness for iterative and recursive programs with deep ref-
erences into the heap and destructive updates. We observe that the cost of analyzing
recursive procedures is comparable to the cost of analyzing their iterative counterparts.
Moreover, the cost of analyzing a program with procedures is smaller than the cost of
analyzing the same program with procedure bodies inlined.

public class List{
List n = null;
int data;
public List(int d){

this.data = d;
}
static public List create3(int k) {

List t1 = new List(k), t2 = new List(k+1), t3 = new List(k+2);
t1.n = t2; t2.n = t3;
return t1;

}
public static List splice(List p, List q) {

List w = q;
if (p != null) {

List pn = p.n;
p.n = null;
p.n = splice(q, pn);
w = p;

}
return w;

}
public static void main(String[] argv) {

List x = create3(1), y = create3(4), z = create3(7);
List t = splice(x, y);
List s = splice(y, z);

}
}

Fig. 1. A Java program recursively splicing three singly-linked lists using destructive updates

1.1 Main Results

The contributions of this paper can be summarized as follows:

1. We define the notion of cutpoint-free programs, in which reasoning about a proce-
dure allows ignoring the context not reachable from its actual parameters.

2. We show that interesting cutpoint-free programs can be written naturally, e.g., pro-
grams manipulating unshared trees and a recursive implementation of quicksort.
We also show that some interesting existing programs are cutpoint-free, e.g., all
programs verified using shape analysis in [13,34,19], and many of those in [12,37].

3. We define an operational semantics for arbitrary Java-like programs that verifies
that a program execution is cutpoint free. In this semantics, procedures operate on
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local heaps, thus supporting the notion of heap-modularity while permitting the
usage of a global heap and destructive updates.

4. We present an interprocedural shape analysis for cutpoint-free programs. Our anal-
ysis is modular in the heap and thus allows reusing the effect of a procedure at dif-
ferent calling contexts and at different call-sites. Our analysis goes beyond the lim-
its of existing approaches and was used to verify a recursive quicksort
implementation.

5. We implemented a prototype of our approach. Preliminary experimental results in-
dicate that: (i) the cost of analyzing recursive procedures is similar to the cost of
analyzing their iterative versions; (ii) our analysis benefits from procedural abstrac-
tion; (iii) our approach compares favorably with [34, 19].

call splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)
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Fig. 2. Concrete states for the invocation t = splice(x, y) in the running example

1.2 Motivating Example

Fig. 1 shows a simple Java program that splices three unshared, disjoint, acyclic singly-
linked lists using a recursive splice procedure. This program serves as a running
example in this paper.

For each invocation of splice, our analyzer verifies that the returned list is acyclic
and not heap-shared;1 that the first parameter is aliased with the returned reference; and
that the second parameter points to the second element in the returned list.

For this example, our algorithm effectively reuses procedure summaries, and only
analyzes splice(p,q) once for every possible abstract input. As shown in Sec. 3.3,
this means that splice(p,q) will be only analyzed a total number of 9 times. This
should be contrasted with [34], in which no summaries are computed, and the procedure
is analyzed 66 times. Compared to [19], our algorithm can summarize procedures in a
more compact way (see Sec. 5).

1.3 Local Heaps, Relevant Objects, Cutpoints, and Cutpoint-Freedom

In our semantics, procedures operate on local heaps. The local heap contains only the
part of the program’s heap accessible to the procedure. Thus, procedures are invoked on
local heaps containing only objects reachable from actual parameters. We refer to these
objects as the relevant objects for the invocation.

1 An object is heap-shared if it is pointed-to by a field of more than one object.



288 N. Rinetzky, M. Sagiv, and E. Yahav

Example 1. Fig. 2 shows the concrete memory states that occur at the call t=splice
(x,y). Sc

2 shows the state at the point of the call, and Se
2 shows the state on entry

to splice. Here, splice is invoked on local heap containing the (relevant) objects
reachable from either x or y.

The fact that the local heap of the invocation t=splice(x,y) contains only the
lists referenced by x and y, guarantees that destructive updates performed by splice
can only affect access paths that pass through an object referenced by either x or y.
Similarly, the invocation s=splice(y,z) in the concrete memory state Sc

3, shown
in Fig. 3(a), can only affect access paths that pass through an object referenced by
either y or z.

call splice(y,z) return s=splice(y,z) call splice(t,z) return s=splice(t,z)
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Fig. 3. Concrete states for: (a) the invocation s=splice(y,z) in the program of Fig. 1;
(b) a variant of this program with an invocation s=splice(t,z)

Obviously, this is not always the case. For example, consider a variant of the exam-
ple program in which the second call s=splice(y,z) is replaced by a call
s=splice(t,z). Sccp

3 and Srcp

3 , depicted in Fig. 3(b), show the concrete states when
s=splice(t,z) is invoked and when it returns, respectively. As shown in the figure,
the destructive updates of the splice procedure change not only paths from t and z,
but also change the access paths from y.

A cutpoint for an invocation is an object which is: (i) reachable from an actual
parameter, (ii) not pointed-to by an actual parameter, and (iii) reachable without going
through an object which is pointed-to by an actual parameter (that is, it is either pointed-
to by a variable or by an object not reachable from the parameters). In other words,
a cutpoint is a relevant object that separates the part of the heap which is passed to
the callee from the rest of the heap, but which is not pointed-to by a parameter. The
object pointed-to by y at the call s=splice(t,z) (Fig. 3(b)) is a cutpoint, and this
invocation is not cutpoint-free. In contrast, the call t=splice(x,y) (Fig. 2) does not
have any cutpoints and is therefore cutpoint-free. In fact, all invocations in the program
of Fig. 1, including recursive ones, are cutpoint-free, and the program is a cutpoint-free
program.

Our analyzer verifies that the running example is a cutpoint-free program. It also
detects that in the variant of our running example, the call s=splice(t,z) is not a
cutpoint-free invocation.
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1.4 Outline

The rest of the paper is organized as follows. Sec. 2 defines our local heap concrete
semantics. Sec. 3 conservatively abstracts this semantics, providing a heap-modular
interprocedural shape analysis algorithm. Sec. 4 describes our implementation and ex-
perimental results. Sec. 5 describes related work, and Sec. 6 concludes. Due to space
limitations, formal details and more experimental results appear in [35].

2 Concrete Semantics

In this section, we present LCPF , a large-step concrete semantics that serves as the ba-
sis for our abstraction. In LCPF , an invoked procedure is passed only relevant objects.
LCPF has two novel aspects: (i) it verifies that the execution is cutpoint-free; (ii) it
has a simple rule for procedure calls that exploits (the verified) cutpoint-freedom. Nev-
ertheless, in [35], we show that for cutpoint-free programs LCPF is observationally
equivalent to a standard store-based global-heap semantics. For simplicity, LCPF only
keeps track of pointer-valued variables and fields.

Table 1. Predicates used in the concrete semantics

Predicate Intended Meaning

T (v) v is an object of type T

f(v1, v2) the f-field of object v1 points to object v2

eq(v1, v2) v1 and v2 are the same object

x(v) reference variable x points to the object v

inUc(v) v originates from the caller’s memory state at the call site

inUx(v) v originated from the callee’s memory state at the exit site

2.1 Concrete Memory States

We represent memory states using 2-valued logical structures. A 2-valued logical struc-
ture over a set of predicates P is a pair S = 〈US , ιS〉 where:

– US is the universe of the 2-valued structure. Each individual in US represents a
heap-allocated object.

– ιS is an interpretation function mapping predicates to their truth-value in the struc-

ture: for every predicate p ∈ P of arity k, ιS(p) : USk → {0, 1}. Predicates
correspond to tracked properties of heap-allocated objects.

The set of 2-valued logical structures is denoted by 2Struct .
In the rest of the paper, we assume to be working with a fixed arbitrary program P .

The program P consists of a collection of types, denoted by TypeId�. The set of all
reference fields defined in P is denoted by FieldId �. For a procedure p, Vp denotes
the set of its local reference variables, including its formal parameters. The set of all
the local (reference) variables in P is denoted by Local�. For simplicity, we assume
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formal parameters are not assigned and that p always returns a value using a designated
variable retp ∈ Vp. For example, retsplice = w.

Tab. 1 shows the core predicates used in this paper. A unary predicate T (v) holds for
heap-allocated objects of type T ∈ TypeId�. A binary predicate f(v1, v2) holds when
the f ∈ FieldId� field of v1 points-to v2. The designated binary predicate eq(v1, v2)
is the equality predicate recording equality between v1 and v2. A unary predicate x(v)
holds for an object that is pointed-to by the reference variable x ∈ Local� of the current
procedure.2 The role of the predicates inUc and inUx is explained in Sec. 2.2.

2-valued logical structures are depicted as directed graphs. We draw individuals as
boxes. We depict the value of a pointer variable x by drawing an edge from x to the
individual that represent the object that x points-to. For all other unary predicates p,
we draw p inside a node u when ιS(p)(u) = 1; conversely, when ιS(p)(u) = 0 we do
not draw p in u. A directed edge between nodes u1 and u2 that is labeled with a binary
predicate symbol p indicates that ιS(p)(u1, u2) = 1. For clarity, we do not draw the
unary List predicate, and the binary equality predicate eq .

Example 2. The structure Sc
2 of Fig. 2 shows a 2-valued logical structure that repre-

sents the memory state of the program at the call t=splice(x, y). The depicted
numerical values are only shown for presentation reasons, and have no meaning in the
logical representation.

2.2 Inference Rules

The meaning of statements is described by a transition relation
lcpf� ⊆ (2Struct × st)×

2Struct that specifies how a statement st transforms an incoming logical structure into
an outgoing logical structure. For assignments, this is done primarily by defining the
values of the predicates in the outgoing structure using first-order logic formulae with
transitive closure over the incoming structure [36]. The inference rules for assignments
are rather straightforward and can be found in [35]. For control statements, we use the
standard rules of natural semantics, e.g., see [26].

Our treatment of procedure call and return could be briefly described as follows:
(i) the call rule is applied, first checking that the invocation is cutpoint-free (by evaluat-
ing the side condition), and (ii) proceeding to construct the memory state at the callee’s
entry site (Se) if the side condition holds; (iii) the caller’s memory state at the call site
(Sc) and the callee’s memory state at the exit site (Sx) are used to construct the caller’s
memory state at the return site (Sr). We now formally define and explain these steps.

Fig. 4 specifies the procedure call rule for an arbitrary call statement y = p(x1, . . . ,
xk) by an arbitrary function q. The rule is instantiated for each call statement in the
program.

Verifying Cutpoint-Freedom. The semantics uses the side condition of the procedure
call rule to ensure that the execution is cutpoint-free. The side condition asserts that no
object is a cutpoint. This is achieved by verifying that the formula isCPq,{x1,...,xk}(v),

2 For simplicity, we use the same set of predicates for all procedures. Thus, our semantics en-
sures that ιS(x) = λu.0 for every local variable x that does not belong to the current call.
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defined in Tab. 2, does not hold for any object at Sc, the memory state that arises when
p(x1, . . . , xk) is invoked by q.

The formula isCP q,{x1,...,xk}(v), holding when v is a cutpoint object, is comprised
of three conjuncts. The first conjunct, requires that v be reachable from an actual param-
eter. The second conjunct, requires that v not be pointed-to by an actual parameter. The
third conjunct, requires that v be an entry point into p’s local heap, i.e., is pointed-to by
a local variable of q (the caller procedure) or by a field of an object not passed to p.

Example 3. The structureSc
2 of Fig. 2 depicts the memory state at the point of the call t

= splice(x, y). In this state, the formula isCPmain,{x,y}(v) does not hold for any
object. On the other hand, when s = splice(t, z) is invoked at Sccp

3 of Fig. 3(b),
the object pointed-to by y is a cutpoint. Note, that the formula isCPmain,{t,z}(v) eval-
uates to 1 when v is bound to this object: the formula R{t,z}(v) holds for every object
in t’s list. In particular, it holds for the second object which is pointed-to by a local
variable (y) but not by an actual parameter (t, z).

Note that LCPF considers only the values of variables that belong to the current
call when it detects cutpoints. This is possible because all pending calls are cutpoint-
free. This greatly simplifies the cutpoint detection compared to [33].

Computing the Memory State at the Entry Site. Se, the memory state at the entry
site to p, represents the local heap passed to p. It contains only these individuals in Sc

that represent objects that are relevant for the invocation. The formal parameters are
initialized by updCally=p(x1,...,xk)

q , defined in Fig. 5(a). The latter, specifies the value
of the predicates in Se using a predicate-update formulae evaluated over Sc. We use
the convention that the updated value of x is denoted by x′. Predicates whose update
formula is not specified, are assumed to be unchanged, i.e., x′(v1, . . .) = x(v1, . . .).
Note that only the predicates that represent variable values are modified. In particular,
field values, represented by binary predicates, remain in p’s local heap as in Sc.

Table 2. Formulae shorthands and their intended meaning

Shorthand Formula Intended Meaning
F (v1, v2)

∨
f∈FieldId


P
f(v1, v2) v1 has a field that points to v2

ϕ∗(v1, v2) eq(v1, v2) ∨ the reflexive transitive closure of ϕ
(TC w1, w2 : ϕ(w1, w2))(v1, v2)

R{x1,...,xk}(v)
∨

x∈{x1,...,xk} ∃v1 : x(v1) ∧ F ∗(v1, v)v is reachable from x1 or . . . or xk

isCPq,{x1,...,xk}(v)R{x1,...,xk}(v) ∧ v is a cutpoint
(¬x1(v) ∧ . . . ∧ ¬xk(v)) ∧
(
∨

y∈Vq
y(v) ∨

∃v1 : ¬R{x1,...,xk}(v1) ∧ F (v1, v))

Example 4. The structure Se
2 of Fig. 2 depicts the memory state at the entry site to

splice when t = splice(x, y) is invoked at the memory state Sc
2. Note that

the list referenced by z is not passed to splice. Also note that the element which
was referenced by x is now referenced by p. This is the result of applying the update
formula p′(v) = x(v) for the predicate p in this call. Similarly, the element which was
referenced by y is now referenced by q.
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〈body of p, Se〉 lcpf� Sx

〈y = p(x1, . . . , xk), Sc〉
lcpf� Sr

Sc |= ∀v : ¬isCPq,{x1,...,xk}(v)

where

Se = 〈Ue, ιe〉 where
Ue = {u ∈ USc | Sc |= R{x1,...,xk}(u)}
ιe = updCally=p(x1,...,xk)

q (Sc)

Sr = 〈Ur, ιr〉 where
Let U ′ = {u.c | u ∈ Uc} ∪ {u.x | u ∈ Ux}

ι′ = λp ∈ P .

⎧⎨⎩
ιc[inUc �→ λv.1](p)(u1, . . . , um) : u1 =w1.c, . . . , um =wm.c
ιx[inUx �→ λv.1](p)(u1, . . . , um) : u1 =w1.x, . . . , um =wm.x
0 : otherwise

in Ur = {u ∈ U ′ | 〈U ′, ι′〉 
|= inUc(u) ∧ R{x1,...,xk}(u)}
ιr = updRety=p(x1,...,xk)

q (〈U ′, ι′〉)

Fig. 4. The inference rule for a procedure call y = p(x1, . . . , xk) by a procedure q. The functions
updCally=p(x1,...,xk)

q and updRety=p(x1,...,xk)
q are defined in Fig. 5.

a. Predicate update formulae for updCally=p(x1,...,xk)
q

z′(v) =

{
xi(v) : z = hi

0 : z ∈ Local� \ {h1, . . . , hk}

b. Predicate update formulae for updRety=p(x1,...,xk)
q

z′(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
retp(v) : z = y

inUc(v) ∧ z(v) ∧ ¬R{x1,...,xk}(v) ∨ : z ∈ Vq \ {y}
∃v1 : z(v1) ∧match{〈h1,x1〉,...,〈hk,xk〉}(v1, v)

0 : z ∈ Local� \ Vq

f ′(v1, v2) = inUx (v1) ∧ inUx(v2) ∧ f(v1, v2) ∨
inUc(v1) ∧ inUc(v2) ∧ f(v1, v2) ∧ ¬R{x1,...,xk}(v2) ∨

inUc(v1) ∧ inUx(v2) ∧ ∃vsep : f(v1, vsep) ∧match{〈h1,x1〉,...,〈hk,xk〉}(vsep , v2)

inUc′(v) = inUx ′(v) = 0

Fig. 5. Predicate-update formulae for the core predicates used in the procedure call rule. We
assume that the p’s formal parameters are h1, . . . , hk. There is a separate update formula for
every local variable z ∈ Local� and for every field f ∈ FieldId�.

Computing the Memory State at the Return Site. The memory state at the return-site
(Sr) is constructed as a combination of the memory state in which p was invoked (Sc)
and the memory state at p’s exit-site (Sx). Informally,Sc provides the information about
the (unmodified) irrelevant objects and Sx contributes the information about the de-
structive updates and allocations made during the invocation.

The main challenge in computing the effect of a procedure is relating the objects at
the call-site to the corresponding objects at the return site. The fact that the invocation
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is cutpoint-free guarantees that the only references into the local heap are references to
objects referenced by an actual parameter. This allows us to reflect the effect of p into
the local heap of q by: (i) replacing the relevant objects in Sc with Sx, the local heap
at the exit from p; (ii) redirecting all references to an object referenced by an actual
parameter to the object referenced by the corresponding formal parameter in Sx.

Technically, Sc and Sx are combined into an intermediate structure 〈U ′, ι′〉. The
latter contains a copy of the memory states at the call site and at the exit site. To dis-
tinguish between the copies, the auxiliary predicates inUc and inUx are set to hold for
individuals that originate from Sc and Sx, respectively. Pointer redirection is specified
by means of predicate update formulae, as defined in Fig. 5(b). The most interesting as-
pect of these update-formulae is the formula match{〈h1,x1〉,...,〈hk,xk〉}, defined below:

match{〈h1,x1〉,...,〈hk,xk〉}(v1, v2)
def=

k∨
i=1

inUc(v1) ∧ xi(v1) ∧ inUx (v2) ∧ hi(v2)

This formula matches an individual that represents an object which is referenced by an
actual parameter at the call-site, with the individual that represents the object which is
referenced by the corresponding formal parameter at the exit-site. Our assumption that
formal parameters are not modified allows us to match these two individuals as repre-
senting the same object. Once pointer redirection is complete, all individuals originat-
ing from Sc and representing relevant objects are removed, resulting with the updated
memory state of the caller.

Example 5. Sc
2 and Sx

2, shown in Fig. 2, represent the memory states at the call-site and
at the exit-site of the invocation t=splice(x,y), respectively. Their combination
according to the procedure call rule is Sr

2, which represents the memory state at the
return site. Note that the lists of x and y from the call-site were replaced by the lists
referenced by p and q. The list referenced by z was taken as is from the call-site.

Table 3. The instrumentation predicates used in this paper

Predicate Intended Meaning Defining Formula

robj (v1, v2) v2 is reachable from v1 by some field path F ∗(v1, v2)

ils(v) v is locally shared. i.e., v is pointed-to by ∃v1, v2 : ¬eq(v1, v2) ∧
a field of more than one object in the local-heap F (v1, v) ∧ F (v2, v)

c(v) v resides on a directed cycle of fields ∃v1 : F (v, v1) ∧ F ∗(v1, v)

rx(v) v is reachable from variable x ∃vx : x(vx) ∧ F ∗(vx, v)

3 Abstract Semantics

In this section, we present LCPF#, a conservative abstract semantics abstracting
LCPF .
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3.1 Abstract Memory States

We conservatively represent multiple concrete memory states using a single logical
structure with an extra truth-value 1/2 which denotes values which may be 1 and which
may be 0. The information partial order on the set {0, 1/2, 1} is defined as 0 ' 1/2 . 1,
and 0 � 1 = 1/2.

An abstract state is a 3-valued logical structure S�=〈US�

, ιS
�〉 where:

– US�

is the universe of the structure. Each individual in US�

possibly represents
many heap-allocated objects.

– ιS
�

is an interpretation function mapping predicates to their truth-value in the struc-

ture, i.e., for every predicate p ∈ P of arity k, ιS(p) : US�k
→ {0, 1/2, 1}.

The set of 3-valued logical structures is denoted by 3Struct .

Instrumentation Predicates. Instrumentation predicates record derived properties of in-
dividuals, and are defined using a logical formula over core predicates. Instrumentation
predicates are stored in the logical structures like core predicates. They are used to
refine the abstract semantics, as we shall shortly see. Tab. 3 lists the instrumentation
predicates used in this paper.

Canonical Abstraction. We now formally define how concrete memory states are repre-
sented using abstract memory states. The idea is that each individual from the (concrete)
state is mapped into an individual in the abstract state. An abstract memory state may in-
clude summary nodes, i.e., an individual which corresponds to one or more individuals
in a concrete state represented by that abstract state.

A 3-valued logical structure S� is a canonical abstraction of a 2-valued logical
structure S if there exists a surjective function f : US → US�

satisfying the following
conditions: (i) For all u1, u2 ∈ US , f(u1) = f(u2) iff for all unary predicates p ∈ P ,
ιS(p)(u1) = ιS(p)(u2), and (ii) For all predicates p ∈ P of arity k and for all k-tuples
u�

1, u
�
2, . . . , u

�
k ∈ US�

,

ιS
�

(p)(u�
1, u

�
2, . . . , u

�
k) =

⊔
u1,...,uk∈Us

f(ui)=u�
i

ιS(p)(u1, u2, . . . , uk).

The set of concrete memory states such that S� is their canonical abstraction is
denoted by γ(S�). Finally, we say that a node u� ∈ US�

represents node u ∈ U , when
f(u) = u�. Note that only for a summary node u, ιS

�

(eq)(u, u) = 1/2.
3-valued logical structures are also drawn as directed graphs. Definite values

(0 and 1) are drawn as for 2-valued structures. Binary indefinite predicate values (1/2)
are drawn as dotted directed edges. Summary nodes are depicted by a double frame.

Example 6. Fig. 6 shows the abstract states (as 3-valued logical structures) representing
the concrete states of Fig. 2. Note that only the local variables p and q are represented
inside the call to splice(p,q). Representing only the local variables inside a call
ensures that the number of unary predicates to be considered when analyzing the proce-
dure is proportional to the number of its local variables. This reduces the overall com-
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splice(x,y) enter splice(p,q) exit splice(p,q) return t=splice(x,y)
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Fig. 6. Abstract states for the invocation t = splice(x, y); in the running example

plexity of our algorithm to be worst-case doubly-exponential in the maximal number of
local variables rather than doubly-exponential in their total number (as in e.g., [34]).

The Importance of Reachability. Recording derived properties by means of instrumen-
tation predicates may provide additional information that would have been otherwise
lost under abstraction. In particular, because canonical abstraction is directed by unary
predicates, adding unary instrumentation predicates may further refine the abstraction.
This is called the instrumentation principle in [36]. In our framework, the predicates
that record reachability from variables plays a central role. They enable us to identify
the individuals representing objects that are reachable from actual parameters. For ex-
ample, in the 3-valued logical structure Sc#

6 depicted in Fig. 6, we can detect that the
top two lists represent objects that are reachable from the actual parameters because
either rx or ry holds for these individuals. None of these predicates holds for the indi-
viduals at the (irrelevant) list referenced by z. We believe that these predicates should
be incorporated in any instance of our framework.

3.2 Inference Rules

The meaning of statements is described by a transition relation
lcpf #

� ⊆ (3Struct×st)×
3Struct . Because our framework is based on [36], the specification of the concrete op-
erational semantics for program statements (as transformers of 2-valued structures) in
Sec. 2, also defines the corresponding abstract semantics (as transformers of 3-valued
structures). This abstract semantics is obtained by reinterpreting logical formulae us-
ing a 3-valued logic semantics and serves as the basis for an abstract interpretation. In
particular, reinterpreting the side condition of the procedure call rule conservatively,
verifies that the program is cutpoint free. In this paper, we directly utilize the imple-
mentation of these ideas available in TVLA [23].

In principle, the effect of a statement on the values of the instrumentation predi-
cates can be evaluated using their defining formulae and the update formulae for the
core predicates. In practice, this may lead to imprecise results in the analysis. It is far
better to supply the update formula for the instrumentation predicates too. In this paper,
we manually provide the update formulae of the instrumentation predicates (as done
e.g., in [36, 22, 34]). Automatic derivation of update formulae for the instrumentation
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enter splice(p,q) exit splice(p,q)
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Fig. 7. Partial tabulation of abstract states for the splice procedure

predicates [30] is currently not implemented in our framework. We note that update for-
mulae are provided at the level of the programming language, and are thus applicable to
arbitrary procedures and programs. Predicate update-formulae for the instrumentation
predicates are provided in [35].

The soundness of our abstract semantics is guaranteed by the combination of the
theorems in [35] and [36]:

– In [35], we show that for cutpoint-free programs LCPF is observationally equiva-
lent to a standard store-based global-heap semantics.

– In [36], it is shown that every program-analyzer which is an instance of their frame-
work is sound with respect to the concrete semantics it is based on.

3.3 Interprocedural Functional Analysis via Tabulation of Abstract Local Heaps

Our algorithm computes procedure summaries by tabulating input abstract memory-
states to output abstract memory-states. The tabulation is restricted to abstract memory-
states that occur in the analyzed program. The tabulated abstract memory-states repre-
sent local heaps, and are therefore independent of the context in which a procedure is
invoked. As a result, the summary computed for a procedure could be used at different
calling contexts and at different call-sites.

Our interprocedural analysis algorithm is a variant of the IFDS-framework [29]
adapted to work with local-heaps. The main difference between our framework and [29]
is in the way return statements are handled: In [29], the dataflow facts that reach a
return-site come either from the call-site (for information pertaining to local variables)
or from the exit-site (for information pertaining to global variables). In our case, the
information about the heap is obtained by combining pair-wise the abstract memory
states at the call-site with their counterparts at the exit-site. A detailed description of
our tabulation algorithm can be found in [35].

Example 7. Fig. 7 shows a partial tabulation of abstract local heaps for the splice
procedure of the running example. The figure shows 3 possible input states of the list
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pointed-to by p. Identical possible input states of the list pointed-to by q, and their
combinations are not shown. As mentioned in Sec. 1, the splice procedure is only ana-
lyzed 9 times before its tabulation is complete, producing a summary that is then reused
whenever the effect of splice(p, q) is needed.

4 Prototype Implementation

We have implemented a prototype of our framework using TVLA [23]. The framework
is parametric in the heap-abstraction and in the operational semantics. We have instanti-
ated the framework to produce a shape-analysis algorithm for analyzing Java programs
that manipulate (sorted) singly-linked lists and unshared trees.

The join operator in our framework can be either set-union or a more “aggressive”
partial-join operation [24]. The former ensures that the analysis is fully-context sensi-
tive. The latter exploits the fact that our abstract domain has a Hoare order and returns
an upper approximation of the set-union operator. Our experiments were conducted
with the partial-join operator.

Our analysis was able to verify that all the tested programs are cutpoint-free and
clean, i.e., do not perform null-dereference and do not leak memory. For singly-linked-
list-manipulating programs (Tab. 4.a), we also verified that the invoked procedures pre-
serve list acyclicity. The analysis of the tree-manipulating programs (Tab. 4.b) verified
that the tree invariants hold after the procedure terminates. For these programs we as-
sume (and verify) that the trees are unshared. The analysis of the sorting programs
(Tab. 4.c) verified that the sorting procedure returns a sorted permutation of its input
list. To prove this property we adapted the abstraction used in [22]. We note that prior
attempts to verify the partial correctness of quicksort using TVLA were not suc-
cessful. For more details, see [35].

For two of our example programs (quicksort and reverse8), cutpoints were
created as a result of objects pointed-to by a dead variable or a dead field at the point of
a call. We manually rewrote these programs to eliminate these (false) cutpoints.

Tab. 4a-c compares the cost of analysis for iterative and recursive implementations
of a given program.3 For these programs, we found that the cost of analyzing recursive
procedures and iterative procedures is comparable in most cases. We note that our tests
were of client programs and not a single procedure, i.e., in all tests, the program also
allocates the data structure that it manipulates.

Tab. 4.d shows that our approach compares favorably with existing TVLA-based
interprocedural shape analyzers [34,19]. The experiments measure the cost of analyzing
4 recursive procedures that manipulate singly linked lists. For fair comparison with [33]
and [18], we follow them and do not measure the cost of list allocation in these tests.
All analyzers successfully verified that these (correct) procedures are clean and preserve
list acyclicity. [19] was able to prove that reverse reverses the list and to pinpoint the
location in the list thatdelete removed an element from. However, the cost of analysis
for insert and delete in [19] was higher than the cost in [34] and in our analysis.

3 revApp is a recursive procedure. We analyzed it once with an iterative append procedure and
once with a recursive append. Tail sort is a recursive procedure. We analyzed it once with an
iterative insert procedure and once with a recursive insert.



298 N. Rinetzky, M. Sagiv, and E. Yahav

Table 4. Experimental results. Time is measured in seconds. Space is measured in megabytes.
Experiments performed on a machine with a 1.5 Ghz Pentium M processor and 1 Gb memory.

Iterative vs. Recursive Programs
Implementation Iterative Recursive

a. List manipulating programs SpaceTime Space Time
create creates a list 2.5 11.5 2.3 9.3
find searches an element in a list 3.2 23.7 3.6 37.1
insert inserts an element into a sorted list 5.1 50.1 5.4 46.8
delete removes an element from a sorted list 3.7 41.7 3.9 35.8
append appends two lists 3.7 18.4 3.9 22.5
reverse destructive list-reversal 3.6 26.9 3.4 21.0
revApp reverses a list by appending its head to its reversed tail 4.3 43.6 4.3 41.7
merge merges two sorted lists 12.5585.1 5.4 87.1
splice splices two lists 4.9 76.5 4.8 33.6
running the running example 5.2 80.5 5.0 36.5

b. Tree manipulating programs SpaceTime Space Time
create creates a full tree - - 2.6 14.3
insert inserts a node 5.4 98.1 5.6 49.6
remove removes a node using removeRoot and spliceLeft 9.6480.3 6.6 167.5
find finds a node with a given key 4.9 53.4 6.5 105.7
height returns the tree’s height - - 5.4 76.1
spliceLeft a tree as the leftmost child of another tree 5.3 51.6 5.3 35.7
removeRoot removes the root of a tree 6.1107.8 6.1 73.9
rotate rotates the left and right children of every node - - 4.9 57.1

c. Sorting programs SpaceTime Space Time
IinsertionSort moves the list elements into a sorted list 8.6449.8 7.3 392.2
TailSort inserts the list head to its (recursively) sorted tail 4.9101.6 4.9 103.4
QuickSort quicksorts a list - - 13.51017.1

d. [34] (Call String) vs. [19] (Relational) vs.
our method

Method Call String Relational Our method
ProcedureSpaceTimeSpaceTime Space Time
insert 1.8 20.8 6.3 122.9 3.5 20.0
delete 1.7 16.4 6.8 145.7 2.8 14.9
reverse 1.8 13.9 4.0 6.4 2.8 7.5
reverse8 2.7123.8 9.1 14.8 2.8 21.7

e. Inline vs. Procedural Abstraction
Inline Proc. Call

ProgramSpaceTimeSpace Time
crt1x3 2.5 5.1 2.5 6.0
crt2x3 4.5 12.5 2.8 7.3
crt3x3 6.4 22.6 3.1 8.6
crt4x3 8.1 38.6 3.3 9.9
crt8x3 17.3133.4 4.0 15.6

Procedure reverse8 reverses the same list 8 times. The cost of its analysis indicates
that our approach, as well as [19], profits from being able to reuse the summary of
reverse, while [34] cannot.

In addition, we examined whether our analysis benefits from reuse of procedure
summaries. Tab. 4.e shows the cost of the analysis of programs that allocate several
lists. Program crtYx3 allocates Y lists. The table compares the cost of the analysis of
programs that allocate a list by invoking create3 (right column) to that of programs
that inline create3’s body. The results are encouraging as they indicate (at least in
these simple examples) that our analysis benefits from procedural abstraction.
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5 Related Work

Interprocedural shape analysis has been studied in [34, 19, 7, 33, 15].
[34] explicitly represents the runtime stack and abstracts it as a linked-list. In this

approach, the entire heap, and the runtime stack are represented at every program point.
As a result, the abstraction may lose information about properties of the heap, for parts
of the heap that cannot be affected by the procedure at all.

[19] considers procedures as transformers from the (entire) heap before the call, to
the (entire) heap after the call. Irrelevant objects are summarized into a single summary
node. Relevant objects are summarized using a two-store vocabulary. One vocabulary
records the current properties of the object. The other vocabulary encodes the proper-
ties that the object had when the procedure was invoked. The latter vocabulary allows
to match objects at the call-site and at the exit-site. Note that this scheme never sum-
marizes together objects that were not summarized together when the procedure was
invoked. For cutpoint-free programs, these may lead to needlessly large summaries.
Consider for example a procedure that operates on several lists and nondeterministi-
cally replaces elements between the list tails. The method of [19] will not summarize
list elements that originated from different input lists. Thus, it will generate exponen-
tially more mappings in the procedure summary, than the ones produced by our method.

[33] presents a heap-modular interprocedural shape-analysis for programs manipu-
lating singly linked lists (without implementation). The algorithm explicitly records cut-
point objects in the local heap, and may become imprecise when there is more than one
cutpoint. Our algorithm can be seen as a specialization of [33] for handling cutpoint-
free programs and as its generalization for handling trees and sorting programs. In ad-
dition, because we restricted our attention to cutpoint-free programs, our semantics and
analysis are much simpler than the ones in [33].

[15] exploits a staged analysis to obtain a relatively scalable interprocedural shape
analysis. This approach uses a scalable imprecise pointer-analysis to decompose the
heap into a collection of independent locations. The precision of this approach might be
limited as it relies on pointer-expressions appearing in the program’s text. Its tabulation
operates on global heaps, potentially leading to a low reuse of procedure summaries.

For the special case of singly-linked lists, another approach for modular shape anal-
ysis is presented in [7] without an implementation. The main idea there is to record
for every object both its current properties and the properties it had at that time the
procedure was invoked.

A heap modular interprocedural may-alias analysis is given in [12]. The key obser-
vation there is that a procedure operates uniformly on all aliasing relationships involving
variables of pending calls. This method applies to programs with cutpoints. However,
the lack of must-alias information may lead to a loss of precision in the analysis of de-
structive updates. For more details on the relation between [12] and local-heap shape
analysis see [32, Sec. 5.1].

Local reasoning [18, 31] provides a way of proving properties of a procedure inde-
pendent of its calling contexts by using the “frame rule”. In some sense, the approach
used in this paper is in the spirit of local reasoning. Our semantics resembles the frame
rule in the sense that the effect of a procedure call on a large heap can be obtained from
its effect on a subheap. Local reasoning allows for an arbitrary partitioning of the heap
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based on user-supplied specifications. In contrast, in our work, the partitioning of the
heap is built into the concrete semantics, and abstract interpretation is used to establish
properties in the absence of user-supplied specifications.

Another relevant body of work is that concerning encapsulation (also known as
confinement or ownership) [1,3,4,5,8,9,14,17,21,25,28]. These works allow modular
reasoning about heap-manipulating (object-oriented) programs. The common aspect of
these works, as described in [27], is that they all place various restrictions on the sharing
in the heap while pointers from the stack are generally left unrestricted. In our work,
the semantics allows for arbitrary heap sharing within the same procedure, but restricts
both the heap sharing and the stack sharing across procedure calls.

6 Conclusions and Future Work

In this paper, we presented an interprocedural shape analysis for cutpoint-free programs.
Our analysis is modular in the heap and thus allows reusing the effect of a procedure at
different calling contexts. In the future, we plan to utilize liveness analysis to automati-
cally remove false cutpoints.
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T. Lev-Ami, R. Manevich, R. Shaham, G. Yorsh, and the anonymous referees.

References

1. P. S. Almeida. Balloon types: Controlling sharing of state in data types. In European Con-
ference on Object-Oriented Programming (ESOP), 1997.

2. T. Ball and S.K. Rajamani. Bebop: A path-sensitive interprocedural dataflow engine. In
Workshop on Program Analysis for Software Tools and Engineering (PASTE), 2001.

3. A. Banerjee and D. A. Naumann. Representation independence, confinement, and access
control. In Symp. on Princ. of Prog. Lang. (POPL), 2002.

4. B. Bokowski and J. Vitek. Confined types. In Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA), 1999.

5. C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In Symp.
on Princ. of Prog. Lang. (POPL), 2003.

6. D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In Conf. on
Prog. Lang. Design and Impl. (PLDI), 1990.

7. S. Chong and R. Rugina. Static analysis of accessed regions in recursive data structures. In
International Static Analysis Symposium (SAS), 2003.

8. D. Clarke, J. Noble, and J. Potter. Simple ownership types for object containment. In Euro-
pean Conference on Object-Oriented Programming (ESOP), 2001.

9. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In
Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), 1998.

10. P. Cousot and R. Cousot. Static determination of dynamic properties of recursive procedures.
In E.J. Neuhold, editor, Formal Descriptions of Programming Concepts, (IFIP WG 2.2, St.
Andrews, Canada, August 1977), pages 237–277. North-Holland, 1978.

11. M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program verification in polynomial
time. In Conf. on Prog. Lang. Design and Impl. (PLDI), 2002.



Interprocedural Shape Analysis for Cutpoint-Free Programs 301

12. A. Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In Conf. on
Prog. Lang. Design and Impl. (PLDI), 1994.

13. N. Dor, M. Rodeh, and M. Sagiv. Checking cleanness in linked lists. In International Static
Analysis Symposium (SAS), 2000.

14. C. Grothoff, J. Palsberg, and J. Vitek. Encapsulating objects with confined types. In Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
2001.

15. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In Symp. on
Princ. of Prog. Lang. (POPL), 2005.

16. C. A. R. Hoare. Algorithm 64: Quicksort. Comm. of the ACM (CACM), 4(7):321, 1961.
17. J. Hogg. Islands: Aliasing protection in object-oriented languages. In Conference on Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA), 1991.
18. S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data structures. In

Symp. on Princ. of Prog. Lang. (POPL), 2001.
19. B. Jeannet, A. Loginov, T. Reps, and M. Sagiv. A relational approach to interprocedural

shape analysis. In International Static Analysis Symposium (SAS), 2004.
20. J. Knoop and B. Steffen. The interprocedural coincidence theorem. In Int. Conf. on Comp.

Construct. (CC), 1992.
21. K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Using data groups to specify and check

side effects. In Conf. on Prog. Lang. Design and Impl. (PLDI), 2002.
22. T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work for verifica-

tion: A case study. In Int. Symp. on Software Testing and Analysis (ISSTA), 2000.
23. T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene based static analysis. In Interna-

tional Static Analysis Symposium (SAS), 2000. Available at http://www.math.tau.ac.il/∼ tvla.
24. R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap abstraction.

In International Static Analysis Symposium (SAS), 2004.
25. P. Müller and A. Poetzsch-Heffter. Universes: A type system for alias and dependency con-

trol. Technical Report 279, Fernuniversität Hagen, 2001.
26. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer, 1999.
27. J. Noble, R. Biddle, E. Tempero, A. Potanin, and D. Clarke. Towards a model of encap-

sulation. In The First International Workshop on Aliasing, Confinement and Ownership in
Object-Oriented Programming (IWACO), 2003.

28. J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In European Conference on Object-
Oriented Programming (ESOP), 1998.

29. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reach-
ability. In Symp. on Princ. of Prog. Lang. (POPL), 1995.

30. T. Reps, M. Sagiv, and A. Loginov. Finite differencing of logical formulas for static analysis.
In European Symposium on Programming Languages (ESOP), 2003.

31. J. Reynolds. Separation logic: a logic for shared mutable data structures. In Symp. on Logic
in Computer Science (LICS), 2002.

32. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for procedure
local heaps and its abstractions. Tech. Rep. 1, AVACS, September 2004. Available at
“http://www.avacs.org”.

33. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for procedure local
heaps and its abstractions. In Symp. on Princ. of Prog. Lang. (POPL), 2005.

34. N. Rinetzky and M. Sagiv. Interprocedural shape analysis for recursive programs. In Int.
Conf. on Comp. Construct. (CC), 2001.

35. N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-
free programs. Tech. Rep. 104/05, Tel Aviv Uni., April 2005. Available at
“http://www.math.tau.ac.il/∼maon”.



302 N. Rinetzky, M. Sagiv, and E. Yahav

36. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. Trans. on
Prog. Lang. and Syst. (TOPLAS), 24(3):217–298, 2002.

37. R. Shaham, E. Yahav, E.K. Kolodner, and M. Sagiv. Establishing local temporal heap safety
properties with applications to compile-time memory management. In International Static
Analysis Symposium (SAS), 2003.

38. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.S. Much-
nick and N.D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 7,
pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.



Understanding the Origin of Alarms in Astrée

Xavier Rival

École Normale Supérieure, 45, rue d’Ulm,
75230, Paris cedex 5, France

Abstract. Static analyzers like Astrée are incomplete, hence, may pro-
duce false alarms. We propose a framework for the investigation of the
alarms produced by Astrée, so as to help classifying them as true errors
or false alarms that are due to the approximation inherent in the static
analysis. Our approach is based on the computation of an approximation
of a set of traces specified by an initial and a (set of) final state(s). More-
over, we allow for finer analyses to focus on some execution patterns or
on some possible inputs. The underlying algorithms were implemented
inside Astrée and used successfully to track alarms in large, critical
embedded applications.

1 Introduction

The risk of failure due to software bugs is no longer considered acceptable in the
case of critical applications (as in aerospace, energy, automotive systems). There-
fore, sound program analyzers have been developed in the last few years, that
aim at proving safety properties of critical, embedded software such as memory
properties [22], absence of runtime errors [3], absence of buffer overruns [11], cor-
rectness of pointer operations [28]. These tools attempt to prove automatically
the correctness of programs, even though this is not decidable; they are sound
(they never claim the property of interest to hold even though it does not) and
always terminate; hence, they are incomplete: they may produce false alarms,
i.e. report not being able to prove the correctness of some critical operation even
though no concrete execution of the program fails at this point.

Alarms are a major issue for end-users. Indeed, in case the analyzer reports an
alarm, it could either be a false alarm or a real bug that should be fixed. Ideally,
a report for a true error should come with an error scenario. Currently, the alarm
investigation process in Astrée [3] mainly relies on the manual inspection of
invariants, partly with a graphical interface [10]; this process turns out to be
cumbersome, since even simple alarms may take days to classify.

A false alarm might either be due to an imprecision of some abstract op-
erations involved in the analysis (e.g. the abstract join operator usually loses
precision) as in Fig. 1(a) (simplified version of an alarm formerly reported by
Astrée) or to a lack of expressiveness of the domain (checking the example of
Fig. 1(c) requires proving a very deep arithmetic theorem). In the former case,
we may expect a (semi)-automatic refinement process to prove the alarm to be

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 303–319, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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l0 : input(x);
l1 : if(x > 0){y = x; }

else{y = −x; }
l2 : b = (y > 10);
l3 : assert(b ⇒ (x < −10 ∨ 10 < x));

l0 : x = 1; y = 1;
while(true){

li : input(x);
ld : assert(y > 0);

y = x; }

x, y, z are integer variables
input(x); input(y); input(z);
if(x > 0 ∧ y > 0 ∧ z > 0){

assert(x4 �= y4 + z4);
}

(a) (b) (c)

Fig. 1. Three example programs

false; in the latter, the design of a refined domain can hardly be automated, so
we can only hope for a refined alarm description.

Our goal is to provide some support in the alarm investigation process. We
propose to resort to automatic, sound static analysis techniques so as to refine
an initial static analysis into an approximation of a subset of traces that actu-
ally lead to an error. If a combination of forward and backward refining analyses
allows to prove that this set is empty, we can conclude the alarm is false (as in
Fig. 1(a)); otherwise, we get a refined characterization of the (possibly fictitious)
erroneous traces. We propose to refine this kind of semantic slicing (i.e. extrac-
tion of part of the program traces) by selecting some alarm contexts (e.g. traces
leading to an error after two iterations in a loop or traces constrained by some
set of inputs). A similar process allows to check an error scenario, by slicing the
traces reaching the alarm point in some context specified by an execution pat-
tern and a set of inputs that are supposed to be valid: in case the analysis reveals
that such conditions always lead to an error, the error scenario is validated (this
can be achieved in the example of Fig. 1(b)); it is a counter-example.

The contribution of the paper is both theoretical and practical:
– we propose a framework for alarm inspection, based on backward analysis

[6,7], trace partitioning [23], and slicing techniques [29,19];
– we provide encouraging practical results obtained by an implementation in-

side the Astrée static analyzer [3,10].
Sect. 2 introduces forward-backward analysis-based approximation (semantic
slicing) of a set of traces resulting in an error. Semantic slicing refinements
are introduced in Sect. 3: restriction to some execution patterns in Sect. 3.1
and to some inputs in Sect. 3.2. Sect. 4 applies syntactic slicing techniques to
the reduction of the amount of code to analyze. Sect. 5 presents some practical
examples. Sect. 6 concludes and reviews related work.

2 Backward Analysis

2.1 Standard Notations

We restrict to a subset of C for the sake of concision. We let (resp. ) denote
the set of variables (resp. of values); we write (resp. ) for the set of expressions
(resp. statements aka programs). Variables and values have an integer, floating-
point or boolean type. We consider assignments, conditionals, loops, assertions,
and an additional input(x) statement, that emulates the reading of a volatile
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variable x: this statement replaces the value of x with a random value of the
corresponding type. The grammar is given below. The control point before each
statement and at the end of each block is associated to a unique label l ∈ .

e (e ∈ ) ::= v (where v ∈ ) | x (where x ∈ ) | e⊕ e
s (s ∈ ) ::= x := e (where x ∈ , e ∈ ) | s; s | skip

| input(x) | assert(e) | if(e){s}else{s} | while(e){s}

In practice, the subset of C we analyze also includes functions, pointers, compos-
ite data-structures, all kinds of definitions, and all control structures. It excludes
recursive functions, dynamic memory allocation, and destructive updates.

A state s ∈ is either the error state Ω or a pair (l, ρ) where l is a label and
ρ ∈ = → is a memory state (aka store). Note that we assume there are no
errors in expressions; hence, the error state Ω can only be reached after a failed
assertion. The semantics �s� = {〈σ0, . . . , σn〉 | ∀i, σi → σi+1} of a program s is
a set of sequences of states (aka traces), such that any two successive states are
related by the transition relation → of the program. The relation → is defined
by local rules, such as the following:
– assert statement l0 : assert(e); l1: if �e�(ρ) = true (�e�(ρ) is the result of the

evaluation of e in ρ), then (l0, ρ) → (l1, ρ); if �e�(ρ) = false, then (l0, ρ) → Ω.
– assignment l0 : x := e; l1: (l0, ρ) → (l1, ρ[x ← �e�(ρ)]) (where �e� ∈ → );
– input statement l0 : input(x); l1: if v ∈ has the same type as x, then

(l0, ρ) → (l1, ρ[x← v]);

2.2 Approximation of Dangerous Traces

Dangerous States. We consider a program P ∈ . A state σ is dangerous if
it is not Ω and may lead to Ω in one transition step: σ → Ω. A dangerous
label is a label l followed by an assertion statement (l : assert(e);). Astrée
over-approximates the set of reachable dangerous states; hence, our goal is to
start with such an over-approximation and to make a diagnosis whether a set of
concrete, dangerous states is actually reachable.

Dangerous Traces. First, we are interested in real executions only, that is
traces starting from an initial state. We let I ⊆ denote the set of initial states.
Then, the set of real executions is

−→
T = {〈σ0, . . . , σn〉 ∈ �P � | σ0 ∈ I} = lfp∅

−→
F

where
−→
F : E �→ {〈σ〉 | σ ∈ I} ∪ {〈σ0, . . . , σn, σn+1〉 | 〈σ0, . . . , σn〉 ∈ E ∧ σn →

σn+1} constructs execution traces forward, and lfpXF is the least fixpoint of F
greater than X . Second, we restrict to executions ending in a dangerous state
(or at a dangerous label). We let F ⊆ denote the set of final states of interest.
The set of executions ending in F is

←−
T = {〈σ0, . . . , σn〉 ∈ �P � | σn ∈ F} =

lfp∅
←−
F where

←−
F is defined in a similar way as

−→
F :

←−
F : E �→ {〈σ〉 | σ ∈ F} ∪

{〈σ−1, σ0, . . . , σn〉 | 〈σ0, . . . , σn〉 ∈ E ∧ σ−1 → σ0}.
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The set of traces of interest is T =
−→
T ∩←−

T = lfp∅
−→
F ∩ lfp∅

←−
F . It is a subset

of all program behaviors �P �; in this respect, we call T a semantic slice.
In the following, F may represent either Fl = {(l, ρ) | ρ ∈ } or FD,l =

{(l, ρ) | ρ ∈ ∧ (l, ρ) → Ω}, unless we specify explicitly; the slice Tl (resp. TD,l)
defined by Fl (resp. FD,l) collects the executions ending at label l (resp. the
executions causing an error at label l). T shall represent either Tl or TD,l.

Example 1. In the code of Fig. 1(a), label l3 is a dangerous label; the set of
dangerous states for the corresponding assert is FD,l3 = {(l3, ρ) | ρ ∈ ∧ρ(b) =
true∧−10 ≤ ρ(x) ≤ 10}. The set of initial states is I = {(l0, ρ) | ρ ∈ }. Clearly,
this program does not cause any error: if y > 10 at l2, then, either x > 0 and
x = y > 10 or x ≤ 0 and x = −y < −10. Hence, we wish to prove that TD,l3 = ∅.

Alarm Inspection. Our goal is to determine whether an alarm is true or not.
We may fall in either of the following cases:

Case a) alarm proved false: if the static analysis proves that TD,l = ∅,
then the dangerous states in FD,l are not reachable and the alarm is false;

Case b) alarm proved true: if the static analysis proves that any trace in
Tl violates the assert (i.e. all traces reaching l cause an error at this point), then
the alarm is a true error;

Case c) undecided case: obviously, we may not be able to conclude to
either of the previous cases; then, either an error would occur in some cases
only (this case is considered in Sect. 3) or the lack of conclusion is due to a lack
of expressivity of the abstract domain (the refined analysis of the alarm context
should help designing a domain refinement).

Trace Approximation. The approximation of sets of traces is based on an
abstraction of sets of stores defined by a domain (D�

n,') and a concretization
function γn : D�

n → P( ) [8]. We assume that D�
n provides a widening operator

∇, approximate binary lub (�) and glb (�) operators, and a least element ⊥,
with the usual soundness assumptions. The domain for approximating sets of ex-
ecutions is defined by D� = → D�

n and γ : (I ∈ D�) �→ {〈(l0, ρ0), . . . , (ln, ρn)〉 |
∀i, ρi ∈ γn(I(li))}: a set of traces is approximated by local invariants, ap-
proximating the sets of stores that can be encountered at any label. We let
lfp� denote an abstract post-fixpoint operator, derived from ∇: if F : D → D,
F ◦ γ ⊆ γ ◦ F � and X ⊆ γ(X�), then lfpXF ⊆ γ(lfp�

X�F
�). The domain D�

n

is supposed to feature sound abstract operations
−−−→
assign : × × D�

n → D�
n,

guard : × D�
n → D�

n, forget : × D�
n → D�

n that soundly mimic the concrete
assignment, testing of conditions, and reading of inputs (by forgetting the value
of the modified variable). For instance, the soundness of guard boils down to
∀d ∈ D�

n, ∀ρ ∈ γn(d), �e�(ρ) = true ⇒ ρ ∈ γn(guard (e, d)).
We let I� ∈ D� be a sound approximation of the traces made of just one initial

state, i.e. {〈σ〉 | σ ∈ I} ⊆ γ(I�); we let F � ∈ D� be a sound approximation of F
in the same way, where F may be either Fl or FD,l. The purpose of the following
subsections is to approximate the semantic slice T .
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2.3 Forward Analysis

We consider here the approximation of
−→
T . It is well-known that a sound abstract

interpreter in D� can be derived from
−→
F . More precisely, we can define a family

of functions
−→
δ l,l′ : D�

n → D�
n that compute the effect of any transition at

the abstract level. The soundness of
−→
δ l,l′ writes ∀ρ, ρ′ ∈ , ∀d ∈ D�

n, ρ ∈
γn(d) ∧ (l, ρ) → (l′, ρ′) ⇒ ρ′ ∈ γn(

−→
δ l,l′(d)) and is a direct consequence of the

soundness of the basic abstract operations. The forward abstract interpreter is:−→
F � : D� → D�; I �→ λ(l ∈ ). � {−→δ l,l′(I(l)) | l′ ∈ } (this presentation
leaves the choice for an iteration strategy; Astrée uses a denotational iteration
scheme, so as to keep the need for local invariant storage down). The soundness
of the forward abstract interpreter is proved by standard abstract interpretation
methods [8].

Theorem 1 (Soundness of the forward abstract interpreter). T ⊆ −→
T ⊆

γ( 0) where 0 = lfp�
I�

−→
F �.

Example 2 (Ex. 1 continued). A simple non relational analysis yields the invari-
ant b ∈ {true, false}, y ≥ 0 at point l3; the assertion is not proved safe.

2.4 The Backward Interpreter

We consider the refinement of the approximation 0 of
−→
T (hence, of T ) into a

better approximation, by taking into account the second fixpoint
←−
T .

A straightforward way to do this would be to design a backward interpreter
in the same way as we did for

−→
F � and to compute the intersection of both

analyses. Yet, this approach would not be effective, mainly because in most
cases, the greatest pre-conditions are not very precise, so that we would face
a major loss of precision. For instance, in the case of a function call through
a pointer dereference ($f)(), the flow depends on the value of f before the call;
hence, the called function cannot be determined from the state after the call and
the backward analysis of such a statement with no data about the pre-condition
would be very imprecise ($f could be any function in the program). Examples
of similar issues when analyzing assignments are given in Sect. 2.5.

Hence, the refining backward interpreter
←−
F �

r takes two elements of D� as
inputs: an invariant to refine and an invariant to propagate backwards. It is
based on a family of backward transfer functions

←−
δ l,l′ : D� × D� → D� maps

a pre-condition to refine and a post-condition into a refined pre-condition, as
stated by the soundness condition: ∀ρ, ρ′ ∈ , ∀d, d′ ∈ D�

n, ρ ∈ γn(d) ∧ ρ′ ∈
γn(d′) ∧ (l, ρ) → (l′, ρ′) ⇒ ρ ∈ γn(

←−
δ l,l′(d, d′)) (i.e. d is refined into a stronger

pre-condition, by taking into account the post-condition d′). The definition for a
very simple

←−
δ l,l′ operator is given and discussed below. It is based on a backward

abstract assignment operator
←−−−
assign : × ×D�

n ×D�
n → D�

n, satisfying a similar
soundness condition. The design of this operator is detailed in Sect. 2.5.
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– assignment l0 : x := e; l1:
←−
δ l0,l1(d0, d1) =

←−−−
assign(x, e, d0, d1)

– conditional l0 : if(e){lt1 : st; lt2}else{l
f
1 : sf ; lf2}; l3:←−

δ l0,lt1
(d0, d1) = d0 � d1

←−
δ lt2,l3(d2, d3) = d2 � d3←−

δ l0,lf1
(d0, d1) = d0 � d1

←−
δ lf2 ,l3

(d2, d3) = d2 � d3

– loop l0 : while(e){l1 : s; l2}; l3:←−
δ l0,l1(d0, d1) = d0 � d1

←−
δ l2,l0(d2, d0) = d2 � d0

←−
δ l0,l3(d0, d3) = d0 � d3

– assertion l0 : assert(e); l1:
←−
δ l0,l1(d0, d1) = d0 � d1

– input l0 : input(x); l1:
←−
δ l0,l1(d0, d1) = d0 � forget(x, d1)

It might be desirable to improve the precision by locally refining the computa-
tion of

←−
δ l,l′ . Indeed, if

−→
δ l,l′ and

←−
δ l,l′ are sound, then so is

←−
δ

(n)
l,l′ : (d, d′) �→ d(n),

where: d(0) =
←−
δ l,l′(d, d′) and ∀n ∈ , d(n+1) =

←−
δ l,l′(d(n),

−→
δ l,l′(d(n))). This pro-

cess is known as local iterations [17] and usually allows to improve the precision
of backward abstract operations and condition testings. For instance, in the case
of the if statement, we may replace

←−
δ l0,lt1

with
←−
δ l0,lt1

(d0, d1) = guard (e, d0�d1).
Our experience proved local iterations not extremely useful, in the presence of
a refined abstract domain, able to carry out rather expressive constraints.

The backward analyzer is defined by a function
←−
F �

r : D� ×D� → D�; (I, I ′)
�→ λ(l ∈ ). � {←−δ l,l′(I(l), I ′(l′)) | l′ ∈ } and satisfies the soundness result:

Theorem 2 (Soundness of the backward abstract interpreter). T ⊆
γ( 1) where 1 = lfp�

F�� 0
[λ(I ∈ D�).

←−
F �

r( 0, I)] and 0 is the result of the forward
analysis (Th. 1).

2.5 Backward Assignment

The Domain. Astrée uses a reduced product of several domains, including
an interval domain, constraints among boolean variables or between boolean and
scalar variables. Among the numerical relational domains, we can cite octagons
[25] that express relations of the form ±x ± y ≤ c and specific domains like
[13], adapted to the analysis of control command software components. Complex
expressions can be abstracted prior to evaluation inside the abstract domain into
interval linear forms [24]: given an abstract value d ∈ D�

n, e is abstracted into
e′ = lin(e, d) =

∑
k Ik · xk (· is a product operator, ∀k, Ik is a real interval, xk

a variable), such that ∀ρ ∈ γn(d), �e�(ρ) ∈ �e′�(ρ). Linearization allows complex
(e.g. non linear) expressions to be analyzed precisely inside relational domains.

We consider now the definition of
←−−−
assign(x, e, dpre, dpost). Note that we assume

that the l-value x is resolved exactly; this is always the case in the subset of C
introduced in Sect. 2.1. In practice, may-assign (e.g. in the case of arrays) and
assignment of pointer values are also taken into account. In the proofs below, we
let ρ ∈ γn(dpre); we write v = �e�(ρ) and we also assume ρ[x ← v] ∈ γn(dpost).
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Boolean Transfer Function. If x is a boolean variable, we let:

←−−−
assign(x, e, dpre, dpost) =

{
guard (e, forget(x, guard (x, dpost)) � dpre)

� guard (¬e, forget(x, guard (¬x, dpost)) � dpre)

Indeed, let us assume v = true. Then ρ ∈ γn(forget(x, guard (x, dpost))), due to the
hypothesis on ρ[x ← true]. Moreover, �e�(ρ) = true, so ρ ∈ γn(guard (e, forget(x,
guard (x, dpost)))), which shows the soundness of the above definition.

Arithmetic Backward Transfer Function. Let us assume now that x has
scalar type, e.g. floating point. We let lin(e, d) =

∑
k Ik ·xk be an interval linear

form of e. We consider the derivation of new octagon and interval constraints:

– the octagon domain provides backward assignment and guard abstract trans-
fer functions for interval linear form expressions [25];

– the interval information in dpre is refined as follows: we let Ipre
x (resp. Ipost

x )
denote the interval information about x in dpre (resp. dpost) and we compute
a refined interval information Iref

xj
for xj . The soundness of linearization

implies that v ∈ (
∑

k �=j Ik · Ipre
xk

) + Ij · ρ(xj); hence, if 0 �∈ Ij , ρ(xj) ∈
(v−(

∑
k �=j Ik ·Ipre

xk
))/Ij ⊆ (Ipost

x −(
∑

k �=j Ik ·Ipre
xk

))/Ij , so that the definition
Iref

xj
= (Ipost

x − (
∑

k �=j Ik · Ipre
xk

))/Ij is correct. These refined intervals are
computed with a floating point-based approximation of the semantics of
linear interval forms defined in terms of real numbers [24].

Note that the linearization should be computed using dpre: using dpost would be
unsound, since the value of the assigned variable changed; dpre is also most useful
to get the interval information before the assignment; hence, the first argument
of

←−−−
assign is crucial to compute a precise and sound dpre.

Example 3 (Backward assignment for intervals). We consider the assignment
x := y · x + z, dpre = {x ≥ 0, y ∈ [1, 2], z ∈ [1, 2], . . .}, dpost = {x ∈ [3, 4], . . .}.
Linearization converts it into x := [1, 2] · x+ z; the backward assignment refines
the range for x into [0.5, 3]. Local iteration would not improve the precision.

2.6 Iteration Strategies

Iterative Refining Process. At the concrete level, T could be defined as
the intersection of two independent fixpoints. However, at the abstract level,
the invariant 1 obtained after one forward analysis and one backward anal-
ysis might be refined by further analyses. For instance, in case the backward
analysis reveals that no trace is going through the true branch of a conditional
l : if(e){st}else{sf}; l′ : s′, a refining forward analysis from 1 may refine the
local invariants inside s′, since the possible imprecision due to the least upper
bound at l′ no longer occurs. Note that a further backward analysis would likely
improve the results inside sf also.

Therefore, we propose to define a refining forward analysis and to iterate
the refining forward-backward process [6,9]. The refining forward analyzer

−→
F �

r :
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D� ×D� → D� is based on the forward analyzer and refines its first argument
as the backward analyzer:

−→
F �

r : (I, I ′) �→ λ(l′ ∈ ). � {−→δ l,l(I(l)) � I(l′) | l ∈ }.
The refining sequence ( n)n∈ is defined by:

– 0 has been defined in Th. 1 by 0 = lfp�
I�

−→
F �;

– if n ≥ 0, 2n+1 = lfp�
F�� 2n

[λ(I ∈ D�).
←−
F �

r( 2n, I)] (akin to 1, see Th. 2);

– if n ≥ 0, 2n+2 = lfp�
I�� 2n+1

[λ(I ∈ D�).
−→
F �

r( 2n+1, I)].

Theorem 3 (Soundness of the forward-backward refinement). The
above process is sound: ∀n ∈ , T ⊆ γ( n).

The proof is done by induction; it is similar to [9, Chap. 6]. Note that, given I�

and F �, the sequence of refined invariants is obtained fully automatically.

Example 4 (Ex. 1 continued: refined analysis). We let F � be x ∈ [−10, 10]∧ y ≥
0 ∧ b = true; clearly FD,l3 ⊆ γn(F �). The table below shows the result of the
first two refining iterations, using a non relational abstraction:

label 0 1 2

l1 , ⊥ ⊥
l2 y ≥ 0 −10 < x < 10 ∧ y ≥ 10 ⊥
l3 y ≥ 0 ∧ b ∈ {true, false} −10 < x < 10 ∧ y ≥ 10 ∧ b = true ⊥

TD,l3 = ∅: the second refining iteration proves the correctness of the program,
i.e. the alarm was false (Sect. 2.2, Case a).

Local Iterations. The above refinement process is not optimal from the effi-
ciency point of view. In the case of the if statement considered above, it amounts
to completing the backward analysis of the whole program before doing a new
forward analysis so as to refine the invariant at label l. We might want to do
local iterations, that is carrying out forward and backward local analysis steps in
a single iteration phase. In practice, we found that the refinement process done
with an expressive abstract domain (like the domain present in Astrée) does
not require much local iterations. Carrying out iterative refinements on large
blocks of code (e.g. functions) was a more efficient strategy.

Implementation of the Interpreters. The forward analyzer Astrée is writ-
ten as a function that inputs a statement and an abstract pre-condition and
returns an abstract post-condition; it is defined in denotational style, recursively
on the syntax. The export of invariants is optional and one may choose the labels
local invariants are exported at. The refining forward analyzer is based on the
latter; a parameter just forces it to compute greater lower bounds with a previ-
ously computed invariant. The backward analyzer is very similar (same layout,
same iteration strategy).

3 Specifying Alarm Contexts

Sect. 2 described the forward-backward analysis involved in the approximation
of the set of “dangerous traces”. Yet, it does not solve the following issues:
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– if we analyze backwards a statement while(e){l : assert(e); . . .}, the back-
ward interpreter computes a least-fixpoint on the loop; at the end of the
process the invariant at l approximates not only the states right before an
error occurs but also the states encountered one, two, or many iterations
before, which results in a massive loss of precision at l;

– after refinement of the invariants, we may have the intuition that TD,l �=
∅; should that case arise, we would like to envisage and check an “error
scenario”, which needs to be defined.

Example 5. We consider the example shown on Fig. 1(b) along this section.
Clearly, this program may fail: it may read a negative input; at the next iteration,
y is negative, which causes the assertion to fail. However, if the input is always
positive, it does not fail. Last, note that it will not fail in the first iteration. The
attempt to determine the alarm raised after computing 0 using a simple interval
analysis leaves us in the undetermined case (Sect. 2.2, Case c).

3.1 Restriction to an Execution Pattern

We propose to extend the semantic slicing introduced in Sect. 2, by specifying
some execution patterns in addition to the initial and final states: for instance,
we may restrict a slice to the executions that cause an error after at least two
iterations of the main loop and distinguish the states encountered in the last two
iterations when approximating this slice. In practice, we resort to some kind of
trace partitioning technique, that fits in the framework of [23].

Restriction to a Pattern. We extend the syntax of the language presented in
Sect. 2.1 with a statement l0 : cnt; l1. Tne new semantics should keep track of
the order such statements are executed in. We propose to abstract this order.

Our approach involves the choice of an automaton ( ,�), where is a finite
set of states and (�) ⊆ × × is a transition relation (we write q

l� q′

for (q, l, q′) ∈ (�)). The labels are replaced with pairs (l, q) ∈ × in the
definition of the concrete semantics: we replace with p = × ; with

p = p × ∪ {Ω}. The new, partitioned semantics �P �p is defined similarly to
�P �, using the new transition relation (→p) ⊆ p × p instead of (→):

– case of l0 : cnt; l1: if q0
l0� q1, then ∀ρ ∈ , ((l0, q0), ρ) →p ((l1, q1), ρ);

– case of any other transition:
if (l0, ρ0) → (l1, ρ1), then ((l0, q), ρ0) →p ((l1, q), ρ1);
if (l0, ρ0) → Ω, then ((l0, q), ρ0) →p Ω.

The execution pattern defined by a pair of states (q, q′) is γ (q, q′) = {〈((l0, q0),
ρ0), . . . , ((ln, qn), ρn)〉 | q0 = q ∧ qn = q′}.

Example 6 (Ex. 5 continued). We insert a cnt statement in the loop and consider
the automaton Q below. Then, γ (q0, q2) specifies all the traces reaching the
dangerous label at the iteration n where n ≥ 2 and distinguishes the last two
iterations (q1 stands for iteration n−1; q2 stands for iteration n). The automaton
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allows us to restrict to the executions that spend more than one iteration in the
loop (hence, that may cause an error).

q0 q1 q2

lc

lc lc
l0 : x = 1; y = 1;

while(true){
lc : cnt;
li : input(x);
ld : assert(y > 0);

y = x; }

We write π : p → (resp. π : p → , π : �
p → �) for the erasure

function that removes the elements of in labels (resp. stores, traces); we let π
also be defined for sets of traces. If τ ∈ �P �p, then π(τ) ∈ �P � (proof obvious).

Refining the Semantic Slice. We also need to extend I and F . Let qi, qf ∈ .
We define Ip = {((l, qi), ρ) | (l, ρ) ∈ I} and Fp = {((l, qf ), ρ) | (l, ρ) ∈ F}. The
automaton ( ,�) and the states qi, qf are currently chosen by the user so as to
specify some set of execution paths and to specialize even more the semantic slice
T ; the automatic selection of refinements is left as future work (see discussion in
Sect. 5). Other choices for I or F , involving several states in the automaton are
possible (the extension is easy). The definition of Tp from Ip,Fp is similar to the
definition of T from I,F (Sect. 2.2). It satisfies the following property, which
clearly shows that it is restricted to the execution pattern defined by qi, qf :

π(Tp) = T ∩ π(γ (qi, qf ))

Approximation of the Semantic Slice. We replace D� = → D�
n with

the partitioning domain D�
p = × → D�

n; we let γp : D�
p → P( p), I �→

{〈((l0, q0), ρ0), . . . , ((ln, qn), ρn)〉 | ∀i, ρi ∈ γn(I(li, qi))}. The definition of for-
ward and backward abstract interpreters and of the sequence of refined invariants
p
n follows the steps of Sect. 2, with extended definitions for

−→
δ l,l′ ,

←−
δ l,l′ :

– Case of l0 : cnt; l1:
• forward analysis: if q0

l0� q1,
−→
δ (l0,q0),(l1,q1)(d) = d;

• backward analysis: if q0
l0� q1,

←−
δ (l0,q0),(l1,q1)(d, d′) = d � d′;

– Case of other statements:
−→
δ (l0,q),(l1,q) (resp.

←−
δ (l0,q),(l1,q)) is defined like

−→
δ l0,l1 (resp.

←−
δ l0,l1) in Sect. 2.

Theorem 4 (Soundness). The static analysis of the partitioned system leads
to a sequence of sound invariants: ∀n ∈ , Tp ⊆ γp( p

n).

Proof: with respect to �P �p.

Example 7 (Execution patterns). Many patterns can be encoded easily (we as-
sume that the program is of the form while(e){lc : cnt; . . .}):
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qe qo

lc

lc
(a)

q0 q1 q2
lc lc

lc

(b)

Fig. 2. Automata specifying trace patterns

– On Fig. 2(a), qe and qo correspond to even and odd iteration numbers:
γ (qe, qo) slices the traces iterating the loop an even number of times; it
also helps distinguishing states reached after an odd (resp. even) number of
iterations;

– On Fig. 2(b), γ (q0, q1) corresponds to the first iteration, γ (q0, q2) to the
n-th iteration (n ≥ 2).

Example 8 (Ex. 5 continued).

– The refinement of TD,(ld,q1) with the automaton of Fig. 2(b) and the pattern
qi = q0, qf = q1 shows that no error may happen in the first iteration;

– Similarly, the refinement of TD,(ld,q2) with the automaton Q (Ex. 6) gives
some intuition about the traces that cause an error: at (ld, q2), we get y ≤ 0;
at (ld, q1), we get x ≤ 0, which suggests the input of x should be negative
one iteration before the error. We wish now to verify this error scenario.

Remarks. Note that the choice of an automaton with only one state q and such
that for any statement l : cnt, q l� q results in the same analyses as in Sect. 2.

The trace partitioning presented in this section runs on the top of the one
described in [23]; the latter aims at computing more precise invariants thanks to
delayed merges of flows (e.g. out of while or if statements). Our goal here is to
extract some execution patterns and to refine the corresponding invariants.

3.2 Restriction to a Set of Inputs

We now consider the slices defined by constraining the inputs; for instance, this
may allow to show that this input always leads to an error.

Specification of Inputs. We let in denote the set of input statements labels:
in = {l ∈ | l : input(xl)}. An input specification is a function ν : p →

P( ), mapping a label to the set of values that may be read at this point. The
definition of ν over the partitioned labels allows to select different inputs for
different execution contexts (corresponding to different states in the automaton
introduced in Sect. 3.1) at the same label. The denotation of the input function
ν is the set of traces γ (ν) = {〈((l0, q0), ρ0), . . . , ((ln, qn), ρn)〉 | ∀i, li ∈ in ⇒
ρi+1(xli ) ∈ ν(li, qi)}: such traces satisfy the property that reading an input at
label (l, q) yields a value in ν(l, q).
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Refining the Semantic Slice. The semantic slice constrained to ν is:

Tv = Tp ∩ γ (ν) = T ∩ γ (qi, qf ) ∩ γ (ν) .

Approximation of the Semantic Slice. The only modification required to
take into account the input specification concerns the rule for the l0 : input(x); l1
statement. In this case, we let

−→
δ (l0,q),(l1,q)(d) = forget(x, d) � ν�(l0, q) where

ν�(l0, q) is a sound approximation of ν(l0, q): {ρ ∈ | ρ(x) ∈ ν(l0, q)} ⊆
γn(ν�(l0))}. The case of the backward analysis requires no modification.

Theorem 5 (Soundness). The resulting abstract interpreters are sound and
compute a sequence of sound refined invariants: ∀n ∈ , Tv ⊆ γp( p

n).

The proof follows the definition of a variation �P �v of the concrete semantics
�P �p: �P �v is obtained from →p,ν just as �P �p from →p, where →p,ν is the
transition relation constrained by the input function ν. The only modification
in the definition of →p,ν comes from the case of the l : input(xl); l′ statement:
((l, q), ρ) → ((l′, q), ρ[x← v]) where v ∈ ν(l, q).

Example 9 (Ex. 5 continued). Let us consider the input specification ν(li, q1) =
−1. Then, 0 shows that y = −1 at point (ld, q2) (the interval analysis proves
this property). Hence, the automaton Q and the input specification ν define a
valid error scenario: any execution iterating the loop n times and such that the
value read for x during the (n− 1)th iteration is −1 will result in an error. Such
situations are feasible, so the static analysis showed a real bug in the program
(Sect. 2.2, Case b).

Example 10 (Ex. 7 continued). The automaton of Fig. 2(a) allows to specify a
cyclic input; the automaton of Fig. 2(b) allows to isolate initialization inputs
read during the first iteration and inputs read at iteration n for n ≥ 2.

Currently, the function ν� should be provided by the user; further work should
allow to synthesize an input specification ν� exhibiting an error.

4 Slicing

The size of the program is a major issue when computing semantic slices as
suggested in Sect. 2.4 and 2.6. Indeed, forward-backward analyses require saving
local invariants, which would induce a dramatic memory cost, if applied to the
whole program. Therefore, we propose to use regular, syntactic slicing techniques
[29,19] so as to restrict the amount of code to apply the refining analyses to. We
use the notations of Sect. 2 for the sake of simplicity (even though mixing slicing
techniques and the methods introduced in Sect. 3 is straightforward).

We assume a program s is given, that contains a statement ld : assert(e).
We write use(e) for the set of variables that appear in expression e.
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Slicing. A slicing criterion is a set C ⊆ × of pairs made of a label and a
variable ; it specifies a set of variables we wish to observe the value of, at some
point. A typical choice is C = {(ld, x) | x ∈ use(e)}. See eg. [19] for standard
slicing algorithms. Slicing is sound in the sense that it does not remove any
behavior of the original program for some observation including the dependence
closure of the criterion. As a consequence, the static analysis of the slice yields
a safe approximation of the semantic slice of the initial program. Beyond the
restriction of the size of the code to analyze, an advantage of considering the slice
defined by the ld : assert(e) statement is that most of the remaining statements
and variables are relevant to the observation at label ld, i.e. to the alarm under
investigation.

Reducing the Size of Slices. If n(l) = ⊥, then n proves that the statement
at label l is not relevant to the semantic slice of interest T ; hence, this statement
can be safely removed from the slice and its dependences thrown away, which
allows to reduce even more the size of the syntactic slice. Such a transformation
preserves the soundness and should speed up the computation of n+k (k ≥ 1).

Approximation of Slices. Slicing should reduce the programs to analyze to a
reasonable size; however, even the slices extracted from some assert statements
may have prohibitive sizes, when extracted from very large programs, with long,
cyclic dependence chains. Thus, we propose to do “aggressive slicing” and to
approximate any removed statement in a sound manner during the analysis.

For instance, let us consider the forward analysis of a statement l0 : x := e; l1
(that should be extracted in the slice). As seen in Sect. 2, the forward ab-
stract transfer function for this statement is

−→
δ l0,l1 : d �→ −−−→

assign(x, e, d). The
aggressive slicing of this statement consists in replacing the previous definition
of

−→
δ l0,l1 with the following:

−→
δ l0,l1 : d �→ forget(x, d). Observe that this is sound:

d �→ forget(x, d) approximates all the concrete transitions defined by the assign-
ment; hence, this new definition for

−→
δ l0,l1 leads to a sound forward and backward

abstract interpreters (the soundness results of Th. 1, Th. 2, and Th. 3 are pre-
served). Among the possible strategies to reduce the size of “aggressive slices”,
we can cite the limiting of dependency chains, the restriction to a given subset of
variables or the elimination of loop-carried dependences: these approaches lead
to an under-approximation Ĉ of the dependences induced by C.

5 Case Studies

A typical alarm investigation session proceeds as follows:
1. do a forward analysis, determine a superset of the possible errors (Th. 1);
2. choose an alarm to investigate; restrict to a slice including the alarm point;
3. define I�,F �, attempt to prove the alarm wrong with forward-backward

refinement (Th. 3), otherwise a more precise alarm context slice is found;
4. in case of failure, specialize the alarm context (Sect. 3.1);
5. in case no attempt to get the analyzer to prove TD,l = ∅ succeeds, then

attempt to prove the alarm true by choosing a set of inputs (Sect. 3.2).
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Application to a Family of Programs. We applied our methodology to
the alarms raised by Astrée on a series of 3 early development versions of
some critical embedded programs (bugs were not unlikely in the development
versions).

Size of the C code (lines) 67 500 233 000 412 000
Number of functions 650 1900 2900
Analysis time ( 0) in sec. 1 300 16 200 37 500
Number of alarms 4 1 0
Alarm names a1, a2, a3, a4 a5 -

Slicing (Sect. 4) showed that a2 (resp. a4) is a direct consequence of a1 (resp.
a3); hence, we restricted to the investigation of a1, a3 and a5. The computation
of a semantic slice for the corresponding dangerous states on the slices revealed
rather informative conditions on the inputs. Specializing some inputs and car-
rying out a new, forward analysis allowed to prove the alarms true, thanks to
an input specification as in Ex. 10. The table below provides some data about
the process: the number of input constraints is the number of points an input
constraint had to be specified for (Sect. 3.2); the number of execution patterns
corresponds to the number of automata we considered (Sect. 3.1). The size of
the slices (number of lines, functions and variables) involved in the alarms show
that a1, a3 were rather subtile; a5 was much simpler. The number of additional
constraints generated during the forward-backward refinement is rather difficult
to express simply due to the trace partitioning, and to the use of sophisticated
numerical domains; we can only mention that it is much higher than the number
of variables or of program points. One forward-backward iteration necessitates
a reasonable amount of resources for these slices (up to 1 min., 80 Mb).

Alarm a1 a3 a5

Size of the slice (lines) 1280 4096 244
Number of functions in the slice 29 115 8
Number of variables in the slice 215 883 30
including: int, bool, float variables 15, 60, 146 122, 553, 208 7, 11, 23
Execution patterns 2 2 2
Input constraints 4 4 2

The only manual step is the choice of adequate execution patterns and of
constraints on inputs, so as to get an error scenario; in all the above cases, these
numbers are very low, which shows the amount of work for the user is very
reasonable: only 4 inputs had to be chosen in the most complicated case (a3).
However each of these choices had to be made carefully, with respect to complex
conditions on bit-fields and arithmetic values. The choices for the execution
patterns to examine only required considering very few simple automata (similar
to unrolling of loops, akin to Fig. 2(b) and Ex. 6), so that the selection of
execution patterns should be easy to automatize.
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All alarms found involve intricate floating point computations. For instance,
a5 is due to a mis-use of (interpolated) trigonometric functions, leading to a
possibly negative result, causing a square root computation to fail.

Early Experience Conclusions. The use of the system reduced the alarm
investigation time to a few hours in the worst case we faced; the refining analyses
are fully automatic and default parameters (fixed number of global forward-
backward steps, no local iterations) did not have to be twicked too much to give
good results. Fully manual inspection of such alarms would have required days
of work and would have made the definition of an error scenario much more
involved. Moreover, we could successfully classify all alarms, which means that
no false alarm remains.

6 Conclusion and Related Work

We proposed a framework adapted to alarm inspection. Early experiments are
positive about the ability of the system to reduce the burden of tracking the
source of alarms in Astrée: overall, all considered alarms could be classified (no
case similar to Fig. 1(c) left), which is a very positive result.

Some forms of conditioned slicing [21,4] attack a similar problem. However,
these methods are essentially based on a purely syntactic process, not only for the
extraction but also for the shape of the result (a slice is a subset of the program
statements [29]). Slicing has been employed for debugging tasks. Recent advances
in this area led to the implementation of conditioned slicing tools like [14], that
could be applied to testing and software debugging [18]. However, our system
is able to produce semantic slices, i.e. to provide global information about a
set of executions instead of a mere syntactic subset of the program; this is a
major advantage when investigating complex errors. The downside is the use of
more sophisticated algorithms; however, syntactic slicing alone would not help
significantly the alarm inspection process in Astrée.

The search for counter-examples and automatic refinement has long been a
motivation in the model-checking-based systems, such as [5,2,26,27,16]. In par-
ticular, the automatic refinement process plays a great role in the determination
of the set of predicates (i.e. abstract domain) needed for a precise analysis [1].
Our goal is to bring such methods in static analyzers like Astrée for a different
purpose, i.e. to solve the few, subtile alarms, after an already very precise anal-
ysis [3] (the construction of the domain requires no internal refinement process).

Forward-backward analysis schemes have been applied, e.g. in [20], to the
inference of safety properties. Some static analysis systems have been extended
with counter-examples search facilities: [15] relies on random test generation; [12]
uses a symbolic under-approximation of erroneous traces and theorem proving.
The main difference is that we chose to start with an over-approximation of
erroneous traces until conditions on inputs are precise enough so that a counter-
example could be found since the search space for counter-examples was huge in
our case, due to the size of the programs. For instance, the systematic exploration
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of paths as in [12] over length above 1000, with hundreds of variables would not
work. Moreover, we allow abstract error scenario to be tested unlike [15,12]: this
reduces the amount of input constraints to fix to a minimum. On the other hand,
we leave the automatic generation of counter-examples as a future work.

Future work should make the process more automatic for attempting to dis-
cover an error scenario, by proposing input sequences and restricting to adapted
alarm contexts (which are user provided in Sect. 3.1 and Sect. 3.2). We also plan
to make the choice of slices to analyze (Sect. 4) more sensible, by using the result
of the initial forward analysis, to choose which part of the invariant to refine.
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Abstract. Pair-sharing analysis of object-oriented programs determines
those pairs of program variables bound at run-time to overlapping data
structures. This information is useful for program parallelisation and
analysis. We follow a similar construction for logic programming and
formalise the property, or abstract domain, Sh of pair-sharing. We prove
that Sh induces a Galois insertion w.r.t. the concrete domain of pro-
gram states. We define a compositional abstract semantics for the static
analysis over Sh, and prove it correct.

1 Introduction

Static analysis determines, at compile-time, properties about the run-time be-
haviour of computer programs, in order to verify, debug and optimise the code.
Abstract interpretation [7, 8] is a framework for defining static analyses from
the property of interest (the abstract domain), and prove their correctness.

In object-oriented languages such as Java, program variables are bound to
data structures, stored in a sharable memory, which might hence overlap. Con-
sider for instance the method clone in Figure 1 which performs a shallow copy
of a StudentList. Its Java-like syntax is defined in Section 3. Variables out
and ttail are local to clone, and out holds its return value. If variables sl1
and sl2 have type StudentList, an assignment sl1 :=sl2 .clone() makes them
share the Students of sl2 , which become reachable from sl1 . Without the line
out .head :=this .head in Figure 1, variables sl1 and sl2 would not share anymore.

Possible sharing (or, equivalently, definite non-sharing) has many applica-
tions. Namely, assume that sl1 and sl2 do not share. Then

– We can execute the calls sl1 .tail.clone(); and sl2 .clone() on different pro-
cessors with disjoint memories. Hence sharing analysis can be used for auto-
matic program parallelisation or distribution;

– An assignment such as sl1 .head := new Person does not affect the class of
sl2 .head. Hence sharing analysis improves a given class analysis, which de-
termines at compile-time the run-time class of the objects bound to the
expressions [17];

– If sl2 is a non-cyclic list then an assignment sl1 .tail :=sl2 makes sl1 non-
cyclic. This is not necessarily true if sl1 and sl2 share: if sl1 points to a
node of sl2 , the previous assignment builds a cycle. Hence sharing is useful
for non-cyclicity analysis.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 320–335, 2005.
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class Object {}

class Person extends Object { int age; }

class Student extends Person {}

class Car extends Object { int cost; }

class StudentList extends Object {

Student head; StudentList tail;

StudentList clone() with ttail:StudentList is {

out := new StudentList;

out.head := this.head;

ttail := this.tail;

if (ttail = null) then {} else out.tail := ttail.clone()

}

}

Fig. 1. Our running example: a method that performs a shallow copy of a list

In all examples above, alias information [5, 16] is not enough to reach the same
conclusions. Namely, to express the sharing of sl1 and sl2 (of type StudentList)
through aliasing, we must check if sl1 and sl2 are aliases, or sl1.head and
sl2.head, or sl1.tail and sl2.tail, or sl1.tail.head and sl2.tail.head and so
on. Thus sharing cannot be finitely computed from aliasing, which is a special
case of sharing. Nevertheless, sharing is an abstraction of graph-based repre-
sentations of the memory used by some alias analyses [5, 16]. Graphs are also
used in the only sharing analysis for object-oriented programs we are aware
of [13]. However, our goal is to follow previous constructions for logic program-
ming [6, 10, 11, 12] and define a more abstract domain Sh for sharing analysis
than graphs. Its elements contain the unordered pairs of program variables al-
lowed to share. We prove that a Galois insertion exists between Sh and the
concrete domain of program states i.e., Sh is not redundant. This is not easy
in a strongly-typed language such as Java, compared to untyped logic program-
ming. We provide correct abstract operations over Sh in order to implement a
static analysis. We use a denotational semantics, and abstract denotations are
mappings over Sh which we can implement through efficient binary decision di-
agrams [3], by identifying each pair of program variables with a distinct binary
variable. Moreover, denotational semantics yields a compositional analysis [18].

We preferred pair-sharing to full sharing [10], which determines the sets of
variables which share a given data-structure. Our choice is motivated by the
fact that abstract domains for pair-sharing should be simpler and smaller than
abstract domains for full sharing [1]. There has been some discussion on the
redundancy of sharing w.r.t. pair-sharing in logic programs [1, 4], whose conclu-
sions, however, do not extend immediately beyond the logic programming realm.
In any case, our construction can be easily rephrased for full sharing.

The rest of the paper is organised as follows. Section 2 contains the prelim-
inaries. Section 3 shows our simple language. Section 4 defines the abstract do-
main Sh and proves the Galois insertion property. Section 5 defines an abstract
semantics (analyser) over Sh and states its correctness. Section 6 concludes.
Proofs are in [14].
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2 Preliminaries

A total (partial) function f is denoted by �→ (→). The domain (codomain)
of f is dom(f) (rng(f)). We denote by [v1 �→ t1, . . . , vn �→ tn] the function f
where dom(f) = {v1, . . . , vn} and f(vi) = ti for i = 1, . . . , n. Its update is
f [w1 �→ d1, . . . , wm �→ dm], where the domain may be enlarged. By f |s (f |−s)
we denote the restriction of f to s ⊆ dom(f) (to dom(f) \ s). If f(x) = x then
x is a fixpoint of f . The composition f ◦ g of functions f and g is such that
(f ◦ g)(x) = g(f(x)) so that we often denote it as gf . The two components of
a pair are separated by $. A definition of S such as S = a $ b, with a and b
meta-variables, silently defines the pair selectors s.a and s.b for s ∈ S.

A poset S $≤ is a set S with a reflexive, transitive and antisymmetric relation
≤. If s ∈ S then ↓s = {s′ ∈ S | s′ ≤ s}. An upper (respectively, lower) bound
of S′ ⊆ S is an element u ∈ S such that u′ ≤ u (respectively, u′ ≥ u) for every
u′ ∈ S′. A complete lattice is a poset C $≤ where least upper bounds (lub, �)
and greatest lower bounds (glb, �) always exist. If C $≤ and A $� are posets,
f : C �→ A is (co-)additive if it preserves lub’s (glb’s).

Let C $≤ and A $� be two posets (the concrete and the abstract domain).
A Galois connection [7, 8] is a pair of monotonic maps α : C �→ A and γ :
A �→ C such that γα is extensive and αγ is reductive. It is a Galois insertion
when αγ is the identity map i.e., when the abstract domain does not contain
useless elements. This is equivalent to α being onto, or γ one-to-one. If C and A
are complete lattices and α is additive (respectively, γ is co-additive), it is the
abstraction map (respectively, concretisation map) of a Galois connection. An
abstract operator f̂ : An �→ A is correct w.r.t. f : Cn → C if αfγ � f̂ .

3 The Language

We describe here our simple Java-like object-oriented language.

Syntax. Variables have a type and contain values. We do not consider primitive
types since their values cannot be shared but only copied.

Definition 1. Each program in the language has a set of variables (or identi-
fiers) V (including res, out , this) and a finite set of classes (or types) K ordered
by a subclass relation ≤ such that K $≤ is a poset. A type environment de-
scribes a finite set of variables with associated class. It is any element of the set
TypEnv = {τ : V → K | dom(τ) is finite}. In the following, τ will stand for a
type environment. Type environments describe the variables in scope in a given
program point. Moreover, we write F (κ) for the type environment that maps the
fields of the class κ ∈ K to their type.

Example 2. In Figure 1, K = {Object, Person, Student, Car, StudentList},
where Object is the top of the hierarchy and Student ≤ Person. Since we are not
interested in primitive types, we have F (Object) = F (Student) = F (Person) =
F (Car) = [] and F (StudentList) = [head �→ Student, tail �→ StudentList].
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Our expressions and commands are normalised versions of those of Java. For in-
stance, only distinct variables can be the actual parameters of a method call; left-
values in assignments can only be a variable or the field of a variable; conditional
can only test for equality or nullness of variables; loops must be implemented
through recursion. These simplifying assumptions can be relaxed without affect-
ing subsequent results. Instead, it is significant that we allow downwards casts,
since our notion of reachability (Definition 11) depends from their presence.

Definition 3. Our simple language is made of expressions1 and commands

exp ::= null κ | new κ | v | v .f | (κ)v | v .m(v1, . . . , vn)
com ::= v:=exp | v.f :=exp | {com ; · · · ;com}

| if v = w then com else com | if v = null then com else com

where κ ∈ K and v, w, v1, . . . , vn ∈ V are distinct.
Each method κ.m is defined inside class κ with a statement like

κ0 m(w1 :κ1, . . . , wn :κn) with wn+1 :κn+1, . . . , wn+m :κn+m is com

where w1, . . . , wn, wn+1, . . . , wn+m ∈ V are distinct and are not res nor this
nor out. Their declared types are κ1, . . . , κn, κn+1, . . . , κn+m ∈ K, respectively.
Variables w1, . . . , wn are the formal parameters of the method, wn+1, . . . , wn+m

are its local variables. The method can also use a variable out of type κ0 which
holds its return value. We define body(κ.m) = com, returnType(κ.m) = κ0,
input(κ.m) = [this �→ κ,w1 �→ κ1, . . . , wn �→ κn], output(κ.m) = [out �→ κ0],
locals(κ.m) = [wn+1 �→ κn+1, . . . , wn+m �→ wn+m] and scope(κ.m) = input(κ.m)∪
output(κ.m) ∪ locals(κ.m).

Example 4. Consider StudentList.clone (just clone later) i.e., the method
clone of StudentList in Figure 1. Then input(clone) = [this �→ StudentList],
output(clone)=[out �→StudentList] and locals(clone)=[ttail �→StudentList].

Our language is strongly typed i.e., expressions exp have a static (compile-time)
type typeτ (exp) in τ , consistent with their run-time values (see [14]).

Semantics. We describe here the state of the computation and how the lan-
guage constructs modify it. We use a denotational semantics, hence composi-
tional, in the style of [18]. However, we use a more complex notion of state,
to account for dynamically-allocated and sharable data-structures. By using a
denotational semantics, our states contain only a single frame, rather than an
activation stack of frames. A method call is hence resolved by plugging the in-
terpretation of the method (Definition 9) in its calling context. This is standard
in denotational semantics and has been used for years in logic programming [2].

A frame binds variables (identifiers) to locations or null . A memory binds
such locations to objects, which contain a class tag and the frame for their fields.

1 The null constant is decorated with the class κ induced by its context, as in
v:= null κ, where κ is the type of v. This way we avoid introducing a distinguished
type for null. You can assume this decoration to be provided by the compiler.
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Fig. 2. A state (frame φ and memory μ) for τ = [c �→ Car, sl1 �→ StudentList, sl2 �→
StudentList, p �→ Person, s1 �→ Student, s2 �→ Student]

Definition 5. Let Loc be an infinite set of locations. We define frames, objects
and memories as Frameτ = {φ | φ ∈ dom(τ) �→ Loc ∪ {null}}, Obj = {κ $φ |
κ ∈ K, φ ∈ FrameF (κ)} and Memory = {μ ∈ Loc → Obj | dom(μ) is finite}. A
new object of class κ is new(κ) = κ $φ, with φ(v) = null for each v ∈ F (κ).

Example 6. Figure 2 shows a frame φ (with 6 variables) and a memory μ. Dif-
ferent occurrences of the same location are linked by arrows. For instance, s1 is
bound to a location l3 and μ(l3) is a Student object. Objects are represented as
boxes in μ with a class tag and a local frame mapping fields to locations or null .

Type correctness φ$μ : τ guarantees that in φ and in the objects in μ there
are no dangling pointers and that variables and fields may only be bound to
locations which contain objects allowed by τ or by the type environment for the
fields of the objects (Definition 1). This is a sensible constraint for the memory
allocated by strongly-typed languages, such as Java. For its formal definition,
see [14]. We can now define the states as type correct pairs φ$μ.

Definition 7. Let τ be the type environment at a given program point p. The
set of possible states at p is Στ = {φ$μ | φ ∈ Frameτ , μ ∈ Memory , φ $ μ : τ}.

Example 8. Consider Figure 2. The variables in φ are bound to null or to objects
of a class allowed by τ . The tail fields of the objects in μ are bound to null or to
a StudentList, consistently with F (StudentList) (Example 2). The head fields
are bound to a Student, consistently with F (StudentList). Hence φ$ μ : τ and
φ$ μ ∈ Στ .

Each method is denoted by a partial function from input to output states. A
collection of such functions, one for each method, is an interpretation.

Definition 9. An interpretation I maps methods to partial functions on states,
such that I(κ.m) : Σinput(κ.m) → Σoutput(κ.m) for each method κ.m.
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Definition 10 builds interpretations from the denotations of commands and
expressions. These denotations are in [14]. Below, we discuss them informally.

Expressions in our language have side-effects and return a value. Hence their
denotations are partial maps from an initial to a final state. The latter contains
a distinguished variable res holding the value of the expression: EI

τ [[ ]] : exp �→
(Στ → Στ+exp), where τ + exp = τ [res �→ typeτ (exp)]. Namely, given an input
state φ$ μ, the denotation of null κ binds res to null in φ. The denotation
of new κ binds res to a new location bound to a new object of class κ. The
denotation of v copies v into res . The denotation of v.f accesses the object
o = μ(φ(v)) bound to v (provided φ(v) �= null) and then copies the field f of o
(i.e., o.φ(f)) into res . The denotation of (κ)v copies v into res , but only if the
cast is satisfied. The denotation of method call uses the dynamic class of the
receiver to fetch the denotation of the method from the current interpretation.
It plugs that denotation in the calling context, by building a starting state σ†,
whose formal parameters (including this) are bound to the actual parameters.

The denotation of a command is a partial map from an initial to a final state:
CI

τ [[ ]] : com �→ (Στ → Στ ). Given an initial state φ$ μ, the denotation of v:=exp
uses the denotation of exp to get a state whose variable res holds exp’s value.
Then it copies res into v, and removes res. Similarly for v.f :=exp, but res is
copied into the field f of the object μφ(v) bound to v, provided φ(v) �= null .
The denotation of the conditionals checks their guard in φ$ μ and then uses the
denotation of then or the denotation of else. The denotation of a sequence of
commands is the functional composition of their denotations.

By using CI
τ [[ ]], we define a transformer on interpretations, which evaluates

the bodies of the methods in I, by using an input state where local variables
are bound to null . At the end, the final state is restricted to the variable out , so
that Definition 9 is respected. This corresponds to the immediate consequence
operator used in logic programming [2].

Definition 10. The following transformer on interpretations tranforms an in-
terpretation I into a new interpretation I ′ such that

I ′(κ.m) =(λφ$ μ ∈ Σinput(κ.m).φ[out �→ null , wn+1 �→ null , . . . , wn+m �→ null ] $μ)

◦ CI
scope(κ.m)[[body(κ.m)]] ◦ (λφ$ μ ∈ Σscope(κ.m).(φ|out $μ)).

The denotational semantics of a program is the least fixpoint of this transformer
on interpretations.

4 An Abstract Domain for Pair-Sharing

We formalise here when two variables share and define our abstract domain Sh.
We need a notion of reachability for locations. A location is reachable if it is
bound to a variable or to a field of an object stored at a reachable location.

Definition 11. Let φ$ μ ∈ Στ and v ∈ dom(τ). We define the set of locations
reachable from v in φ$μ as Lτ (φ$ μ)(v) = ∪{Li

τ (φ$ μ)(v) | i ≥ 0}, where
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L0
τ (φ$ μ)(v) = {φ(v)} ∩ Loc and Li+1

τ (φ$ μ)(v) = ∪{rng(μ(l).φ) ∩ Loc | l ∈
Li

τ (φ$ μ)(v)}. Two variables v1, v2 ∈ dom(τ) share in φ$μ if there is a location
which is reachable from both i.e., if Lτ (φ$μ)(v1) ∩ Lτ (φ$ μ)(v2) �= ∅.
Note, in Definition 11, that if an object o = μ(l) is stored in a reachable location
l, then also the locations rng(μ(l).φ) ∩ Loc of all o’s fields are reachable. This
reflects the fact that we consider a language with (checked) casts (Section 3),
which allow all fields of the objects to be accessed in a program.

Example 12. Consider the state σ = φ$μ in Figure 2. For every i ≥ 0 we have

L0
τ (σ)(c) = {l0} Li+1

τ (σ)(c) = ∅ Li
τ (σ)(sl1 ) = ∅

L0
τ (σ)(sl2 ) = {l2} L1

τ (σ)(sl2 ) = {l1, l3} L2
τ (σ)(sl2 ) = {l4} Li+3

τ (σ)(sl2 )=∅
L0

τ (σ)(p) = {l3} Li+1
τ (σ)(p) = ∅ L0

τ (σ)(s1 ) = {l3} Li+1
τ (σ)(s1 )=∅

L0
τ (σ)(s2 ) = {l4} Li+1

τ (σ)(s2 ) = ∅.

We conclude that Lτ (σ)(c) = {l0}, Lτ (σ)(sl1 ) = ∅, Lτ (σ)(sl2 ) = {l1, l2, l3, l4},
Lτ (σ)(p) = {l3}, Lτ (σ)(s1 ) = {l3} and Lτ (σ)(s2 ) = {l4}. Hence, in σ, variable
sl2 shares with sl2 , p, s1 , s2 ; variable p does not share with s2 ; c shares only
with c; sl1 does not share with any variable, not even with itself.

By using reachability, we refine Definition 9 by requiring that a method does
not write into the locations L of the input state which are not reachable from
the formal parameters, nor read them, so that for instance no location in L is
reachable from the method’s return value. Programming languages such as Java
and that of Section 3 satisfy these constraints. They let us prove the correctness
of the abstract counterpart of method call that we define later (Figure 3).

Definition 13. We refine Definition 9 by requiring that if I(κ.m)(φ$ μ) = (φ′ $ μ′)
and L = dom(μ) \ (∪{Linput(κ.m)(φ$ μ)(v) | v ∈ dom(input(κ.m))}) then μ|L =
μ′|L, φ′(out) �∈ L and ∪{rng(μ′(l)) ∩ L | l ∈ dom(μ′|−L)} = ∅.

As a first attempt, our abstract domain is the powerset of the unordered
pairs of variables in dom(τ). The concretisation map says that if (v1, v2) belongs
to an abstract domain element sh, then sh allows v1 and v2 to share.

Definition 14. Let sh ∈ ℘(dom(τ) × dom(τ)). We define

γτ (sh) =
{
σ ∈ Στ

∣∣∣∣ for every v1, v2 ∈ dom(τ)
if Lτ (σ)(v1) ∩ Lτ (σ)(v2) �= ∅ then (v1, v2) ∈ sh

}
.

It must be observed, however, that two variables might never be able to share
if their static types do not let them be bound to overlapping data structures.

Example 15. In the state in Figure 2, variable c does not share with any of the
other variables (Example 12). This is not specific to that state. There is no state
in Στ where c shares with anything but itself. This is because (Figure 1) a Car
is not a Person nor a Student nor a StudentList nor vice versa. Moreover, it
is not possible to reach a shared object from a Car and a Person (or a Student
or a StudentList) because these classes have no field of the same type.
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Example 15 must be taken into account if we are looking for a Galois insertion,
rather than a Galois connection, between ℘(Στ ) and the abstract domain. The
abstract domain must include only pairs of variables whose static types share.
As in Definition 11, we first need a notion of reachability for classes.

Definition 16. The set of classes reachable in τ from a variable v is Cτ (v) =
∪{Ci

τ (v) | i ≥ 0}, where C0
τ (v) = ↓τ(v) and Ci+1

τ (v) = ↓(∪{rng(F (κ)) | κ ∈
Ci

τ (v)}). The set of pairs of variables in τ whose static types share is

SVτ = {(v1, v2) ∈ dom(τ) × dom(τ) | Cτ (v1) ∩ Cτ (v2) �= ∅}.

In Definition 16, if a class κ is reachable, then all its subclasses ↓κ are considered
reachable. This reflects the fact that we consider a language with (checked) casts.

Example 17. Consider τ as in Figure 2. For every i ≥ 0 we have C0
τ (c) = {Car},

Ci+1
τ (c) = ∅, C0

τ (sl1 ) = {StudentList}, Ci+1
τ (sl1 ) = {StudentList, Student},

C0
τ (sl2 ) = {StudentList}, Ci+1

τ (sl2 ) = {StudentList, Student}, C0
τ (p) =

{Student, Person}, Ci+1
τ (p) = ∅, C0

τ (s1 ) = {Student}, Ci+1
τ (s1 ) = ∅, C0

τ (s2 ) =
{Student} and Ci+1

τ (s2 ) = ∅. Hence Cτ (c) = {Car}, Cτ (sl1 ) = Cτ (sl2 ) =
{StudentList, Student}, Cτ (p) = {Student, Person} and Cτ (s1 ) = Cτ (s2 ) =
{Student}. So SVτ = (dom(τ)×dom(τ))\{(c, sl1 ), (c, sl2 ), (c, p), (c, s1 ), (c, s2 )}
i.e., c can only share with c; all other variables can share with each other.

Abstract domain elements should only include pairs in SVτ , since the others
cannot share. A further observation shows that if v1 and v2 share, then they are
not null . Thus v1 shares with v1 and v2 shares with v2. Also this constraint is
needed to prove the Galois insertion property (Proposition 20).

Definition 18. The abstract domain for pair-sharing is

Shτ = {sh ⊆ SVτ | if (v1, v2) ∈ sh then (v1, v1) ∈ sh and (v2, v2) ∈ sh}

ordered by set-inclusion. From now on, by γτ we mean the restriction to Shτ of
the map γτ of Definition 14.

Example 19. Let τ be as in Figure 2. Then sh1 = {(c, sl1 ), (c, c), (sl1 , sl1 )} �∈ Shτ

since (c, sl1 ) �∈ SVτ (Example 17); sh2 = {(sl1 , sl2 ), (sl1 , sl1 )} �∈ Shτ since
(sl1 , sl2 )∈sh2 but (sl2 , sl2 ) �∈sh2; sh3 = {(sl1 , sl2 ), (sl1 , sl1 ), (sl2 , sl2 )} ∈ Shτ .

Proposition 20. The map γτ of Definition 18 is the concretisation map of a
Galois insertion from ℘(Στ ) to Shτ .

In a Galois insertion, the concretisation map induces the abstraction map. Its
explicit definition, below, states that the abstraction of a set of concrete states
S is the set of pairs of variables which share in at least one σ ∈ S.

Proposition 21. The abstraction map induced by the concretisation map of
Definition 14 (restricted to Shτ ) is such that, for every S ⊆ Στ ,

ατ (S) =
{

(v1, v2) ∈ dom(τ) × dom(τ)
∣∣∣∣ there exists σ ∈ S such that
Lτ (σ)(v1) ∩ Lτ (σ)(v2) �= ∅

}
.
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Example 22. Consider the state φ$μ in Figure 2. Its reachability information is
given in Example 12 so that (remember that pairs are unordered) ατ ({φ$μ}) =
{(c, c), (sl2 , sl2 ), (sl2 , p), (sl2 , s1 ), (sl2 , s2 ), (p, p), (p, s1 ), (s1 , s1 ), (s2 , s2 )}.

5 An Abstract Semantics on Sh.

The domain Shτ of Section 4 induces an abstract version of the semantics of
Section 3, which we make explicit here. This semantics is an actual static analyser
for pair-sharing which can be implemented inside generic engines such as our Julia
analyser [15].

We start with the abstract counterpart of the interpretations of Definition 9.
The idea is to map the approximation over Shτ of some input states into the
approximation of the corresponding output states.

Definition 23. A sharing interpretation I maps methods into total functions
such that I(κ.m) : Shinput(κ.m) �→ Shoutput(κ.m) for each method κ.m.

Example 24. Consider the method clone in Figure 1. We have Shinput(clone) =
{∅, {(this, this)}} and Shoutput(clone) = {∅, {(out, out)}}. A sharing interpre-
tation, consistent with the concrete semantics of the method, is I = [∅ �→
∅, {(this, this)} �→ {(out , out)}] i.e., in the input, this shares with this if and
only if, in the output, out shares with out .

Our goal now is to compute the interpretation of Example 24 automatically.

5.1 Abstract Denotation for the Expressions

The concrete semantics of Section 3 specifies how each expression exp transforms
an initial state into a final state, where res holds the value of exp. To mimic
this behaviour on the abstract domain, we specify how exp transforms input
abstract states sh into final abstract states sh ′ where res refers to exp’s value. For
correctness (Section 2), sh ′ must include the pairs of variables which share in the
concrete states σ′ obtained by evaluating exp from a concrete state σ ∈ γτ (sh).

The concrete semantics of null κ stores null in the variable res of σ′, which
otherwise coincides with σ. Hence, in σ′, variable res does not share. The other
variables share exactly as they do in σ. Consequently, we let sh′ = sh.

The concrete semantics of new κ stores in res a reference to a new object o,
whose fields are null . The other variables do not change. Since o is only reachable
from res , variable res shares with itself only. Then we let sh′ = sh ∪{(res , res)}.

The concrete semantics of v obtains σ′ from σ by copying v into res. Hence,
in σ′, variable res shares with v and all those variable that v used to share
with in σ. Since the other variables are unchanged, we let sh ′ = sh ∪ (sh[v �→
res ]) ∪ {(v, res)}. By sh[v �→ res ] we mean sh where v is renamed into res. We
improve this approximation for the case when (v, v) �∈ sh i.e., when v is definitely
null so that variable v does not occur in sh (Definition 18) and sh[v �→ res ] = sh.
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Moreover, in such a case, v and res are null in σ′ and do not share. Hence, in
this case we let sh′ = sh.

When it is defined, the cast (κ)v stores in res the value of v. Hence the above
approximation for v is also correct for (κ)v.

The concrete semantics of v.f stores in res the value of the field f of v,
provided v is not null . When (v, v) �∈ sh, variable v is null in σ, v.f never yields
a final state and the best approximation of the resulting, empty set of final states
is ∅. If instead (v, v) ∈ sh, variable res shares in σ′ with a variable, say w, only if v
shares in σ with w: from v one reaches v.f which is an alias of res . Moreover, v and
res share in σ′. Thus we should let sh′ = sh∪(sh [v �→ res ])∪{(v, res)}. However,
Example 25 shows that sh′ might contain pairs not in SV (Definition 16) and
hence in general sh′ �∈ Sh (Definition 18).

Example 25. Let every Student be paired with its Car in the list:

class StudentCarList extends StudentList { Car car; }

Let τ = [v �→ StudentCarList, w �→ Student] and sh = {(v, w), (v, v), (w,w)} ∈
Shτ , so that (res , w) ∈ sh ′. But a Car cannot share with a Student (Figure 1)
i.e., (res , w) �∈ SVτ+v.car and sh ′ �∈ Shτ+v.car.

We solve this problem by removing spurious pairs such as (res , w) in Example 25.
Namely, we define sh ′ = sh ∪ [(sh[v �→ res]) ∩ SVτ+v.f] ∪ {(v, res)}.

The concrete semantics of the method call v.m(v1, . . . , vn) builds an input
state σ† = [this �→ φ(v), w1 �→ φ(v1), . . . , wn �→ φ(vn)] $ μ for the callee i.e., it
restricts φ to pars = {v, v1, . . . , vn} and renames v into this and each vi into wi.
We mimic this by restriction and renaming on the abstract domain.

Definition 26. Let sh ∈ Shτ and V ⊆ dom(τ). We define sh|V ∈ Shτ as sh|V =
{(v1, v2) ∈ sh | v1 ∈ V and v2 ∈ V }. Moreover, we define sh|−V = sh|dom(τ)\V .

Let hence sh† = sh|pars [v �→ this , v1 �→ w1, . . . , vn �→ wn] approximate σ†. The
abstract domain contains no information on the run-time class of v. Hence we
conservatively assume that every method m in a subclass of the static type of v
might be called [9] i.e., we use sh‡ = ∪{I(κ.m)(sh†) | κ ≤ τ(v)}[out �→ res ] as
an approximation for the result of the call. We rename out into res since, from
the point of view of the caller, the returned value of the callee (out) is the value
of the method call expression (res).

We must determine the effects of the call on the variables of the caller. We do
it here in a relatively imprecise way. Subsection 5.4 shows how to improve this
approximation. We use the fact that a method call can only modify (and access)
input locations which are reachable from the actual arguments (Definition 13).
Hence we let res share with every parameter which was not null at call-time.
Formally, we build the approximation sh� = sh‡∪{(res , p) | (res , res) ∈ sh‡, p ∈
pars and (p, p) ∈ sh}. Then we close transitively the sharing pairs w.r.t. the
parameters, by computing the star-closure (sh ∪ sh�)∗pars .

Definition 27. Let sh∈Shτ and V⊆dom(τ). The star-closure of sh w.r.t. V is
sh∗

V = sh ∪
(
{(v1, v2) | v′, v′′ ∈ V, (v1, v′) ∈ sh and (v2, v′′) ∈ sh} ∩ SVτ

)
.

In Definition 27 we use SVτ to discard pairs of variables which cannot share.
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SEI
τ [[null κ]](sh) = sh SEI

τ [[new κ]](sh) = sh ∪ {(res , res)}

SEI
τ [[v]](sh) = SEI

τ [[(κ)v]](sh) =

{
sh ∪ (sh [v �→ res ]) ∪ {(v, res)} if (v, v) ∈ sh
sh otherwise

SEI
τ [[v.f]](sh) =

{
sh ∪ {(v, res)} ∪ (sh[v �→ res ] ∩ SVτ+v.f) if (v, v) ∈ sh
∅ otherwise

SEI
τ [[v.m(v1, . . . , vn)]](sh) =

{
(sh ∪ sh�)∗pars if (v, v) ∈ sh
∅ otherwise

where pars = {v, v1, . . . , vn}, sh† = sh|pars [v �→ this, v1 �→ w1, . . . , vn �→ wn], sh‡ =
∪{I(κ.m)(sh†) | κ ≤ τ (v)}[out �→ res ] and sh� = sh‡ ∪ {(res , p) | (res , res) ∈ sh‡, p ∈
pars and (p, p) ∈ sh}.

Fig. 3. The sharing interpretation for expressions

Definition 28. Let τ describe the variables in scope and I be a sharing interpre-
tation. Figure 3 defines the sharing denotation SEI

τ [[ ]] : exp �→ (Shτ �→ Shτ+exp).

Example 29. Let τ = scope(clone) = [out �→StudentList, this �→StudentList,
ttail �→ StudentList] describe the variables in scope in the clone method of
Figure 1. Let I be the sharing interpretation of Example 24. Then

SEI
τ [[new StudentList]]({(this , this)}) = {(res, res), (this , this)}

SEI
τ [[this .head]]

({
(out , out),
(this , this)

})
=
{

(out , out), (res , res),
(this , res), (this , this)

}

SEI
τ [[this .tail]]

⎛⎝⎧⎨⎩
(out , out),
(this , out),
(this , this)

⎫⎬⎭
⎞⎠ =

{
(out , out), (res , out), (res , res),

(res , this), (this , out), (this , this)

}
.

Consider now sh = {(out , out), (this , out), (this , this), (ttail , this), (ttail , out),
(ttail , ttail)}. Let us compute SEI

τ [[ttail .clone()]](sh). We have pars = {ttail}
and sh† = {(this , this)}. If we assume that clone is not overridden, then sh‡ =
(I(clone)({(this , this)}))[out �→ res ] = {(res, res)}, sh� = {(res, res), (res , ttail)}
and (sh∪sh�)∗{ttail} = ({(out , out), (this , out), (this , this), (ttail , this), (ttail , out),
(ttail , ttail)} ∪ {(res , res), (res , ttail)})∗{ttail}. This introduces the pairs (out , res)
and (res , this) yielding {(out , out), (out , res), (res , res), (res , this), (res , ttail),
(this , out), (this , this), (ttail , out), (ttail , this), (ttail , ttail)}.

5.2 Abstract Denotation for the Commands

In the concrete semantics, each command c transforms an initial state into a final
state. On the abstract domain, it transforms an initial state sh into an abstract
state sh ′ which, for correctness (Section 2), includes the pairs of variables which
share in the concrete states σ′ obtained by evaluating c from each σ ∈ γτ (sh).
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SCI
τ [[v:=exp]] = SEI

τ [[exp ]] ◦ setVar v
τ+exp

where setVar v
τ =λsh ∈ Shτ .sh |−v[res �→ v]

SCI
τ [[v.f :=exp]] = SEI

τ [[exp ]] ◦ setFieldv.f
τ+exp

where setFieldv.f
τ =λsh ∈ Shτ .

{
(((sh ∪ {(v, res)})∗res)|−res)

∗
v if (v, v) ∈ sh

∅ otherwise

SCI
τ

⎡⎣⎡⎣ if v = w
then com1

else com2

⎤⎦⎤⎦ (sh) = SCI
τ [[com1]](sh) ∪ SCI

τ [[com2]](sh)

SCI
τ

⎡⎣⎡⎣ if v = null

then com1

else com2

⎤⎦⎤⎦ (sh) =

{
SCI

τ [[com1]](sh |−v) ∪ SCI
τ [[com2]](sh) if (v, v) ∈ sh

SCI
τ [[com1]](sh |−v) otherwise

SCI
τ [[{com1; . . . ; comp}]] = (λsh ∈ Shτ .sh) ◦ SCI

τ [[com1]] ◦ · · · ◦ SCI
τ [[comp]].

The identity map λsh ∈ Shτ .sh for the sequence of commands is needed when p = 0.

Fig. 4. The sharing interpretation for commands

The concrete evaluation of v:=exp evaluates exp and stores its result into
v. Thus we define sh′ as the functional composition of SEI

τ [[exp]] with the map
setVarv

τ (sh)=sh|−v[res �→v] which renames res into v (v’s original value is lost).
Similarly, for v.f :=exp we use a setField map. Its definition has two cases.

When (v, v) �∈ sh, we know that v is null and hence there is no final state. The
best approximation of the empty set of final states is ∅. Otherwise, its definition
reflects the fact that after assigning exp to v.f, variable v might share with every
variable w which shares with the value of exp. This means that we must perform
a star-closure w.r.t. res (Definition 27) and remove res . Moreover if, before this
assignment, a variable v′ shares with v, then the assignment might also affect
v′, so we conservatively assume that v′ and w might share. This means that we
must compute a star-closure w.r.t. v. In conclusion, in this second case we let
setFieldv.f

τ (sh) = (((sh ∪ {(v, res)})∗res)|−res)∗v.
A correct approximation of the conditionals of Definition 3 considers them

non-deterministic, so that their denotation is SCI
τ [[com1]] ∪ SCI

τ [[com2]]. But we
can do better. Namely, if (v, v) �∈ sh then v is definitely null in σ, and the guard
v = null is true. Vice versa, in the then branch we can assume that the guard
is true. When the guard is v = null, this means that v can be removed from
the input approximation sh.

The composition of commands is denoted by functional composition over Sh.

Definition 30. Let τ describe the variables in scope, I be a sharing interpre-
tation. Figure 4 shows the sharing denotation for commands SCI

τ [[ ]] : com �→
(Shτ �→Shτ ).

Example 31. Let τ = scope(clone) = [out �→StudentList, this �→StudentList,
ttail �→ StudentList] describe the variables in scope in the clone method of
Figure 1. Let I be the sharing interpretation ofExample 24. We want to com-
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pute the abstract state sh5 at the end of clone assuming that we run clone
from sh1 = {(this , this)}. We use Definition 30 and we write {shi}c{shi+1} for
SCI

τ [[c]](sh i) = shi+1 i.e., we decorate each program point p with the abstract ap-
proximation at p. For the right-hand side of assignments, we use the denotations
that we already computed in Example 29. We have

sh1 = {(this , this)}
out := new StudentList

sh2 = {(out , out), (this , this)}
out .head := this .head

sh3 = {(out , out), (this , out), (this , this)}
ttail := this .tail

sh4 = {(out , out), (this , out), (this , this), (ttail , out), (ttail , this), (ttail , ttail)}
if ttail = null then {} else out .tail := ttail .clone()

sh5 = sh4.

Let us consider in detail how sh5 is computed from sh4. Since (ttail , ttail) ∈ sh4,

sh5 = SCI
τ [[if . . .ttail .clone()]](sh4)

= SCI
τ [[{}]](sh4|−ttail ) ∪ SCI

τ [[out .tail := ttail .clone()]](sh4)

= sh4|−ttail ∪ (setFieldout.tail
τ+ttail .clone()(SEI

τ [[ttail .clone()]](sh4)))

(Ex. 29) = sh4|−ttail ∪

⎛⎜⎜⎜⎜⎝
setFieldout.tail

τ+ttail.clone()(⎧⎨⎩ (out , res), (out , out), (res , this), (this, out),
(this, this), (ttail , this), (ttail , out), (ttail , ttail),

(res , res), (res , ttail)

⎫⎬⎭︸ ︷︷ ︸
sh

)
⎞⎟⎟⎟⎟⎠

= sh4|−ttail ∪ (((sh ∪ {(out , res)})∗res)|−res)∗out

= sh4|−ttail ∪
({

(out , out), (this , out), (this , this),
(ttail , this), (ttail , out), (ttail , ttail)

})∗

out

= sh4|−ttail ∪
({

(out , out), (this , out), (this , this),
(ttail , this), (ttail , out), (ttail , ttail)

})
= sh4.

The approximation sh5 in Example 31 lets out (clone’s return value) share with
itself (i.e., it might be non-null), with this (clone performs a shallow clone of
the StudentList this , by sharing the Students) and with ttail (because of the
recursive call). You cannot drop any single pair from sh5 without breaking the
correctness of the analysis. Instead, (out , ttail) is redundant in sh4. It is there
since out .head := this .head makes out share with this and ttail := this .tail
makes ttail share with this and hence, (too) conservatively, with out .

5.3 Correctness

The first result of correctness states that the abstract denotations are correct
(Section 2) w.r.t. the concrete denotations.

Proposition 32. The abstract denotations of Definitions 28 and 30 are correct.
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The concrete transformer on interpretations (Definition 10) induces an abstract
transformer on sharing interpretations.

Definition 33. Given a sharing interpretation I, we define a new sharing inter-
pretation I ′ such that I ′(κ.m) = SCI

scope(κ.m)[[body(κ.m)]]◦(λsh ∈ Σscope(κ.m).sh|out).
The sharing denotational semantics of a program is the least fixpoint of this
transformer on sharing interpretations.

The following result follows from Proposition 32.

Proposition 34. The transformer on sharing interpretations of Definition 33 is
correct w.r.t. that on concrete interpretations of Definition 10. Hence, the sharing
denotational semantics is a safe approximation of the denotational semantics.
Example 35. Let us use, in Definition 33, the denotation of Example 31. We get
an interpretation I ′ = I, hence a fixpoint of the transformer of Definition 33.
We can actually construct I (Example 24) as the limit of a Kleene sequence of
approximations, as usual in denotational abstract interpretation [7, 8]. Hence it
is the least fixpoint i.e., clone’s sharing denotational semantics.

5.4 Improving the Precision of Method Calls

The denotation for method calls of Definition 28 can be very imprecise.

Example 36. Let us remove the line out .head := this .head from Figure 1. The
method clone builds now a StudentList, as long as this , but whose Students
are null . Hence, at the end of clone, variable out does not share with this . Let us
verify if our analysis captures that, by re-executing what we did in Example 31.

sh1 = {(this , this)}
out := new StudentList

sh2 = {(out , out), (this , this)}
ttail := this.tail

sh3 = {(out , out), (this , this), (this , ttail), (ttail , ttail)}
if ttail = null then {} else out.tail := ttail.clone()

sh4 = {(out , out), (out , this), (this , this), (out , ttail), (this , ttail), (ttail , ttail)}.

Since (out , this) ∈ sh4, our analysis is not able to guarantee that this does not
share with the result of clone.

In Example 36, the problem is that, in order to approximate the recursive call
ttail .clone(), we use a set sh� (Definition 28) which lets the parameters of the
call share with its result, if they are not definitely null . In our example, sh�

contains the spurious pair (res , ttail), which by star-closure introduces further
imprecisions, until (out , this) is put in the approximation.

We can improve the precision of the analysis with explicit information on
which actual parameters of a method call share with the return value. Hence we
enlarge the set of the variables in the final states of the interpretations (Defi-
nitions 9 and 23). While output(κ.m) provides information on out only (Defini-
tion 3), we use output(κ.m)∪ input ′(κ.m) instead, where input ′(κ.m) are new local
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primed variables holding copies of the actual parameters of κ.m. These variables
are never modified, so that at the end they provide information on which actual
parameters share with out , by renaming primed variables into unprimed ones:
sh� = sh‡[v′ �→ v] for the primed variables v′.

Example 37. Let us re-execute the analysis of Example 36 with a primed variable
this ′. We use an interpretation I such that I(clone)({(this , this)}) = {(out , out),
(this ′, this ′)} i.e., at the end of clone the actual parameter passed for this does
not share with the result of the method. We want to verify that this interpreta-
tion is a fixpoint of our semantics. We have

sh1 = {(this , this)}
this′ := this // this ′ is initially aliased to this

sh2 = {(this , this), (this , this ′), (this ′, this ′)}
out := new StudentList

sh3 = {(out , out), (this , this), (this , this ′), (this ′, this ′)}
ttail := this.tail

sh4 =
{

(out , out), (this , this), (this , this ′), (this ′, this ′),
(ttail , this), (ttail , this ′), (ttail , ttail)

}
if ttail = null then {} else out.tail := ttail.clone()

sh5 = sh4.

We have (out , this) �∈ sh5 i.e., our analysis guarantees now that this does not
share with the result of clone. Note that sh5|{out,this′} = {(out , out), (this ′, this ′)}
i.e., I is a fixpoint of the transformer of Definition 33.

6 Conclusions

We have equipped our new abstract domain Sh for pair-sharing analysis with
abstract operations which allow us to show a simple example of analysis (Ex-
ample 31). We know that some of these operations are not optimal, so there is
space for improvement. Moreover, we still miss an implementation and, hence, an
actual evaluation. We plan to implement Sh as an abstract domain for the Julia
analyser [15], for which we already implemented 8 other abstract domains. We
will use binary decision diagrams [3] to represent the denotational transfer func-
tions over Sh of Figures 3 and 4. Exceptions are automatically transformed by
Julia into branches in the program’s control-flow, so they can be easily embedded
in our sharing analysis as we already did for other static analyses.
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Abstract. The intrinsic cost of polyhedra has lead to research on more
tractable sub-classes of linear inequalities. Rather than committing to the
precision of such a sub-class, this paper presents a projection algorithm
that works directly on any sparse system of inequalities and which sac-
rifices precision only when necessary. The algorithm is based on a novel
combination of the Fourier-Motzkin algorithm (for exact projection) and
Simplex (for approximate projection). By reformulating the convex hull
operation in terms of projection, conversion to the frame representation
is avoided altogether. Experimental results conducted on logic programs
demonstrate that the resulting analysis is efficient and precise.

1 Introduction

Recently there has been much interest in so-called weakly relational domains
[7,25,29] that trade the precision of operations on systems of linear inequalities
for improved tractability. These domains seek to address the scalability problems
of the polyhedral domain [8] whose operations are inherently exponential, irre-
spective of the algorithms used to implement them: Chandru et al. [6] showed
that eliminating variables from a system of inequalities can increase the number
of inequalities exponentially; Benoy et al. [2] showed that polytopes (bounded
polyhedra) exist whose convex hull is exponential in the number of inequalities
defining the input polytopes. Exponential growth also can arise when converting
into the frame representation, which is the classical approach for computing the
convex hull and projection [21]. Consider, for example, the convex hull of two
n-dimensional hypercubes where one is translated along one axis. The frame
consists of 2n vertices for each hypercube. However, the resulting hull can be
represented by 2n inequalities, just as the inputs. A natural question is whether
there are faster methods to calculate the convex hull that do not convert the
input polyhedra into their frame representation and that over-approximate the
output polyhedron in case the resulting set of inequalities has exponential size.

One answer to this question is represented by the class of weakly relational
domains where inequalities are restricted in order to prevent exponential growth.
The Octagon domain [25] uses inequalities of the form ±xi ± xj ≤ ci,j where
xi and xj are variables and ci,j is a constant. In this domain the convex hull
reduces to calculating the element-wise maximum of two matrices. The Octagon
domain was generalised into the Octahedron domain [7], allowing more than two
variables with zero or unary coefficients whilst maintaining a hull operation that
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is polynomial in the number of variables. Finally, the two variables per inequality
(TVPI) domain [29] allows arbitrary coefficients. This domain stores a planar
polyhedron for each variable pair and employs a convex hull algorithm that
operates on planar polyhedra [28]. All these domains employ a closure opera-
tion to propagate information between inequalities. Even incremental versions of
these closure operations are quadratic, hence Blanchet et al. advocate a packing
strategy when analysing large-scale programs [3]. They keep a set of Octagons,
each describing relationships between variables occurring in a pack. Packs can
overlap and are chosen by examining which variables occur in the same pro-
gram statement. Packs are determined up front and hence packing variables is
a commitment to a fixed degree of precision. Interestingly their program can be
verified with packs that contain no more than four variables on average which
suggests that useful inequalities contain relatively few variables. Halbwachs et
al. also exploit the loose coupling of variables by partitioning the variable set
into non-overlapping groups [13]. By applying the standard domain operations
independently to each partition (rather than over the whole set of variables)
useful speedups are obtained.

This paper shows how to exploit the fact that a given variable typically occurs
in only a few inequalities. The key observation is that projection on these sparse
systems can be realised efficiently by carefully applying the Fourier-Motzkin
method [26]. We restrict the size of the output and the intermediate systems to
be no larger than that of the input system which avoids exponential growth in the
number of inequalities, thereby providing a performance guarantee. Surprisingly,
even with this draconian size restriction the vast majority of variables can be
eliminated. In the remaining cases we use Simplex to approximate the projection
space by combining those inequalities that still contain uneliminated variables.
Our method creates one inequality in the projection space for each call to Sim-
plex. Simplex is called once for each remaining inequality which ensures that the
final system is no larger than the original. This second stage over-approximates
the projection (if applied at all). In terms of complexity, Fourier-Motzkin elim-
inates n variables in O(nm) time where m is the number of inequalities. When
variables remain to be eliminated, no more than m Simplex queries are per-
formed where each query operates over m dimensions and n inequalities (note
that n and m are exchanged). This method is attractive because, although Sim-
plex is not a polynomial-time algorithm, the number of pivoting steps is about
linear in the number of dimensions [27] and each pivoting step is in O(nm) for
the Simplex method in the tableau form. In fact, the average number of steps is
polynomial [4]. To complete the set of domain operations, convex hull is recast
in terms of projection [2] so that the frame representation is avoided altogether.

The remainder of the paper is structured as follows: After Section 2 intro-
duces necessary mathematical notation, Section 3 presents techniques for using
Fourier-Motzkin variable elimination for sparse inequality systems. Section 4 de-
scribes an approximation to projection. Section 5 describes how these efficient
projection algorithms can be used to calculate convex hull. The paper finishes
with sections on performance evaluation and related work before concluding.



338 A. Simon and A. King

2 Preliminaries

Let Lin=
X and Lin≤

X denote the set of linear equalities and inequalities, respec-
tively, defined over a finite set of variables X . Elements of Lin=

X and Lin≤
X take

the form of c · y = b and c · y ≤ b where |c| = |y|, b ∈ Z and the elements of c
and y are drawn from Z and X respectively. Furthermore let ConX denote the
set of all finite subsets of Lin=

X ∪ Lin≤
X and IneqX the set of all finite subsets of

Lin≤
X . The set of real solutions for c · y ≤ b is defined by:

solnR
x(c · y ≤ b) =

{
〈r1, . . . rn〉 ∈ Rn

∣∣∣∣c · 〈r′1, . . . r′m〉 ≤ b ∧
ri = r′j for all xi = yj

}
where x = 〈x1, . . . xn〉 and y = 〈y1, . . . ym〉. The real solution set for c · y = b
is defined likewise and for any linear system E ∈ ConX the real solution set for
E is defined solnR

x(E) = ∩e∈EsolnR
x(e). Two linear systems E1, E2 ∈ ConX are

partially ordered by the subset relation on their solution sets, that is, E1 |=R E2
iff solnR

x(E1) ⊆ solnR
x(E2) where var(x) = var (E1)∪var (E2) and var(o) denotes

the set of variables in a syntactic object o. The set of integer solutions solnZ
x can

be defined analogously to solnR
x to induce a different partial order E1 |=Z E2.

The ordering |=R over-approximates |=Z in the sense that if E1 |=R E2 then
E1 |=Z E2; this is convenient in applications that are concerned with integral
entities because (domain) operations associated with the ordering |=R are more
tractable than those induced by |=Z [27]. Thus, henceforth, |= and solnx will
abbreviate |=R and solnR

x respectively. The predicate sat ⊆ ConX is defined so
that sat(E) holds iff solnx(E) �= ∅ where var (x) = var(E). Finally, let false
denote a particular system E ∈ ConX such that sat(false) does not hold.

3 Fourier-Motzkin Projection

Eliminating a variable from two equalities by scaling and adding them is a well
known principle that is attributed to Gauss. Fourier refined this elimination
strategy to pairs of inequalities. The basic observation is that inequalities may
only be scaled by non-negative numbers which implies that the coefficients of
the variable to be eliminated must have opposing signs in the two inequalities.
His method was later elaborated on by Motzkin and henceforth it will be re-
ferred to as the Fourier-Motzkin variable elimination. While this algorithm has
been thoroughly studied [11,15,18], little practical work has been reported on
combining different refinements. This section presents strategies that are useful
for program analysis – each strategy is reported in a separate sub-section.

Algorithm 1. presents the basic Fourier-Motzkin algorithm to remove a vari-
able xr ∈ X from a system of inequalities E ∈ IneqX . E is partitioned into
E+, Er and E−, corresponding to inequalities that have positive, zero and neg-
ative coefficient for xr. Er is augmented to obtain the projection by combining
positive multiples of pairs of inequalities drawn from E+ and E−. The vari-
able xr is eliminated since the coefficient of xr in each inequality added to
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Algorithm 1. Fourier-Motzkin fourier(xr, E)

Require: xr ∈ X, E ∈ IneqX

〈E+, Er, E−〉 ← 〈∅, ∅, ∅〉
for a · x ≤ c ∈ E do

if πr(a) = 0 then
Er ← Er ∪ {a · x ≤ c}

else if πr(a) > 0 then
E+ ← E+ ∪ {a · x ≤ c}

else
E− ← E− ∪ {a · x ≤ c}

for a+ · x ≤ c+ ∈ E+ do
for a− · x ≤ c− ∈ E− do

a ·x ≤ c ← simplify( (πr(a
+)a− + |πr(a

−)|a+) ·x ≤ (πr(a
+)c−+ |πr(a

−)|c+) )
if a 
= 0 then

Er ← Er ∪ {a · x ≤ c}
else if c < 0 then

return false
return Er

Er is πr(a+)πr(a−) + |πr(a−)|πr(a+) = 0 where a+ ∈ E+ and a− ∈ E−

and πi(〈a1, . . . an〉) = ai. Note that a generated inequality might take the form
0 ·x ≤ c. If c < 0, the original system E is unsatisfiable and false is returned as
the projection, otherwise the inequality is a tautology [20] and is discarded.

3.1 Simplification

To identify equivalent inequalities, a unique representation is desirable. The
simplify function presented as Algorithm 2. is designed to remove common fac-
tors from a newly generated inequality. The algorithm is generic in the sense
that it supports equalities, so that it is also applicable in Gaussian elimination
(as discussed in Section 3.5). In both cases the function is the identity if all
coefficients are zero since this represents either a tautology or a contradiction.
Otherwise an inequality is divided by the greatest common denominator of its
coefficients. Note that dividing the constant might not result in an integral num-
ber and therefore the result is rounded down. This is sound only if integer entities
are represented. In the case of equalities, the assignment g ← c ensures that the
gcd calculation also considers the constant so that the division has no remainder,
thereby guaranteeing that the exact equality relationship is preserved.

3.2 Variable Selection

Whenever a set of variables Y = {y1, . . . yn} needs to be projected out, the
Fourier-Motzkin algorithm can be applied iteratively by setting E0 = E and
Ei = fourier(yi, Ei−1). In each step, |E+

i | + |E−
i | inequalities are removed from

Ei and |E+
i ||E−

i | are added. Hence the growth in each step is in O(|Ei|2) and
the number of inequalities in the final system En is in O(|E|2n

) which prohibits
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Algorithm 2. Simplification simplify(a · x 4 c) where 4 ∈ {≤,=}
if a = 0 then

return a · x $ c
if $ ∈ {≤} then

g ← 0
else

g ← c
for ai ∈ a do

if ai 
= 0 then
if g = 0 then

g ← ai

else
g ← gcd(g, ai)

return (a/g) · x$ %c/g&

Algorithm 3. Select variable select(Y,E)
Require: E ∈ IneqX , Y ⊆ X
〈p1, . . . p|X|〉 ← 0
〈m1, . . . m|X|〉 ← 0
for a · x ≤ c ∈ E do

for i ∈ {1, . . . |X|} do
if πi(a) > 0 then

pi ← pi + 1
else if πi(a) < 0 then

mi ← mi + 1
bestGrowth ← |E|2
for xi ∈ Y do

growth ← pimi − (pi + mi)
if growth < bestGrowth then

bestGrowth ← growth
bestVar ← xi

return 〈bestGrowth , bestVar 〉

direct use of this method even for projecting out a few variables. A standard
rule [11] suggests delaying the growth of the intermediate systems by always
eliminating the variable that minimises |E+

i ||E−
i | − (|E+

i |+ |E−
i |). Algorithm 3.

calculates how many positive and negative coefficients each variable has in the
given inequality system E. It returns the variable xr such that applying Fourier-
Motzkin elimination will result in minimal growth.

3.3 Complete Redundancy Removal

Each Fourier-Motzkin step may introduce redundant inequalities. Algorithm 4.
uses the Simplex method to check every inequality for redundancy. The function
simplex (a,x, E) calculates a vector m that maximises a ·x subject to the linear
inequalities in E. Running compress after each Fourier-Motzkin elimination step
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Algorithm 4. Complete Redundancy Removal compress(E)
Require: E ∈ IneqX

if ¬sat(E) then
return false

for a · x ≤ c ∈ E do
m ← simplex(a, x, E \ {a · x ≤ c})
if m · a ≤ c then

E ← E \ {a · x ≤ c}
return E

Algorithm 5. Quasi-Syntactic Redundancy Removal quasi(E)
Require: E ∈ IneqX

while {a1 · x ≤ c1, a2 · x ≤ c2} ⊆ E ∧ a1 = a2 do
if c1 > c2 then

E ← E \ {a1 · x ≤ c1}
else

E ← E \ {a2 · x ≤ c2}
return E

is prohibitively expensive and therefore it is desirable to only apply compress
when more lightweight redundancy removal algorithms fail to constrain growth.

3.4 Quasi-Syntactic Redundancy Removal

Lassez et al. identify several classes of redundant inequalities that can be de-
tected by purely syntactic means [20]. For instance, inequalities with identical
coefficients are called syntactically redundant (if the constant is equal) and quasi-
syntactically redundant (if the constants differ). Given a pair of quasi-syntactic
redundant inequalities, only the one with the smaller constant needs to be re-
tained. Algorithm 5. removes both classes of redundancy by examining pairs
of inequalities. In practise, inequalities can be sorted lexicographically by their
coefficients which allows the algorithm to run in O(|E| log |E|).

3.5 Equality Removal

Rather than modelling an equality as two opposing inequalities, it is more pru-
dent to retain equalities that arise during the analysis and precede the Fourier-
Motzkin elimination with a Gaussian elimination phase. Algorithm 6. takes as
input the system of equalities and inequalities E and the set of variables Y that
are to be eliminated. It returns as output a triple consisting of a set of variables
that remain to be eliminated, a set of equalities P in the projection space, and a
system of inequalities that still retain variables to be eliminated. The algorithm
iterates as long as there remains an equality a · x = c ∈ E. If there exists a
coefficient πi(a) �= 0 and πi(x) ∈ Y then Gaussian elimination is performed on
all inequalities and remaining equalities that contain a non-zero coefficient for
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Algorithm 6. Equality Removal gauss(Y,E)
Require: E ∈ ConX , Y ⊆ X

P ← ∅
while a · x = c ∈ E do

E ← E \ {a · x = c}
s ← −1
for xi ∈ Y do

if πi(a) 
= 0 then
s ← i

if s = −1 then
P ← P ∪ {a · x = c}
s ← i such that πi(a) 
= 0

Y ← Y \ {xs}
if πs(a) < 0 then
〈a, c〉 ← 〈−a,−c〉

E′ ← ∅
for b · x $ d ∈ E where $ ∈ {≤, =} do

if πs(b) = 0 then
E′ ← E′ ∪ {b · x$ d}

else
e · x$ f ← simplify( (asb − bsa) · x $ (asd− bsc) )
if e = 0 then

if ($ ∈ {≤} ∧ f < 0) ∨ ($ ∈ {=} ∧ f 
= 0) then
return 〈Y, false, P 〉

else
E′ ← E′ ∪ {e · x $ f}

E ← E′

return 〈Y, E, P 〉

πi(x). Since πi(x) is to be eliminated, the equality is then discarded. Alterna-
tively, if there is no variable πi(x) ∈ Y with πi(a) �= 0 then the equality is part
of the projection space P . Observe that each iteration of the while loop makes
progress in the sense that it reduces the set of variables that appear in E.

The value of applying Gaussian elimination is fourfold: (1) it avoids reformu-
lating each equality as two inequalities; (2) it reduces the number of inequalities
that Fourier-Motzkin is applied to; (3) it reduces the number of variables that
remain to be eliminated and perhaps most subtly (4) it increases the number
of inequalities that can be identified as quasi-syntactically redundant. The last
point stems from the observation that substituting an equality into a system of-
ten reformulates one inequality to the extent that it becomes quasi-syntactically
redundant with respect to another [20]. This motivates the substitution of all
equalities, even those that do not contain variables to be eliminated.

3.6 Combining All Strategies

This section composes the strategies previously presented so as to ensure
tractability even in those pathological cases when the size of the projection is expo-
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nential [2]. The overall projection method is presented as Algorithm 7. and takes a
linear system E and a set of variables Y that are to be eliminated. The algorithm
applies Gaussian elimination to produce a system of inequalities E no larger than
the initial input. Fourier-Motzkin elimination is then performed, which is inter-
leaved with quasi-syntactic redundancy removal, until no more variables can be
eliminated without exceeding the preset limit. Due to sparsity, a variable will of-
ten only appear once with a certain polarity (say with a positive coefficient). In
this case the number of inequalities removed will be |E+| + |E−| = 1 + n and the
number of newly created inequalities is at most |E+||E−| = n which makes the
system shrink. Another frequently occurring case is that of |E+| = |E−| = 2. If
the limit is exceeded, complete redundancy removal is activated in an attempt to
remove enough inequalities to resume Fourier-Motzkin. At this stage, the limit is
further reduced to |E|.This is goodpractise sinceE is usually reduced considerably.
Finally, if Fourier-Motzkin cannot be reapplied and variables remain to be elimi-
nated, the systemE is partitioned into those inequalitiesE′ that contain variables
in Y and into those in P that do not. The projection of the set E′ is approximated
by the extreme point projection which is presented next.

4 Extreme Point Projection

While the Fourier-Motzkin method works well on sparse systems, Huynh et
al. [14] propose using the extreme point method of Lassez [19] for dense sys-
tems. This method can find inequalities in the projection space incrementally,
thereby enabling the projection to be approximated with a limited number of
inequalities. To illustrate the method, consider eliminating the variables Y from
a linear system E = {a1 · x ≤ c1, . . .an · x ≤ cn}. W.l.o.g., let Y = var(y) and⎛⎜⎝a1

...
an

⎞⎟⎠ = (A|B)

⎛⎜⎝ x1
...
xm

⎞⎟⎠ =
(

y
z

)
c =

⎛⎜⎝ c1
...
cn

⎞⎟⎠
where y and z are column vectors and x = 〈x1, . . . xm〉. Then Ay + Bz ≤ c is
equivalent to E and the problem of calculating an inequality in the projection
space reduces to finding non-negative linear combinations λ ∈ Rn of rows of
A such that λA = 0. Then λ(Ay + Bz) ≤ λc and λ(Ay + Bz) = λBz hence
(λB)z ≤ λc which yields an inequality in the projection space. The vector λ = 0
is the trivial solution to the system λA = 0 yielding a tautology. Observe that
if λ ∈ Rn is a solution to λA = 0 and {λi ≥ 0 | λi ∈ λ}, then so is sλ where
s ∈ R is any non-negative scalar. Hence, w.l.o.g., we can enforce the constraint
λ1 + . . . + λn = 1. The set of all extreme points of the bounded space, given
by λA = 0, {λi ≥ 0 | λi ∈ λ} and λ1 + . . . + λn = 1, corresponds to the exact
projection which potentially contains an exponential number of inequalities. To
give a performance guarantee, we only enumerate |E| extreme points thereby
ensuring that the number of inequalities does not grow beyond the set limit.

Since extreme point enumeration does not consider the B matrix, two ex-
treme points λa �= λb might produce the same coefficient vector λaB = λbB
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Algorithm 7. Projection project(Y,E)
Require: E ∈ ConX , Y ⊆ X
〈Y,E, P 〉 ← gauss(Y, E)
if ¬sat(E) then

return false
limit ← |E|
〈g, xi〉 ← select(Y,E)
while Y 
= ∅ ∧ |E|+ g ≤ limit do

E ← fourier(xi, E)
if E = false then

return false
E ← quasi(E)
Y ← Y \ {xi}
〈g, xi〉 ← select(Y,E)
if |E|+ g > limit then

E ← compress(E)
if E = false then

return false
limit ← |E|
〈g, xi〉 ← select(Y,E)

if Y = ∅ then
return compress(E ∪ P )

E′ ← ∅
for a · x ≤ c ∈ E do

if ∃xi ∈ Y.πi(a) 
= 0 then
E′ ← E′ ∪ {a · x ≤ c}

else
P ← P ∪ {a · x ≤ c}

return compress(extreme(Y, E′) ∪ P )

such that one of the resulting inequalities will be quasi-syntactically redundant.
Kohler [18] observed that if the set of indices containing zero coefficients in λa is
a strict superset of those of λb, then the latter leads to a redundant inequality.
This observation can be exploited by maximising the number of zero coefficients
in each λ which is the indirect result of running a linear program that maximises
a specific λi ∈ λ. Algorithm 8. formalises this heuristic. As a final comment, note
that Fourier-Motzkin elimination can be seen as a special case of the extreme
point method where A only contains one column (and hence one variable to elim-
inate). The extreme points are those solutions that combine exactly one positive
row with one negative row in A.

5 Convex Hull via Projection

The convex hull operation takes as input two inequality sets E1, E2 ∈ ConX and
produces as output an E ∈ ConX such that solnx(Ei) ⊆ solnx(E), solnx(E) is
minimal and var(x) = var (E1 ∪ E2). For purpose of exposition, let E1 and E2
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Algorithm 8. Extreme-Point Projection extreme(Y,E)
Require: E ∈ IneqX , Y ⊆ X

(A|B)←

⎛⎜⎝ a1

...

an

⎞⎟⎠ where (ai · x ≤ ci) ∈ E, var(y) = Y and Ay + Bz ≤

⎛⎜⎝ c1

...

cn

⎞⎟⎠
Λ← λA = 0 ∪ {λi ≥ 0 | λi ∈ λ} ∪ {

∑
λi = 1}

E′ ← ∅
for f ∈ 〈1, 0, . . . 0〉, 〈0, 1, . . . 0〉 . . . 〈0, 0, . . . 1〉 do

m ← simplex(f , λ, Λ)
e ← simplify(mB ≤ m · 〈c1, . . . cn〉)
E′ ← E′ ∪ {e}

return E′

be represented in matrix form as Aix ≤ ci, i = 1, 2 (with the equalities in Ei

expressed as two rows in Ai). The smallest convex set of points P that includes
solnx(E1) ∪ solnx(E2) is given by

P =
{

x

∣∣∣∣x = σ1x1 + σ2x2 ∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧
A1x1 ≤ c1 ∧ A2x2 ≤ c2 ∧ σ2 ≥ 0

}
.

To avoid the non-linearity x = σ1x1+σ2x2, the system can be relaxed by setting
y1 = σ1x1 and y2 = σ2x2 so that x = y1+y2 and Aiyi≤ σici to define:

P ′ =
{

x

∣∣∣∣x = y1 + y2 ∧ σ1 + σ2 = 1 ∧ σ1 ≥ 0 ∧
A1y1 ≤ σ1c1 ∧ A2y2 ≤ σ2c2 ∧ σ2 ≥ 0

}
.

Note that, although P ⊆ P ′, in general P �= P ′ since P might not be topolog-
ically closed whereas P ′ is represented by a set of (non-strict) inequalities and
therefore is closed. In fact projecting out σi and the variables in y1 and y2 yields
a system E representing the closure of the convex hull of the two input polyhedra
E1 and E2 as is formally proved in [2]. Henceforth let hull(E1, E2) = E encapsu-
late this computational tactic for calculating the convex hull. Since entailment
can be realised straightforwardly with Simplex, this section completes the suite
of polyhedral domain operations without recourse to the frame representation.

6 Performance Evaluation

In order to assess the precision and efficiency of the domain operations reported
thus far, the algorithms have been integrated into an argument size analyser
[10]. The analysis is key to termination checking [10], termination inference [24],
control generation [17] and determinacy inference [23]. The last application uses
argument size relationships that are synthesised for each clause in the program
to infer a determinacy condition for each predicate that, if satisfied by a call,
guarantees that there is at most one computed answer for that call and that the
answer is produced only once if ever. The value of this analysis quickly degrades
unless three variable inequalities can be inferred (see [23, Section 2.2]) which
precludes the use of octagons [25] or the TVPI domain [29].
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6.1 Argument-Size Analysis of Logic Programs

This section summarises the essential details of an argument-size analysis. The
analysis abstracts the standard TP [22] operator of a logic program P . In this
presentation, TP is defined for clauses of the form p(x) ← H, p1(x1), . . . pn(xn)
where x and xi are vectors of variables, H is a finite (possibly empty) set of
Herbrand equations {s1 = t1, . . . sn = tn} and si and ti are arbitrary terms. The
set of unifiers of H is denoted by unify(H). For a given clause c, the operator
Tc(I) maps one set of ground atoms I to another in the following manner:

Tc(I) = I ∪

⎧⎨⎩θ(p(x))

∣∣∣∣∣∣
c = p(x) ← H, p1(x1), . . . pn(xn) ∧

var (θ(c)) = ∅ ∧
θ ∈ unify(H) ∧ θ(pi(xi)) ∈ I

⎫⎬⎭
The condition var(θ(c)) = ∅ ensures that the substitution θ grounds c, hence the
atom θ(p(x)) is variable-free. The operator lifts to a program P = {c1, . . . cn}
by defining TP (I) = In where I0 = I and Ii = Tci(Ii−1). Since TP is monotonic
and the computation domain of sets of ground atoms constitutes a complete
lattice under the subset ordering, then lfp(TP ) exists which provides a convenient
fixpoint formulation of the semantics of P [22].

Argument-size analysis aspires to find size invariants for each p that describe
a tuple of terms t whenever p(t) ∈ lfp(TP ). Size is quantified in terms of a norm
that maps a ground term to a non-negative size. In our experiments we use the
term-size norm |.|term-size [9] which is defined as follows:

|t|term-size =
{

1 +
∑n

i=1 |ti|term-size if t = f(t1, . . . tn) ∧ n > 0
0 otherwise

The established approach to finding such invariants involves describing Her-
brand (syntactic) equations with linear equations. Formally, a linear equation
c · x = b describes s = t with respect to |.|, denoted by (c · x = b) ∝|.| (s = t),
iff |θ(x)| ∈ solnx(c · x = b) whenever θ is a grounding substitution for s = t
such that θ ∈ unify({s = t}) where |〈t1, . . . tn〉| = 〈|t1|, . . . |tn|〉. Since ∝|.| is
a relation, a natural question is whether there is a best description of a given
Herbrand equation s = t. In fact, this is given by e = α|.|(s = t) where α|.| is
defined such that e is the best abstraction with e ∝|.| (s = t). For the term-size
norm, and more generally the class of semi-linear norms [5], the function α|.|
is well-defined. The mapping α|.| extends to sets of Herbrand equations by
α|.|(H) = {α|.|(si = ti) | (si = ti) ∈ H}.

Example 1. To illustrate, consider the equation C = succ(N) ∗ pow(X, N) where ∗
is an infix functor. The linear equation C = 3 + X + 2 ∗ N describes the Herbrand
equation with respect to |.|term-size. To see this, let θ be a grounding unifier of the
Herbrand equation. Then |θ(C)|term-size = |succ(θ(N)) ∗ pow(θ(X), θ(N))|term-size,
hence: |θ(C)|term-size = 1+(1+|θ(N)|term-size)+(1+|θ(X)|term-size+|θ(N)|term-size)
Observe that the linear equation expresses the relative sizes of any ground in-
stance of the variables C, X and N that satisfies the syntactic equation.
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To capture linear invariants between the arguments of predicates, it is neces-
sary to lift the |= ordering on linear systems to atoms paired with linear systems
as follows: 〈p(x1), E1〉 |= 〈p(x2), E2〉 iff solnx1(E1) ⊆ solnx2(E2). Observe that
two pairs 〈p(x1), E1〉 and 〈p(x2), E2〉 that differ syntactically may express the
same invariants, that is, 〈p(x1), E1〉 |= 〈p(x2), E2〉 |= 〈p(x1), E1〉 yet E1 �= E2.
To express invariants between argument positions it is thus necessary to con-
struct sets of syntactically different but equivalence pairs. (This is more than
an aesthetic predilection since this construction simplifies the way formal argu-
ments are matched against actual arguments.) Formally, equivalence is defined by
〈p(x1), E1〉 ≡ 〈p(x2), E2〉 iff 〈p(x1), E1〉 |= 〈p(x2), E2〉 |= 〈p(x1), E1〉 which, in
turn, induces a notion of equivalence class. To simultaneously record the invari-
ants that hold on different predicates, the ordering is further extended to sets of
equivalence classes to obtain a preorder. Specifically, given two sets of equivalence
classes I1 and I2, the preorder |= is defined I1 |= I2 iff for all [〈p(x), E1〉]≡ ∈ I1
there exists [〈p(x), E2〉]≡ ∈ I2 such that 〈p(x), E1〉 |= 〈p(x), E2〉. Sets of equiv-
alence classes provide a computation domain for the following operator that
simulates TP in such as fashion so as to discover argument-size relationships.
The operator is denoted by TCLP

c since it operates in the domain of linear con-
straints. Like before, it is defined in a clause-wise fashion:

TCLP
c (I) = I ∪

⎧⎪⎪⎨⎪⎪⎩[〈p(x), hull(F, F ′)〉]≡

∣∣∣∣∣∣∣∣
c = p(x)← H, p1(x1), . . . pn(xn) ∧
[〈pi(xi), Ei〉]≡ ∈ I ∧ [〈p(x), F 〉]≡ ∈ I ∧
E = α|.|(H) ∪ (∪n

i=1Ei) ∧
F ′ = project(var(c) \ var(x), E)

⎫⎪⎪⎬⎪⎪⎭
This operator can be lifted to the level of a program P = {c1, . . . cn} by defining
TCLP

P (I) = In where I0 = I and Ii = TCLP
ci

(Ii−1). The computational domain is
neither a complete lattice nor admits finite ascending chains. However, by adding
a widening operator [8] a post-fixpoint can be finitely computed, that is, a set
of equivalence classes I such that TCLP

P (I) |= I. Such a post-fixpoint faithfully
describes the lfp of the original program in the following sense: if TCLP

P (I) |= I
and p(t) ∈ lfp(TP ) then there exists [〈p(x), E〉]≡ ∈ I such that |t| ∈ solnx(E).
The proof is not given since it can be constructed straightforwardly by adapting
proofs that have been reported elsewhere [12]. TCLP

ci
provides a way to calculate

a post-fixpoint in a bottom-up fashion by iterating and stabilising each strongly
connected component (SCC) of the static call graph in turn. SCCs that contain
a single, non-recursive clause can be evaluated exactly without a stability check.

6.2 Experimental Results

For simplicity, an argument-size analyser was implemented in SICStus Prolog
3.8.5 which comes equipped with a built-in Simplex solver. The analyser was
applied to a range of standard Prolog benchmarks varying in size between 100
and 10000+ LOC. Figure 1 presents the analysis times in seconds when the
analyser is run on a 2.40GHz PC with 512 MB of RAM running Windows XP
with all modules compiled to so-called compactcode (interpreted bytecode). The
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vars approx’ed proj approx’ed sparsity
benchmark LOC ratio % ratio % size system vars time

gabriel 114 0/186 0.0 0/60 0.0 5.6 10.4 1.4 0.06
browse 137 0/294 0.0 0/79 0.0 6.5 11.9 1.4 0.06

ime v2-2-1 181 21/888 2.3 8/132 6.0 11.9 21.3 1.6 0.70
kalah 284 0/533 0.0 0/133 0.0 7.3 12.4 1.4 0.14

mastermind 311 0/352 0.0 0/89 0.0 6.3 12.2 1.4 0.11
sdda 331 4/432 0.9 2/137 1.4 6.2 11.0 1.4 0.11
press 349 14/802 1.7 7/215 3.2 6.5 11.9 1.5 0.31

trs 368 7/1651 0.4 5/209 2.3 12.2 21.4 1.6 0.37
peep 371 11/665 1.6 6/163 3.6 7.7 12.5 1.6 0.34

qplan 424 0/380 0.0 0/104 0.0 7.9 14.7 1.4 0.09
ga 437 0/479 0.0 0/87 0.0 10.7 20.0 1.4 0.17

read 442 4/844 0.4 2/213 0.9 7.7 15.4 1.3 0.23
simple analyzer 488 5/1183 0.4 3/287 1.0 8.6 15.0 1.4 0.44

ann 503 9/1089 0.8 3/268 1.1 7.7 12.9 1.5 0.39
nbody 562 0/684 0.0 0/147 0.0 9.2 15.9 1.3 0.13

ili 582 6/1789 0.3 3/504 0.5 7.8 13.6 1.3 0.64
asm 594 1/761 0.1 1/217 0.4 7.2 12.3 1.3 0.24

nand 603 29/1356 2.1 6/240 2.5 11.1 19.8 1.4 1.53
bryant 670 22/1381 1.5 4/252 1.5 14.1 26.3 1.3 1.38

sim v5-2 986 14/2923 0.4 8/840 0.9 6.0 11.2 1.4 0.88
peval 993 36/2709 1.3 18/719 2.5 9.7 17.3 1.3 1.79

sim 1071 0/2412 0.0 0/394 0.0 12.0 20.1 1.3 0.61
rubik 1229 0/1062 0.0 0/276 0.0 5.7 9.4 1.5 0.20
chat 4698 105/7917 1.3 50/1581 3.1 9.7 19.1 1.5 4.58

pl2wam 4775 96/4078 2.3 34/1020 3.3 8.0 13.4 1.5 3.20
lptp 7419 213/12525 1.7 81/3624 2.2 8.2 15.2 1.4 9.97

aqua c 15026 493/32340 1.5 188/6292 2.9 10.3 19.5 1.5 27.59

Fig. 1. Timing and precision results

leftmost column records the time to actually calculate the size invariants and
write the results to an output file (little variance was observed between different
runs of the analyser). This excludes the time to read, parse and normalise the
input program and compute the SCCs (which is a small and varying fraction of
the analysis time). These experiments were conducted using the classic widening
[8] but delaying its application within an SCC until 2 complete iterations had
been computed. Performance figures for an argument size analysis have been re-
ported for the cTI termination inference tool [24]. cTI realises its argument size
analysis with the Parma Polyhedra Library (PPL version 0.5 [1]) and timings
of 0.26s, 0.17s, 3.89s, 3.99s and 2.12s are reported for read, ann, chat, lptp and
pl2wam – the largest five benchmarks that we have in common and which were
publicly available. These experiments were also performed on a 2.4GHz PC with
512 MB of RAM, albeit running Linux, with widening activated after one SCC
iteration. Repeating our experiments with this widening tactic gives times of
0.11s, 0.27s, 3.98s, 6.12s, 1.94s for the same benchmarks. These timing results
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suggest that the domain operations reported in this paper are not as grossly
inefficient as one might expect.

In order to assess to precision of the analysis, columns 3–6 of Figure 1 present
statistics on the frequency with which extreme point elimination is required.
Columns 5 and 5 give the ratio and percentages of the number of times the
projection algorithm actually applies extreme point elimination and therefore
(possibly) loses precision. The percentages are low (with the notable exception
of ime v2-2-1). How much precision is lost has been assessed in columns 4 and
5 which show how many variables remain to be projected out when the extreme
point method takes over. Note that even at this stage, inequalities, that do not
mention the variables that remain to be eliminated, are already in the projection
space and are therefore exact. The ratio between the number of variables and
projections approximated, indicates that typically 3 or less variables remain to
be eliminated when the extreme point elimination is applied. Columns 7, 8 and 9
respectively report statistics on the way project(Y,E) is called, namely, average
|var(E)|, |E| and (

∑
e∈E |e|)/|E| where |e| denotes the number variables of e

with non-zero coefficients. These figures suggest that sparsity is the norm in
argument-size analysis, which helps to explain the low number of calls to the
extreme point algorithm. (Note that although the mean number of variables
is low, one projection operation in aqua c eliminates 60 out of 90 variables.)
Interestingly, widening after one rather than two SCC iterations almost always
reduces ratio of approximated projections and variables.

Finally, approximately 1% of the inequalities generated by Fourier-Motzkin
projection contain very large, relatively prime coefficients (only observed for
aqua c). These inequalities often arise alongside a low coefficient inequality that
almost exactly describes the same half-space. These large coefficient inequalities
obfuscate the presentation of the results and slowdown the analysis with costly
arbitrary-precision arithmetic. In the spirit of the weakly relational domains that
use inequalities with coefficients of -1, 0 or 1 [7,25], we discard any inequality
which contains a coefficient whose absolute value exceeds a preset bound. The
large coefficient issue has only been observed on very large benchmarks and
understanding the conditions in which it arises will be a topic for future work.

7 Related Work

Huynh, Lassez and Lassez [14] observed that sparsity is a key issue in variable
elimination and suggest applying Fourier-Motzkin on (small) sparse systems and
their extreme point method for dense systems. However, the context of their
work was originally output in constraint logic programming [16] where over-
approximation is usually unacceptable. They therefore systematically enumerate
all extreme points in a breadth-first manner. Curiously, they do not consider
switching between different projection strategies depending on the density of
the system which, as this paper shows, is a good strategy.

Lassez, Huynh and McAloon [20] catalogue different types of redundant in-
equalities which include so-called syntactic and quasi-syntactic redundancies (as
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discussed in Section 3.3). They identify five other classes of redundancies that
reduce to syntactic and quasi-syntactic redundancies if all equalities are removed
from the inequality system. For example, pairs of opposing inequalities such as
x − y ≤ 5 and −x + y ≤ −5 can be merged into x − y = 5 and all occurrences
of x in the remaining inequalities can be replaced by y + 5. Note that merg-
ing inequalities with opposing coefficients and constants does not find implicit
equalities whose opposing inequalities are linear combinations of two or more
inequalities. Implicit equalities can be readily detected with a Simplex solver
and future work will assess whether the benefit of removing all such equalities
justifies the cost of their detection.

Our implementation of Fourier-Motzkin can potentially be further refined by
applying Kohler’s rule [18]. Kohler distilled his observations on extreme vectors
(mentioned in Section 4) into a cheap strategy to avoid generating redundant
inequalities during Fourier-Motzkin elimination. The idea is to count the number
of inequalities in the original system that feed into an inequality e produced in
the n-th elimination step. The observation is that if the count of e exceeds n+1
then e is redundant. Kohler’s rule has not been applied in our implementation
because its correctness can, in general, be compromised when it is combined
with other redundancy removal techniques [14].

8 Conclusion

This paper presented algorithms to approximate the projection and convex hull
operations on the abstract domain of polyhedra, thereby providing an alternative
to the classic approach based on the (potentially exponential) frame represen-
tation. Experimental results show that the sparsity of inequalities generated by
program analyses allows most operations to be carried out exactly. Being able to
approximate only when the size of the result becomes unmanageable is a distinct
advantage over weakly relational domains which sacrifice precision up front.

Acknowledgements. We thank Jacob Howe and Peter Linnington for discussions
on polyhedra and Lunjin Lu and Jonathan Martin whose work [17,23] motivated
this study. This work was partly supported by EPSRC project EP/C015517.
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Tachio Terauchi1 and Alex Aiken2

1 EECS Department, University of California, Berkeley
2 Computer Science Department, Stanford University

Abstract. The termination insensitive secure information flow problem
can be reduced to solving a safety problem via a simple program transfor-
mation. Barthe, D’Argenio, and Rezk coined the term “self-composition”
to describe this reduction. This paper generalizes the self-compositional
approach with a form of information downgrading recently proposed
by Li and Zdancewic. We also identify a problem with applying the
self-compositional approach in practice, and we present a solution to
this problem that makes use of more traditional type-based approaches.
The result is a framework that combines the best of both worlds, i.e.,
better than traditional type-based approaches and better than the self-
compositional approach.

1 Introduction

A termination insensitive secure information flow problem can be defined as
follows:

Definition 1 (Secure Information Flow). Given a program P whose vari-
ables H = {h1, h2, . . . , hn} are high security variables and L = {l1, . . . , ln} are
low-security variables, P is said to be secure if and only if the values of L at the
point P terminates are independent of the initial values of H.

In this paper, we only deal with the case where programs are deterministic. The
secure information flow problem is a type of non-interference problem. In prac-
tice, it expresses the problem of whether some selected information in a program
or a fragment of a program (i.e., the information stored in the high-security
variables) does not leak to an adversary (i.e., the low-security variables). Se-
cure information flow has applications in software security. There is an excellent
survey by Sabelfeld and Myers on issues ranging from applications to analysis
techniques [1]. We note that the definition above can be extended to multi-label
cases (i.e., beyond just “high” and “low”) by posing the problem multiple times
with different choices of high-security variables and low-security variables.

An equivalent way to state the termination insensitive secure information
flow problem is:
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Definition 2 (Secure Information Flow - Alternative Definition). Given
a program P whose variables H = {h1, . . . , hn} are high security variables and
L = {l1, . . . , ln} are low-security variables, P is said to be secure if and only if
for any stores M1 and M2 such that M1|Hc = M2|Hc ,

(〈M1, P 〉 �= ⊥ ∧ 〈M2, P 〉 �= ⊥) ⇒ 〈M1, P 〉|L = 〈M2, P 〉|L

Formally, a store M is a mapping from variables to values. The notation M |X
is the restriction of the store M to the variable domain X , i.e., M |X = {x �→ v |
(x �→ v) ∈ M ∧ x ∈ X}. The set Xc is the complement of X . If P terminates
given the initial store M , 〈M,P 〉 denotes the final store; 〈M,P 〉 = ⊥ if non-
terminating.

Both definitions appear frequently with some variation in superficial details.
It is easy to see that the definitions are equivalent. The second definition is
particularly nice for our purpose because it is easy to see the reduction from the
definition into a safety problem. Intuitively, a safety property is a property of a
program which can be refuted by observing a finite trace of the program. Our
definition of secure information flow only concerns the final store. Then a safety
problem can be formally defined as

Definition 3 (Safety). Let Pr be the set of all programs (for some fixed pro-
gramming language). Then a safety property is a set S ⊆ Pr such that there
exists a logical formula φ(X,Y ) such that

S = {P | ∀M.〈M,P 〉 �= ⊥ ⇒ φ(〈M,P 〉,M)}

A safety problem is a membership problem for some safety property.
Secure information flow, termination sensitive or not, is not a safety property

(see, e.g., [2] for a proof). However, the termination insensitive secure information
flow problem is almost a safety problem. To this end, we introduce the concept
of a 2-safety property which is intuitively a property that can be refuted by
observing two finite traces. More formally,

Definition 4 (2-Safety). Let Pr be the set of all programs (for some fixed
programming language). Then a 2-safety property is a set S ⊆ Pr such that
there exists a logical formula φ(X,Y, Z,W ) such that

S = {P | ∀M1, M2.(〈M1, P 〉 
= ⊥ ∧ 〈M2, P 〉 
= ⊥)⇒ φ(〈M1, P 〉, 〈M2, P 〉,M1, M2)}

To distinguish, we say 1-safety when we mean safety. Clearly, any 1-safety prop-
erty is a 2-safety property. The following is immediate:

Theorem 1. The termination insensitive secure information flow problem is a
2-safety problem.

For any program P , let V (P ) be the set of all variables appearing in P and let
C(P ) be the copy of P with each x ∈ V (P ) replaced by a fresh variable C(x).
Any 2-safety problem can be reduced to a 1-safety problem by the following
self-composition reduction:
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Definition 5 (Self-composition). Let S be a 2-safety property, i.e., S = {P |
∀M1,M2.(〈M1, e〉 �= ⊥ ∧ 〈M2, e〉 �= ⊥) ⇒ φ(〈M1, e〉, 〈M2, e〉,M1,M2)} for some
φ. Then a self-composition reduction of S is the set

{P ′ | P ′ = P ;C(P ) ∧ ∀M1,M2.〈M1 ∪ C(M2), P ′〉 �= ⊥ ⇒ θ}

where θ = φ(〈M1 ∪C(M2), P ′〉|V (P ), 〈M1 ∪C(M2), P ′〉|V (C(P )),M1,M2).

where the symbol ; is the sequential composition. It is easy to see that a self-
composition of any 2-safety property S is a recursive subset of some 1-safety
property S′, i.e., given an oracle access to S′, we can decide (in fact easily) if
P ∈ S′′ where S′′ is the self-composition reduction of S. Furthermore it is easy
to see that the self-composed form is equivalent to the original in the following
sense:

Theorem 2. Let S be a 2-safety property and let S′ be its self-composition.
Then P ∈ S if and only if P ;C(P ) ∈ S′.

Thus any 2-safety problem can be solved by reducing it to an equivalent 1-safety
problem via self-composition and then solving the 1-safety problem.

In the case of the termination insensitive secure information flow problem,
self-composition reduces the problem into the following problem:

Definition 6 (Secure Information Flow - Self-composed Version). Given
a program P whose variables H = {h1, . . . , hn} are high security variables and L =
{l1, . . . , ln} are low-security variables, P is said to be secure if and only if for any
stores M1 and M2 such that dom(M1) = V (P ) and dom(M2) = V (C(P )) and
M1|Hc = M2|C(Hc),

〈M1∪M2, P ;C(P )〉 �= ⊥ ⇒ C(〈M1∪M2, P ;C(P )〉|L) = 〈M1∪M2, P ;C(P )〉|C(L)

where C(M) is a store identical to M except that each variable x appearing
in M is replaced by C(x). Note that it is possible to see the above formu-
lation directly from Definition 2 without going through the generalization of
defining a 2-safety property as we have done here. As far as we know, the
direct formulation appears in at least two recent papers [3,4]. We borrowed
the term “self-composition” from Barthe, D’Argenio, and Rezk [4], although
they define it slightly differently.

Self-composition is a promising approach to solving difficult secure infor-
mation flow instances thanks to the recent success on generic automatic soft-
ware safety analysis tools such as SLAM [5] and BLAST [6], to name a few.
Both SLAM and BLAST combine theorem proving and model checking in
an iteratively refining manner to achieve robust safety analysis that can scale
to programs of non-trivial size written in feature-rich programming languages
like C. Also, they are in theory almost complete [7]. In practice, they have
been able to verify many safety properties that were too difficult for older
approaches that were not fully path-sensitive and sometimes not even flow-
sensitive.
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z := 1;
if (h) then x := 1 else skip;

if (¬h) then x := z else skip;

l := x + y

Fig. 1. The variable h is high-security and the variable l is low-security. (The variable

y is not high-security.) This code is secure: regardless of the valuation of h, the low-

security variable l will be 1 + y at the end of the program.

z := 1;
if (h) then x := 1 else skip;

if (¬h) then x := z else skip;

l := x + y;
z′ := 1;
if (h′) then x′ := 1 else skip;

if (¬h′) then x′ := z′ else skip

l′ := x′ + y′

Fig. 2. Self-composition reduction applied to the program in Figure 1. For each vari-

able x, C(x) = x′.

What does this progress in automatic safety analysis actually mean to se-
cure information flow? For example, type-based information flow analysis algo-
rithms, flow-sensitive or not, cannot show that the program shown in Figure 1
is secure since the low-security variable l is assigned in a branch of a condi-
tional that depends on the high-security variable h. But a self-compositional
approach can easily check that this program is secure as follows. Figure 2
is the result of applying the self-composition reduction to the program. The
safety problem of whether l = l′ at the end of the program given x = x′∧y =
y′∧z = z′∧l = l′ at the entry can be verified easily by a modern safety analy-
sis tool. So by Theorem 2, we have automatically proved that the original pro-
gram is secure. In fact, Theorem 2 implies that given a complete safety anal-
ysis, we can solve the termination insensitive secure information flow problem
completely.

Before we go on to the main results of the paper, we note that it is fairly
easy to carry out a similar construction for termination sensitive secure infor-
mation flow problem by defining a “2-liveness” property which may observe up
to two possibly infinite traces to refute the property. Self-composition can then
be defined using a parallel composition instead of a sequential composition to
reduce any 2-liveness problem to a 1-liveness problem. But since there are not
practical frameworks for checking general software liveness properties (though
some promising proposals are starting to appear [8]), we limit the content of this
paper to the termination insensitive case. Also, non-deterministic programs are
outside of the scope of this paper.
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1.1 Contributions

The two main contributions of this paper are as follows:

– We extend the self-compositional approach to the secure information flow
problem with information downgrading recently proposed by Li and
Zdancewic [9].

– We identify a problem with applying the self-compositional approach in prac-
tice. We then present a solution to this problem that makes use of more
traditional type-based approaches.

The first contribution was motivated by an elegant characterization of in-
formation downgrading called relaxed non-interference proposed recently by Li
and Zdancewic [9]. Their paper contains a type-based approach for automati-
cally checking relaxed non-interference. The self-compositional approach can in
theory verify a wider range of secure programs than their type-based approach.

The second contribution starts from a disappointing discovery that the self-
compositional approach, even when combined with current state-of-the-art
generic automatic safety analysis tools, is too inefficient in practice. We will
point out why this is the case, and offer a remedy based on previous and on-
going research on type-based approaches to secure information flow, including
Li and Zdancewic type system for information downgrading. The result is a
framework that combines the best of both worlds, i.e., better than type-based
approaches and better than the self-compositional approach.

2 Information Downgrading

“Vanilla” secure information flow as defined in Section 1 is often criticized for
being too strict. For example, a security policy may permit information stored in
the high-security variable secret to leak as long as the hash of the password from
the user, say initially stored in the non-high-security variable input , matches with
the high-security variable hash . For example, the following program is secure
according to this policy:

if (hashfunc(input) = hash) then l := secret else skip;

where l is a low-security variable. Unfortunately, the above program is not secure
according to the definition of vanilla secure information flow because the valu-
ation of l depends on the valuation of the high-security variable secret (and on
hash too). In general, vanilla secure information flow does not allow any method
of leaking anything about the high-security variables.

Researchers have proposed various ways to relax secure information flow to
permit policies like the one above, such as robust declassification [10], delimited
information release [11], and abstract non-interference [12]. A particularly nice
approach called relaxed non-interference has been recently proposed by Li and
Zdancewic [9]. Their idea is to express downgrading by the existence of a clean
function that takes “downgraded” high-security information but does not look di-
rectly at high-security variables. Their paper is restricted to the purely functional
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setting, but when extended to the imperative setting, their idea can be described
roughly as follows. A security policy is stated by associating each high-security
variable hi to a downgrading function fhi , and then we define the security of a
program P by the existence of a program F (fh1(h1), . . . , fhn(hn)) such that F
does not mention the high security variables and F (fh1(h1), . . . , fhn(hn)) agrees
with P on low-security variables at termination. Here, the notation F (e1, . . . , en)
refers to a program that first evaluates e1, . . . , en and stores them in some vari-
ables prior to the evaluation of the rest of the program. F (e1, . . . , en) can be ar-
bitrary powerful, i.e., it need not be computable. (Readers familiar with relaxed
non-interference may notice another difference – in addition to the imperative
extension – from Li and Zdancewic’s original definition, i.e., the use of seman-
tic equivalence instead of syntactic equivalence rules. The consequence of this
difference is discussed later in this section.) Note that secure information flow
with information downgrading is more general than vanilla secure information
flow; vanilla secure information flow can be expressed by setting all downgrading
functions to the constant function λx.0.

For example, in our password example, the downgrading function for secret
can be set to

f = λx.if (hashfunc(input) = hash) then x else c

where c is some constant not in the range of values for secret . Then, one only
needs to prove that there exists F such that F (f(secret)) is equivalent to our orig-
inal program, which in this case is true by inspection. Relaxed non-interference
is surprisingly general and natural. For example, it is easy to see that associating
the downgrading function λx.length(x) to a secret string data implies that only
the length of the string may be leaked.

We simplify the definition slightly for purpose of exposition. Formally, we
use the following definition of the terminating insensitive secure information
flow with information downgrading.

Definition 7 (Secure Information Flow with Information Downgrad-
ing). Given a program P whose variables H = {h1, . . . , hn} are high security
variables and L = {l1, . . . , ln} are low-security variables, P is said to be secure
with respect to the downgrading policy e if and only if there exists F such that
F does not mention any variable in H and for any M ,

〈M,P 〉 �= ⊥ ⇒ (〈M,F (e)〉 �= ⊥ ∧ 〈M,P 〉|L = 〈M,F (e)〉|L)

Here, e is any side-effect free expression. It is easy to see that our definition is
at least as expressive as Li and Zdancewic style of using explicit downgrading
functions. For example, vanilla secure information flow can be obtained by setting
e to be the tuple (h1, . . . , hn). For the password example, e is

if (hashfunc(input) = hash) then secret else c

It is worth pointing out that the above definition is slightly different from
that of Li and Zdancewic’s since we use semantic equivalence to check that
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〈M,P 〉|L = 〈M,F (e)〉|L whereas Li and Zdancewic take a less complete (but
still sound) equivalence relation as the definition. Their paper contains a discus-
sion on why a weaker equivalence may be desirable in some situations. However,
it is not clear whether using a weaker equivalence based on intentional syntac-
tic equivalence rules as done in their paper is best. Perhaps a more principled
approach is to equate some computational hardness properties as well as se-
mantic equivalence. For example, any F (λx.if (password = x) then 1 else 0)
semantically equivalent to l := password on the variable l will be computation-
ally expensive assuming that the set of valuations of password is large. Note that
there is an F such that semantic equivalence alone will not be able to distinguish
F (λx.if (password = x) then 1 else 0) from l:=password , namely the one that
tries all possible strings. In this paper, we stick with semantic equivalence.

We now prove the following.

Theorem 3. The termination insensitive secure information flow with infor-
mation downgrading is a 2-safety problem.

The formal proof appears in our companion technical report [13]. The proof
establishes the equivalence of Definition 7 to the following predicate

∀M1,M2.(〈M1, P 〉 �= ⊥ ∧ 〈M2, P 〉 �= ⊥) ⇒
((M1|Hc = M2|Hc ∧ 〈M1, e〉 = 〈M2, e〉) ⇒ 〈M1, P 〉|L = 〈M2, P 〉|L)

The predicate is actually equivalent to the definition of delimited information
release [11] restricted to the safety case. Therefore, the above proof shows that
relaxed non-interference with semantic equivalence is roughly (modulo the im-
perative extension) equivalent to that of delimited information release. Since
Barthe, D’Argenio, and Rezk [4]’s formulation of self-composition is flexible
enough to handle delimited information release, our result also shows that their
framework can be used as a black box to solve secure information flow problems
with information downgrading in the style of relaxed non-interference.

Concretely, self-composition reduces the termination insensitive secure infor-
mation flow with information downgrading to the following problem:

Definition 8 (Secure Information Flow with Information Downgrad-
ing - Self-composed Version). Given a program P whose variables H =
{h1, . . . , hn} are high security variables and L = {l1, . . . , ln} are low-security
variables, P is said to be secure with respect to the downgrading policy e if and
only if for any stores M1 and M2 such that dom(M1) = V (P ) and dom(M2) =
V (C(P )), M1|Hc = M2|C(Hc), and 〈M1, e〉 = 〈M2, C(e)〉,

〈M1∪M2, P ;C(P )〉 �= ⊥ ⇒ C(〈M1∪M2, P ;C(P )〉|L) = 〈M1∪M2, P ;C(P )〉|C(L)

As in the case of vanilla secure information flow, this self-compositional re-
duction is complete. Hence in theory, a complete safety analysis can decide
any instance of the problem. In practice, the self-compositional approach can
check cases where Li and Zdancewic’s type-based approach would fail. For ex-
ample, the program in Figure 3 is secure according the downgrading policy
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if (hashfunc(input) = hash) then

t := t + 1; l := l + secret
else skip

Fig. 3. The variables secret and hash are high-security and the variable input
and l are low-security. This code is secure according to the downgrading policy

if (hashfunc(input) = hash) then secret else 0.

if (hashfunc(input) = hash) then secret else c. Essentially, the program is
same as our original example except that we have added a few small things so
that the code isn’t exactly like the downgrading policy. The program can be
easily proved to be secure via the self-compositional approach; the downgrad-
ing policy leads to a conditional predicate, but that is no harder than handling
conditionals in the program body, and therefore a path-sensitive safety analy-
sis can quickly check that the safety property is satisfied in the self-composed
program (not shown). On the other hand, conventional type-based approaches
would break in the presence of these small changes since they are more dependent
on the structure of downgrading operations.

3 Self-composition in Practice, Its Problem, and a
Solution

The main appeal of the self-compositional approach to secure information flow
comes from the recent successes with automatic safety analysis tools in veri-
fying a very broad range of safety properties in real programs, including ones
that are path-sensitive, flow-sensitive, and (linear) arithmetic sensitive. Further-
more, automatic safety property checking is an active area of research with
frequent improvements, and therefore even if some self-composed instances of a
secure information flow problem cannot be solved by the existing tools today,
it may not be unreasonable to expect them to be solved by the next generation
of safety analysis tools. That is, the self-compositional approach automatically
benefits from improvements to the underlying safety analysis. Furthermore, the
self-compositional approach needs nothing more than off-the-shelf tools, and so
it has an engineering advantage over type-based approaches.

In this section, we argue that such an optimistic prospect is unrealistic in
practice. When we actually applied the self-composition approach, we found that
not only are the existing automatic safety analysis tools not powerful enough to
verify many realistic problem instances efficiently (or at all), but also that there
are strong reasons to believe that it is unlikely to expect any future advance
in safety analysis designed for “natural” safety problems (i.e., ones that are
naturally 1-safety) to be able to close the gap significantly.

We first motivate our argument by a simple example. Figure 4 is a program
which computes the nth Fibonacci number and sets the low-security variable l to
1 if the nth Fibonacci number is greater than k and to 0 otherwise. The program
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while (n > 0) do

f1 := f1 + f2; f2 := f1 - f2; n := n - 1;
if (f1 > k) then l := 1 else l := 0;

Fig. 4. The while loop computes the nth Fibonacci number. The variable l is low

security, which is set to 1 if the nth Fibonacci number is greater than k, and is set to

0 otherwise. There are no high-security variables.

while (n > 0) do

f1 := f1 + f2; f2 := f1 - f2; n := n - 1;
if (f1 > k) then l := 1 else l := 0;
while (n′ > 0) do

f ′
1 := f ′

1 + f ′
2; f ′

2 := f ′
1 - f ′

2; n′ := n′ - 1;
if (f ′

1 > k′) then l′ := 1 else l′ := 0;

Fig. 5. The program in Figure 4 after self-composition

contains no high-security variables, so it is trivially secure. Let us apply the self-
composition reduction by renaming each variable x to x′ in the copy (shown in
Figure 5). We would like the safety analysis tools to check that l = l′ at the
end of the program provided that for each variable x in the original, x = x′ at
the beginning of the program. However, a state-of-the-art safety analysis tool
BLAST [6] fails to terminate given this query; more precisely, BLAST endlessly
keeps discovering more and more predicates getting closer and closer to the
answer but never actually converging.1

Why does this happen? The reason is that the modern generic safety analysis
tools gain their robustness by moving away from structure-dependent reasoning
and instead trying to solve the problem semantically. In the case above, if BLAST
could verify that l = l′ at the end of the self-composed program, then that
roughly means that it was able to show that the upper part of the original code
was computing a Fibonacci number for each n. We believe that this problem also
applies to other safety analysis tools for imperative languages based on a Hoare-
style reasoning framework since the framework encourages verifying a property
about the whole program by locally reasoning about the store update at each
statement. We give more details supporting this argument in Section 3.1.

Even if BLAST was improved with more arithmetic-related reasoning power
or if we used another tool that can verify the correctness of our Fibonacci com-
putation loop, there would be always another example whose partial correctness
would be too difficult for the tool to verify automatically. Why does this matter
to the self-compositional approach to secure information flow? Because there are
many programs that compute arbitrary values in complex ways, and it is fair to
expect that these values can flow to low-security variables since the low-security

1 We used the latest version (as of March 2005) obtained directly from the BLAST
group.
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P ::= x := e | if e then P1 else P2 | while e do P | P1; P2 | skip

Fig. 6. The syntax of While. e is some reasonable expression such as integer arith-

metics, comparisons, and boolean operations.

ε ::= [ ] | x := ε | if ε then P1 else P2 | if e then ε else P | if e then P else ε |
while ε do P | while e do ε | ε; P | P ; ε

Fig. 7. The contexts of While

variables are the observable outputs of the program. (On the other hand, parts
of the program where high-security values flow can be expected to be small and
not too complex in most real security-aware applications.)

Therefore, what the self-compositional approach needs is some reasoning ex-
tension that can make use of the inherent symmetry and redundancy in self-
composed programs but not in ordinary programs. For example, in the case of
the Fibonacci program, this reasoning extension should be able to tell that the
loops are equivalent by the fact that both loops are just copies of the same code
with each copied variable in the code starting with the same value as the original.
On the other hand, if copies of some code actually use variables with different
initial values, then this reasoning system should safely say that “I do not know
if they are equivalent” so that a more powerful reasoning logic can work out the
details.

Such a reasoning extension is exactly where type-based approaches to secure
information flow excel. That is, the “same value variables” are the low security
variables, and “different value variables” are the high-security variables. Indeed,
type-based approaches can easily verify our Fibonacci program by carrying out
roughly the following logical reasoning: f1 is only assigned low-security values in a
while loop with a low-security guard, and hence l is assigned only in a conditional
statement of a low-security condition which implies that l is low-security. But as
we have seen in the previous sections, there are instances of secure information
flow that cannot be verified by type-based approaches but can be easily verified
by the self-compositional approach. To this end, we generalize this line of thought
to design an approach to secure information flow that combines the best parts
of the two approaches.

3.1 Type-Directed Transformation for Secure Information Flow

We illustrate our idea using the imperative language While defined in Figure 6.
The semantics of While is completely standard. While we choose this simple
language for purpose of exposition, it is not hard to adapt our approach to more
complex languages.
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Γ � e : τ where τ is a low-security type

x := e →Γ x := e; C(x) := x

Γ 
� e : τ where τ is a low-security type

x := e →Γ x := e; C(x) := C(e)

Γ � e : τ where τ is a low-security type P1 →Γ P ∗
1 P2 →Γ P ∗

2

if e then P1 else P2 →Γ if e then P ∗
1 else P ∗

2

Γ 
� e : τ where τ is a low-security type

if e then P1 else P2 →Γ if e then P1 else P2; if C(e) then C(P1) else C(P2)

Γ � e : τ where τ is a low-security type P →Γ P ∗

while e do s →Γ while e do P ∗

Γ 
� e : τ where τ is a low-security type

while e do P →Γ while e do P ;while C(e) do C(P )

P1 →Γ P ∗
1 P2 →Γ P ∗

2

P1; P2 →Γ P ∗
1 ; P ∗

2 skip→Γ skip

Fig. 8. Type-directed translation →Γ . “Γ 
� e : τ where τ is a low-security type”

means that Γ � e : τ is not derivable for any low-security type τ .

To motivate the idea, consider the program P = if e then P1 else P2. If a
secure information flow type system gives e a low-security type, then the self com-
position P ;C(P ) is equivalent to the program if e then (P1;C(P1)) else (P2;
C(P2)) provided that the values of the low-security variables between the origi-
nal and the copy are equal at the beginning of the program. Now, suppose that
e is (or was the result of) a complex computation like our Fibonacci loop. Then
using the second form instead of P ;C(P ), a safety analysis tool is able to by-
pass checking whether e is equal to C(e) without losing precision or efficiency.
Furthermore, we may recursively apply the same idea to P1 and P2 so that we
may not even need to use C(P1) and C(P2).

We now generalize this idea to design a type-directed transformation for se-
cure information flow. To this end, we first define the contexts ε of While in a
completely standard manner given in Figure 7. Our type-directed transformation
is parametrized by a secure information flow type system. Rather than defining
a type-directed transformation for each different type system and proving the
correctness each time, we formally state what our type-directed transformation
expects from a secure information flow type system so that we can design one
type-directed transformation for all type systems satisfying the definition and
prove its correctness once and for all.

Definition 9. Given a secure information flow problem with information down-
grading problem instance (P,H,L, e) (see Definition 7), secure information flow
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type inference is an algorithm that outputs a type environment Γ with the relation
∼Γ satisfying all of the following.

(1) For any M1 and M2, if M1|Hc = M2|Hc and 〈M1, e〉 = 〈M2, e〉 then M1 ∼Γ

M2.
(2) For any P such that Γ # P and for any M1 and M2 such that M1 ∼Γ M2,

〈M1, P 〉 ∼Γ 〈M2, P 〉.
(3) For any e such that Γ # e : τ and τ is a low-security type, for any M1 and

M2 such that M1 ∼Γ M2, 〈M1, e〉 = 〈M2, e〉.
(4) For any ε and P , if Γ # ε[P ], then Γ # P .
(5) Γ # P

Intuitively, the first condition says that the precondition of the original security
policy is at least as strong as the relation ∼Γ . The second condition says that
∼Γ is preserved by the program semantics. The third condition says that if an
expression is typed with a low-security type, then it in fact is low-security with
respect to ∼Γ . The fourth condition is a standard structural property for (flow-
insensitive) type systems. The last condition says that P itself can be typed
under Γ .

For example, the well-known Volpano and Smith type inference algorithm [14]
when restricted to the language While can satisfy the above requirement for
vanilla secure information flow (i.e., the downgrading policy e is some constant)
by letting

∼Γ = {(M1,M2) |M1(x) = M2(x), x:τ ∈ Γ where τ is a low-security type}

Defining ∼Γ for Li and Zdancewic type system [9] (when adapted to the language
While in a natural way) is also not difficult:

∼Γ = {(M1,M2) | 〈M1, e〉 = 〈M2, e〉, Γ # e : τ where τ is a low-security type}

(Indeed, this definition, also works for the Volpano and Smith type system al-
though it is unnecessarily more elaborate than the one above. This fact is not
surprising since Li and Zdancewic system can be thought of as an extension to
the Volpano and Smith system.) Due to space constraints, we do not formally
describe any specific type inference algorithm in this paper and instead ask read-
ers to refer to the cited references. Our companion technical report discusses how
to adapt our approach to secure information flow type systems that do not quite
meet these requirements [13].

It is important to note that we do not need an algorithm that actually com-
putes the relation ∼Γ . Instead, merely the existence of such a relation is enough
since ∼Γ is only used explicitly when proving the correctness of the type-directed
transformation.

We now describe our type-directed transformation. Given a problem instance
(P,H,L, e) and Γ produced by the corresponding secure information flow type
inference, the type-directed transformation →Γ is defined by the rules shown
in Figure 8. In order to solve the given problem instance, we first apply this
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while (n > 0) do

f1 := f1 + f2; f2 := f1 - f2; n := n - 1;
if (h) then x := 1 else skip;

if (¬h) then x := 1 else skip;

while (i < f1) do

l := l + x; i := i + 1

Fig. 9. The variable h is high-security and the variable l is low-security. The program

is secure but cannot be verified by either a type-based approach or self-composition.

while (n > 0) do

f1 := f1 + f2; f ′
1 := f1; f2 := f1 - f2; f ′

2 := f2;

n := n - 1; n′ := n;
if (h) then x := 1 else skip; if (h′) then x′ := 1 else skip;

if (¬h) then x := 1 else skip; if (¬h′) then x′ := 1 else skip;

while (i < f1) do

l := l + x; l′ := l′ + x′; i := i + 1; i′ := i

Fig. 10. The program from Figure 9 after the type-directed transformation

transformation to P to obtain a program P ∗, i.e., P →Γ P ∗. Then we ask a
safety analysis tool whether for any M1 and M2 such that dom(M1) = V (P ),
dom(M2) = V (C(P )), M1|Hc = M2|C(Hc), and 〈M1, e〉 = 〈M2, C(e)〉, whether

〈M1 ∪M2, P
∗〉 �= ⊥ ⇒ C(〈M1 ∪M2, P

∗〉|L) = 〈M1 ∪M2, P
∗〉|C(L)

That is, we ask the same query as the self-compositional approach except that
we use P ∗ in place of P ;C(P ).

As an example, consider the program shown in Figure 9. The program ex-
hibits interactions of features discussed in previous sections that made type-
based approaches and the self-composition approach fail (at least when using
BLAST as the underlying safety analysis). Therefore, it can be checked by
neither method. Applying the type-directed transformation using Volpano and
Smith type inference algorithm, we obtain the program P ∗ shown in Figure 10.
Note that both loop conditions remain unduplicated (though their bodies are
duplicated) since both conditions can be given low-security types. BLAST can
easily decide that l = l′ at the end of P ∗ provided that n = n′, f1 = f ′

1, f2 = f ′
2,

i = i′, and l = l′ at the beginning, i.e., it can prove that the program is secure.
In fact, BLAST is clever enough that it will not even bother to look carefully at
the first loop (which was the part that made BLAST fail in the self-composition
approach!) since it quickly notices simply by looking at the code following the
loop that it can prove l = l′ at the end of the program regardless of what values
are stored in f1, f ′

1, f
′
2, n, and n′ after the loop.

We now prove the correctness of the type-directed transformation approach.
The following lemma is the main technical result.
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Lemma 1. Suppose P →Γ P ∗ where Γ is the output of a secure information
flow type system given (P,H,L, e) satisfying Definition 9. Then, for any M1 and
M2 such that M1 ∼Γ M2, if 〈M1, P 〉 �= ⊥ and 〈M2, P 〉 �= ⊥ then

〈M1, P 〉 = 〈M1 ∪C(M2), P ∗〉|V (P ) ∧ C(〈M2, P 〉) = 〈M1 ∪ C(M2), P ∗〉|V (C(P ))

The proof appears in our companion technical report [13].

Theorem 4. For any M1 and M2 such that M1|Hc = M2|Hc , 〈M1, e〉 = 〈M2, e〉,
〈M1, P 〉 �= ⊥, and 〈M2, P 〉 �= ⊥

〈M1, P 〉|L = 〈M2, P 〉|C(L) ←→ C(〈M1∪C(M2), P ∗〉|L) = 〈M1∪C(M2), P ∗〉|C(L)

where P →Γ P ∗ and Γ is the output of a secure information flow type system
given (P,H,L, e) satisfying Definition 9.

Proof. Immediate from condition (1) in Definition 9 and Lemma 1.

Therefore the type-directed transformation approach is sound and complete up
to the soundness and completeness of the underlying safety analysis.

The type-directed transformation is inexpensive relative to the complexity
of the underlying type inference algorithm. It is easy to see that for P →Γ P ∗,
the size of P ∗ is at most two times the size of P . Computing P ∗ from P takes
time linear in P and the number of Γ # e : τ queries made to the type inference
algorithm. However, most secure information flow type systems actually compute
the principal types for each expression. In such a case, asking whether there is
a low-security type τ such that Γ # e : τ is a constant time operation once the
principal types have been computed for P .

It is clear that the type-directed transformation approach is better than a
type-based approach alone since it runs the type inference algorithm as a sub-
process, and therefore it may accept the program if the type inference successfully
assigned low-security types to the low-security variables.

Before we argue that the type-directed transformation approach is better
than the self-compositional approach, we point out that in their full generality,
the two approaches are equivalent since they are both a complete characteriza-
tion of the same secure information flow problem, i.e., they are no different to a
hypothetical safety analysis having infinite deduction power. Even restricted to
the class of safety analysis tools that are “fast” and sound (but not necessarily
complete), we cannot compare the two because, for example, this class includes
one that rejects all programs not of the form P ;C(P ), i.e., the self-composition
approach is always better for such a safety analysis, and conversely, there is a
sound safety analysis that rejects all programs of the form P ;C(P ).

Instead, we argue that type-directed-transformed programs tend to be more
digestible than self-composed programs for most automatic safety analysis tools
assuming that they are targeted toward the general class of “natural” safety
(i.e., naturally 1-safety) problems for imperative languages. Such tools typically
reason about a program by interpreting each program statement as an abstract
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store update operation where an abstract store may be a set of abstract val-
ues stored in abstract memory cells, a set of predicates over program variables
where each predicate represents a possible store, or something similar. With self-
composition, the store space for the copies P and C(P ) are completely disjoint.
However, the query is all about connecting these two stores, i.e., it is about
whether some portion of the two disjoint store spaces is equivalent after the pro-
gram terminates given that some portion of the two disjoint store spaces is equiv-
alent before the program. Therefore 1-safety analysis tools generally suffer from
not being able to relate the two stores within the abstract interpretation phase.
Our type-directed transformation directly makes relevant connections between
the two stores locally within the program. These connections help the safety
analysis significantly in some situations as seen in the example in this section
(Figure 9, 10) where the self-compositional approach would perform poorly.

4 Related Work

Darvas, Hähnle, and Sands [3] used a self-compositional approach to prove secure
information flow properties for Java CARD programs. They used an interactive
approach instead of an automatic approach. Barthe, D’Argenio, and Rezk coined
the term “self-composition” in their paper [4]. Their paper is mostly theoreti-
cal results on characterizing various secure information flow problems, including
non-deterministic and termination-sensitive cases, in a self-compositional frame-
work. We believe that our paper is the first one to examine applying an automatic
safety analysis in the self-compositional setting.

Barthe, D’Argenio, and Rezk in the same paper showed that their self-
compositional framework can handle delimited information release as originally
proposed by Sabelfeld and Myers [11]. We have shown that Li and Zdancewic’s
recently proposed relaxed non-interference [9] is equivalent to delimited informa-
tion release when strengthened with semantic equivalence. Relaxed non-
interference is arguably a more natural formulation of information downgrad-
ing than delimited information release. Our paper suggests a promising prac-
tical approach toward making complete use of properties definable as relaxed
non-interference.

5 Conclusions and Future

We have shown that Li and Zdancewic’s relaxed non-interference can be in-
corporated into both self-composition and its generalization, the type-directed
transformation approach. We have presented the type-directed transformation
approach as a solution to a problem with applying self-composition in practice
with off-the-shelf automatic safety analysis tools. The type-directed transforma-
tion approach combines the best parts of traditional type-based approaches and
self-composition.

One possible improvement to our type-directed transformation is to make
it iterative, i.e., in the event that the safety analysis fails, instead of failing the

Work



Secure Information Flow as a Safety Problem 367

whole process completely it may report back to the type system with information
about which expressions are low-security at which program points. Then the type
system can “cast” these expressions to low-security types to obtain more low-
security expressions, and the process repeats. To make this work, we need a way
to obtain partial results from the safety analysis tool. Obtaining useful partial
results may be difficult for a demand-driven framework such as BLAST.
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