Chris Hankin
Igor Siveroni (Eds.)

LNCS 3672

Static Analysis

12th International Symposium, SAS 2005
London, UK, September 2005
Proceedings

@ Springer




Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3672



Chris Hankin Igor Siveroni (Eds.)

Static Analysis

12th International Symposium, SAS 2005
London, UK, September 7-9, 2005
Proceedings

@ Springer



Volume Editors

Chris Hankin

Igor Siveroni

Imperial College London, Department of Computing
180 Queen’s Gate, London SW7 2BZ, UK

E-mail: {clh,siveroni} @doc.ic.ac.uk

Library of Congress Control Number: 2005931559

CR Subject Classification (1998): D.3.2-3, F3.1-2,D.2.8, F4.2, D.1

ISSN 0302-9743
ISBN-10 3-540-28584-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28584-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11547662 06/3142 543210



Preface

Static analysis allows us to determine aspects of the dynamic behavior of pro-
grams and systems without actually executing them. Traditionally used in op-
timizing compilers, static analysis is now also used extensively in verification,
software certification and semantics-based manipulation. The research commu-
nity in static analysis covers a broad spectrum from foundational issues — new
semantic models of programming languages and systems — through to practical
tools. The series of Static Analysis Symposia has served as the primary venue for
presentation and discussion of theoretical, practical and application advances in
the area.

This volume contains the papers accepted for presentation at the 12th Inter-
national Static Analysis Symposium (SAS 2005) which was held 7-9 September
2005 at Imperial College London. A total of 66 papers were submitted; the
Program Committee held an online discussion which led to the selection of 22
papers for presentation. The selection was based on scientific quality, originality
and relevance to the scope of SAS. Every paper was reviewed by at least 3 PC
members or external referees. This volume also includes abstracts of talks given
by the two invited speakers: Samson Abramsky FRS (University of Oxford) and
Andrew Gordon (Microsoft Research, Cambridge).

On behalf of the Program Committee, the Program Chair would like to thank
all of the authors who submitted papers and all of the external referees for their
careful work in the reviewing process. The Program Chair would also particu-
larly like to thank Igor Siveroni who provided local support for the conference
management system and who helped in organizing the structure of this volume.
We would also like to express our gratitude to Herbert Wiklicky and Bridget
Gundry who masterminded the local arrangements.

SAS 2005 was held concurrently with LOPSTR 2005, the International Sym-
posium on Logic-Based Program Synthesis and Transformation. We would like
to thank Pat Hill (LOPSTR PC Chair) for her help and advice on the organi-
zational aspects.

London, June 2005 Chris Hankin



Program Committee

Thomas Ball

Radhia Cousot
Alessandra Di Pierro
Gilberto Filé
Roberto Giacobazzi
Chris Hankin (Chair)
Thomas Jensen
Andy King

Pasquale Malacaria
Laurent Mauborgne
Alan Mycroft
Andreas Podelski
German Puebla
Ganesan Ramalingam
Andrei Sabelfeld
Mooly Sagiv

Harald Sgndergaard
Bernhard Steffen

Steering Committee

Patrick Cousot
Gilberto Filé
David Schmidt

Organizing Committee

Bridget Gundry
Igor Siveroni
Herbert Wiklicky

Organization

Microsoft, USA

CNRS/Ecole Polytechnique, France
Universita di Pisa, Italy

Universita di Padova, Italy

Universita di Verona, Italy

Imperial College London, UK
IRISA/CNRS Rennes, France

University of Kent, UK

Queen Mary College, UK

Ecole Normale Supérieure, France
University of Cambridge, UK
Max-Planck-Institut fiir Informatik, Germany
Technical University of Madrid, Spain
IBM, USA

Chalmers University of Technology, Sweden
Tel Aviv University, Israel

University of Melbourne, Australia
University of Dortmund, Germany

Ecole Normale Supérieure, France
Universita di Padova, Italy
Kansas State University, USA

Referees

A. Askarov T. Harris X. Rival
G. Barthe D. Hirsch F. Rossi

J. Bean N. Kettle R. Rugina
J. Berdine R. Komondoor O. Riithing
S. Berezin A. Lawrence P. Schmitt
J. Bertrane O. Lee R. Segala



VIII  Organization

F. Besson
B. Blanchet
F. Bueno
M. Carro
P. Caspi

O. Chitil

S. Chong
D. Clark
D. Colazzo
L. Colussi
J. Correas
S. Crafa

N. Dur

S. Edelkamp
C. Faggian
J. Feret

J. Field

A. Frisch
M. Gil

A. Gotlieb
T. Griffin
S. Gulwani
N. Halbwachs
R. Hansen

F. Levi

X. Li

F. Logozzo
A. Lokhmotov
R. Manevich
P. Manghi

J. Marino

D. Massé

I. Mastreoni
H. Melgratti
A. Merlo

A. Miné

D. Monniaux
M. Miiller-Olm
B. Nicolescu
K. Ostrovsky
L. Pareto

M. Preda

P. Pietrzak
H. Raffelt

F. Ranzato
A. Rensink
T. Rezk

N. Rinetzky

C. Segura
A. Simon

J Singer
J.-G. Smaus
F. Spoto

M. Strout
F. Tapparo
R. Thrippleton
Thompson
. Tuosto
Valentini
. Venet

. Vigano
Wadler

. Wiklicky
. Xu

. Yahav

. Yorsh
Yong

. Zaffanella
. Zanardini
R. Zunino

SR N RY

HmwvwoHomd



Table of Contents

Invited Talks

Algorithmic Game Semantics and Static Analysis
Samson Abramsky .. ... 1

From Typed Process Calculi to Source-Based Security
Andrew D. Gordon .. ... ... 2

Contributed Papers

Widening Operators for Weakly-Relational Numeric Abstractions
Roberto Bagnara, Patricia M. Hill, Elena Mazzi, Enea Zaffanella . . .. 3

Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra
Roberto Bagnara, Enric Rodriguez-Carbonell, Enea Zaffanella . ... ... 19

Inference of Well-Typings for Logic Programs with Application to
Termination Analysis
Maurice Bruynooghe, John Gallagher, Wouter Van Humbeeck . ...... 35

Memory Space Conscious Loop Iteration Duplication for Reliable
Execution
Guilin Chen, Mahmut Kandemir, Mustafa Karakoy ................ 52

Memory Usage Verification for OO Programs
Wei-Ngan Chin, Huu Hai Nguyen, Shengchao Qin, Martin Rinard ... 70

Abstraction Refinement for Termination
Byron Cook, Andreas Podelski, Andrey Rybalchenko ................ 87

Data-Abstraction Refinement: A Game Semantic Approach
Aleksandar Dimovski, Dan R. Ghica, Ranko Lazi¢ ................. 102

Locality-Based Abstractions
Javier Esparza, Pierre Ganty, Stefan Schwoon .................. ... 118

Type-Safe Optimisation of Plugin Architectures
Neal Glew, Jens Palsberg, Christian Grothoff ....... ... ... ... .... 135



X Table of Contents

Using Dependent Types to Certify the Safety of Assembly Code
Maitthew Harren, George C. Necula ........... ... .. ... ......... 155

The PER Model of Abstract Non-interference
Sebastian Hunt, Isabella Mastroeni ..............c.ouuiueneunenan.. 171

A Relational Abstraction for Functions
Bertrand Jeannet, Denis Gopan, Thomas Reps .................... 186

Taming False Alarms from a Domain-Unaware C Analyzer by a
Bayesian Statistical Post Analysis

Yungbum Jung, Jaehwang Kim, Jaeho Shin, Kwangkeun Yi ......... 203
Banshee: A Scalable Constraint-Based Analysis Toolkit

John Kodumal, Alex Aiken ........ .. .. . . . . ... 218
A Generic Framework for Interprocedural Analysis of Numerical
Properties

Markus Mdiller-Olm, Helmut Seidl ......... .. ... ... .. ... . ... 235

Finding Basic Block and Variable Correspondence
Iman Narasamdya, Andrei Voronkov ........ ... ... ... ... 251

Boolean Heaps
Andreas Podelski, Thomas Wies . ..., 268

Interprocedural Shape Analysis for Cutpoint-Free Programs
Noam Rinetzky, Mooly Sagiv, Eran Yohav........ ... .. .. ... .... 284

Understanding the Origin of Alarms in ASTREE
Xavier Rival .. ... ... 303

Pair-Sharing Analysis of Object-Oriented Programs
Stefano Secci, Fausto Spoto ............ ... i 320

Exploiting Sparsity in Polyhedral Analysis
Azel Simon, Andy King .........oo i 336

Secure Information Flow as a Safety Problem
Tachio Terauchi, Alex Atken ....... ... .. . .. 352

Author Index . ... . 369



Algorithmic Game Semantics and Static Analysis

Samson Abramsky
Oxford University Computing Laboratory

Game Semantics has been developed over the past 12 years or so as a dist inc-
tive approach to the semantics of programming language. It is composit ional
in the tradition of denotational semantics, and has led to the cons truction of
fully abstract models for programming languages incorporating a wide variety of
features which have proved resistant to more tradition al approaches, including
(combinations of): higher-order procedures, loca lly scoped variables and refer-
ences, non-local control operators, non-det erminism, probability, concurrency
and more. At the same time, game seman tics has a concrete aspect: programs
are interpreted as strategies for ce rtain two-player games, and these strategies
can be represented by automa ta. This algorithmic aspect of game semantics has
been developed over the past few years, by Dan Ghica, Luke Ong, Andrzej Mu-
rawski and the present author. This has led to a novel approach to compositional
model-checking and static analysis. We will survey some of the work which has
been done , and discuss some directions for future research in this area.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, p. 1, 2005.
© Springer-Verlag Berlin Heidelberg 2005



From Typed Process Calculi
to Source-Based Security

Andrew D. Gordon
Microsoft Research

The source-based security problem is to build tools to check security properties
of the actual source code of a system, as opposed to some abstract model. Static
analysis of C for buffer overruns is one approach. Another is to introduce security
types as a programming language feature so that the typechecker proves security
properties; for example, languages like Jif and Flow Caml can check noninter-
ference properties of application-level code. Independently, security types have
arisen in the setting of process calculi, for checking secrecy and authentication
properties of abstract models of low-level cryptographic protocols, for instance.

My talk argues that recent developments in security types for process calculi
can lead to better source-based security by typing. One development [2] removes
a significant limitation of previous type systems and checks security in spite
of the partial compromise of a dynamically-growing population of principals.
Another [1] generalizes a type system for authentication to check authorization
properties, by augmenting the typechecker with Datalog inference relative to a
declarative authorization policy. Both developments rely on the idea of enriching
process calculi with inert processes to represent both logical facts arising at
runtime and also expected security invariants.

References

1. C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline for authorization poli-
cies. In European Symposium on Programming (ESOP’05), volume 3444 of LNCS,
pages 141-156. Springer, 2005.

2. A.D. Gordon and A. Jeffrey. Secrecy despite compromise: Types, cryptography, and
the pi-calculus. In CONCUR 2005—Concurrency Theory, LNCS. Springer, 2005.
To appear.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, p. 2, 2005.
© Springer-Verlag Berlin Heidelberg 2005



Widening Operators for Weakly-Relational
Numeric Abstractions*

Roberto Bagnara!, Patricia M. Hill?, Elena Mazzi', and Enea Zaffanella'

! Department of Mathematics, University of Parma, Italy
{bagnara, mazzi, zaffanella}@cs.unipr.it
2 School of Computing, University of Leeds, UK
hill@comp.leeds.ac.uk

Abstract. We discuss the construction of proper widening operators
on several weakly-relational numeric abstractions. Our proposal differs
from previous ones in that we actually consider the semantic abstract
domains, whose elements are geometric shapes, instead of the (more con-
crete) syntactic abstract domains of constraint networks and matrices.
Since the closure by entailment operator preserves geometric shapes, but
not their syntactic expressions, our widenings are immune from the di-
vergence issues that could be faced by the previous approaches when
interleaving the applications of widening and closure. The new widen-
ings, which are variations of the standard widening for convex polyhedra
defined by Cousot and Halbwachs, can be made as precise as the pre-
vious proposals working on the syntactic domains. The implementation
of each new widening relies on the availability of an effective reduction
procedure for the considered constraint description: we provide such an
algorithm for the domain of octagonal shapes.

1 Introduction

Numerical properties are of great interest in the broad area of formal methods for
their complete generality and since they often play a crucial role in the definition
of static analyses and program verification techniques. In the field of abstract
interpretation, classes of numerical properties are captured by numerical abstract
domains. These have been and are widely used, either as the main abstraction
for the application at hand, or as powerful ingredients to improve the precision
of other abstract domains.

Among the wide spectrum of numerical abstractions proposed in the litera-
ture, the most famous ones are probably the (non-relational) abstract domain of
intervals [16] and the (relational) abstract domain of convex polyhedra [19]. As
far as the efficiency/precision trade-off is concerned, these domains occupy the
opposite extremes of the spectrum: on the one hand, the operations on convex

* This work has been partly supported by MURST projects “Constraint Based Ver-
ification of Reactive Systems” and “AIDA — Abstract Interpretation: Design and
Applications,” and by a Royal Society (UK) International Joint Project (ESEP)
award.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 3-18, 2005.
© Springer-Verlag Berlin Heidelberg 2005



4 R. Bagnara et al.

polyhedra achieve a significant level of precision, which is however countered
by a worst-case exponential time complexity, often leading to scalability prob-
lems; on the other hand, the great efficiency of the corresponding operations on
intervals is made unappealing by the fact that the obtained precision is often un-
satisfactory. This well-known dichotomy (which does not impede that, for some
applications, convex polyhedra or intervals are the right choices) has motivated
recent studies on several abstract domains that lie somehow between these two
extremes, and can therefore be called weakly-relational abstract domains. Exam-
ples include domains based on constraint networks [3,4,5], the abstract domain
of difference-bound matrices [25,32], the octagon abstract domain [26], the ‘two
variables per inequality’ abstract domain [33], the octahedron abstract domain
[15], and the abstract domain of template constraint matrices [31]. Moreover,
similar proposals that are not abstractions of the domain of convex polyhedra
have been put forward, including the abstract domain of bounded quotients [3]
and the zone congruence abstract domain [27].

In this paper, we address the issue of the provision of proper widening op-
erators for these domains. For the abstract domain of convex polyhedra, all the
widenings that have been proposed are variations of, and/or improvements to,
what is commonly referred to as the standard widening [19,22]. This is based on
the general widening principle “drop the unstable components” applied to con-
straints. Not surprisingly, most proposals for widening operators for the weakly
relational domains are based on the same principle and analogous to the standard
widening. For instance, for the domain of difference bound matrices mentioned
above, an operator meant to match the standard widening is given in [32]. Un-
fortunately, as pointed out in [25,26], this operator is not a widening, since it
has no convergence guarantee. The reason is that closure by entailment, which
is systematically performed so as to provide a canonical form for the elements
and to improve the precision of several domain operations, has a negative inter-
action with the extrapolation operator of [32] that compromises the convergence
guarantee. Intuitively, what can happen is that, while the extrapolation operator
discards unstable constraints, the closure operation reinserts them (because they
were redundant): failure to drop such unstable constraints can (and, in practice,
quite often does) result in infinite upward iteration sequences. For this reason, it
is proposed in [25,26] to apply the same operator given in [32] to the “syntactic”
version of the same abstract domain, that is, where closure is only very carefully
applied during the fixpoint computations.

We have taken a different approach and resolve the apparent conflict by
considering a “semantic” abstract domain whose elements are the geometric
shapes themselves. Since closure by entailment preserves the geometric shapes
(even though this does not preserve their syntactic expressions), the approach
is immune from the divergence problem described above. On the other hand, in
order to use the standard widening as the basis of the proposed widening, it is
important that we can compute reduced representations of the domain elements
that encode non-redundant systems of constraints. Thus the implementations of
any new widenings based on the semantic approach will need effective reduction



Widening Operators for Weakly-Relational Numeric Abstractions 5

procedures for the considered constraint description: here we provide such an
algorithm for the domain of octagonal shapes. As a by-product of our work
on verifying the correctness of this reduction algorithm, we noticed that the
algorithm for computing the strong closure of octagonal graphs as described
in [25] could be simplified with a consequential improvement in its efficiency.
This revised strong closure algorithm is also described here.

The paper is structured as follows: Section 2 recalls the required concepts
and notations; Section 3 introduces the domain of bounded difference graphs; a
domain of bounded difference shapes is presented in Section 4, where an alter-
native solution to the divergence problem is proposed; the generalization of the
above results to the case of octagons is the subject of Section 5, where we define
a new strong reduction procedure and an improved strong closure procedure for
octagonal graphs, as well as a semantic widening operator for octagonal shapes.
Section 6 concludes with a discussion of the results achieved. The proofs of all
the stated results can be found in [6].

2 Preliminaries

The reader is assumed to be familiar with the fundamental concepts of lattice
theory [13] and abstract interpretation theory [17,18]. We refer the reader to the
classical works on the numeric domains of intervals [16] and convex polyhedra [19]
for the specification of the corresponding widening operators.

Let Qo := QU {+00} be totally ordered by the extension of ‘<’ such that
d < +oo for each d € Q. Let NV be a finite set of nodes. A weighted directed graph
(graph, for short) G in AV is a pair (N, w), where w: N x N — Qo is the weight
function for G. A pair (n;,n;) € N x N is an arc of G if w(n;,n;) < +oo; the
arc is proper if n; # n;.

A path m = ng---np in a graph G = (N, w) is a non-empty and finite
sequence of nodes such that (n;—1,n;) is an arc of G, for all i = 1, ..., p; each
arc (n;—1,n;) where ¢ = 1, ..., p is said to be in the path w. The path 7 is
proper if all the arcs in it are proper. The path 7 is a proper cycle if it is a
proper path and ng = n, (so that p > 2). The length of the path 7 is the
number p of occurrences of arcs in m and denoted by ||7||; the weight of the path
mis >0, w(n;—1,n;) and denoted by w(r). The path 7 is a zero-cycle if it is
a proper cycle with 0 weight. A graph is consistent if it has no negative weight
cycles; it is zero-cycle free if all its proper cycles have strictly positive weights.

The set G of consistent graphs in N is partially ordered by the relation ‘<’
defined, for all G1 = (M, w1) and G2 = (N, ws), by

GISIGZ < VZ,]GNU)](%])SU)Q(%])

When augmented with a bottom element | representing inconsistency, this par-
tially ordered set becomes a (non-complete) lattice G = <(G U{L},<,n, I_I>,
where ‘M’ and ‘L)’ denote the (finitary) greatest lower bound and least upper
bound operators, respectively.



6 R. Bagnara et al.

Definition 1. (Closed graph.) A consistent graph G = (N, w) is closed if the
following properties hold:

Vie N :w(i,i) = 0; (1)
Vi, k€ Nz w(i, ) < w(i, k) + w(k, 7). 2)

The (shortest-path) closure of a consistent graph G in N is
closure(G) := |_|{ G°eG | G® <G and G° is closed }.

When trivially extended so as to behave as the identity function on the bottom
element L, shortest-path closure is a kernel operator (monotonic, idempotent
and reductive) on the lattice G .

3 Systems of Bounded Differences

The typical way to simplify the domain of convex polyhedra is by restricting
attention to particular subclasses of linear inequalities. One possibility, which has
a long tradition in computer science [12], is to only consider potential constraints,
also known as bounded differences: these are restricted to take the form v;—v; <d
or +v; < d. Systems of bounded differences have been used by the artificial
intelligence community as a way to reason about temporal quantities [2,20], as
well as by the model checking community as an efficient yet precise way to model
and propagate timing requirements during the verification of various kinds of
concurrent systems [21,24]. In the abstract interpretation field, the idea of using
an abstract domain of bounded differences was put forward in [3].

A finite system C of bounded differences on variables V = {vg,...,v,_1} can
be represented by a weighted directed graph G = (N, w) where Ny = {0} UV,
0 ¢ V is the special variable, and the weight function w is defined, for each
Vi, V5 € No, by

min{d€Q|(vifvj§d)€C}, if v; # 0 and v; # 0;

w(vs,v;) = min{d€Q|(w§d)€C}7 if v; # 0 and v; = 0;
i, Vj) = min{de(@’(_ngd>€c}’ ifviZOandvj;éO;
0, if v; =v; =0.

Notice that we assume that min @ = 4o00; moreover, unary constraints are en-
coded by means of the special variable, which is meant to always have value 0.
A possible representation of (the weight function of) the graph G is by means of
a matrix-like data structure called Difference-Bound Matriz (DBM) [12]. How-
ever, this representation provides no conceptual advantage over the isomorphic
graph (or constraint network [20]) representation. For this reason we will consis-
tently adopt the terminology and notation introduced in Section 2 for weighted
directed graphs. In particular, a graph encoding a consistent system of bounded
differences will be called a Bounded Difference Graph (BDG).



Widening Operators for Weakly-Relational Numeric Abstractions 7

The first fully developed application of bounded differences in the field of
abstract interpretation can be found in [32], where an abstract domain of closed
BDGs is defined. In this case, the shortest-path closure requirement was meant
as a simple and well understood way to obtain a canonical form for the do-
main elements by abstracting away from the syntactic details; since, basically,
it corresponds to the closure by entailment of the encoded system of bounded
differences. In [32] the specification of all the required abstract semantics oper-
ators is provided, including an operator that is meant to match the widening
operators defined on more classical numeric domains. This operator can be in-
terpreted either as a generalization for closed BDGs of the widening operator
defined on the abstract domain of intervals [16], or as a restriction on the do-
main of closed BDGs of the standard widening defined on the abstract domain
of convex polyhedra [19,22]: its implementation is based on the following upper
bound operator on the set of consistent graph representations.

Definition 2. (Widening graphs.) Let G = (N, w1) and Gy = (N, ws) be
consistent graphs. Then G1VGa := (N, w), where the weight function w is de-
fined, for each i,j € N, by

e +o00, otherwise.

Unfortunately, as pointed out in [25,26], when used in conjunction with shortest-
path closure, this extrapolation operator does not provide a convergence guar-
antee for fixpoint computations, hence it is not a widening. The reason is that,
whereas the closure operation adds redundant constraints to the input BDG, a
key requirement in the specification of the standard widening is that the first
argument polyhedron must be described by a non-redundant system of con-
straints.! Thus we have a “conflict of interest” between the use of a convenient
canonical form for the abstract domain —a form that also allows for increased
precision of several domain operations— and the requirements of the widening.

The abstract domain of BDGs has been reconsidered in [25]. Differently from
[32], in [25] BDGs are not required to be closed. In this more concrete, syntactic
domain, the shortest-path closure operator maps each domain element into the
smallest BDG encoding the same geometric shape. Closure is typically used as a
preprocessing step before the application of most, though not all, of the abstract
semantic operators, allowing for improved accuracy in the results of the abstract
computation. The same widening operator proposed in [32] is also used in [25];
however, it is observed that this widening “could have intriguing interactions”
with shortest-path closure, therefore identifying the divergence issue faced in [32].
This observation led the author of [25] to the adoption of the syntactic domain
of BDGs, where closure is not enforced.

! This requirement was sometimes neglected in recent papers describing the standard
widening on convex polyhedra; it was recently recalled and exemplified in [7,8].
Note that a similar requirement is implicitly present even in the specification of the
widening on intervals.



8 R. Bagnara et al.

4 Bounded Difference Shapes

While the analysis of the divergence problem is absolutely correct, the solution
identified in [25] is sub-optimal since, as is usually the case, resorting to a syn-
tactic domain (such as the one of BDGs) has a number of negative consequences,
some of which will be recalled in Section 6.

To identify a simpler, more natural solution, we first have to acknowledge
that an element of our abstract domain should be a geometric shape, rather
than (any) one of its graph representations. To stress this concept, such an el-
ement will be called a Bounded Difference Shape (BDS). A BDS corresponds
to the equivalence class of all the BDGs representing it. The implementation of
the abstract domain can freely choose between these possible representations,
switching at will from one to the other, as long as the semantic operators are im-
plemented as expected. Notice that, in such a context, the shortest-path closure
operator is just a transparent implementation detail: on the abstract domain of
BDSs it corresponds to the identity function.

The other step towards the solution of the divergence problem is the simple
observation that a BDS is a convex polyhedron and the set of all BDSs is closed
under the application of the standard widening on convex polyhedra. Thus, no
divergence problem can be incurred when applying the standard widening to an
increasing sequence of BDSs. As mentioned in Section 3, a crucial requirement in
the specification of the standard widening is that the first argument polyhedron is
described by a non-redundant system of constraints [7,8]. Thus it is not surprising
that using closed BDGs has problems since it is very likely that they will encode
redundant constraints. By contrast, we propose the use of a maximal BDG in
the equivalence class of BDGs representing the same geometric shape; since such
a graph encodes no redundant constraints at all.

Definition 3. (Reduced graph.) A consistent graph Gy is reduced if, for
each consistent graph Go # Gp such that G; 4 G2, we have closure(Gy) #
closure(Gz). A reduction for the consistent graph G is any reduced graph G
such that closure(G) = closure(Gy).

Hence, a graph is reduced if it is maximal in the subset of graphs having the
same shortest-path closure. In order to provide a correct and reasonably efficient
implementation of the standard widening on the domain of BDSs, all we need
is a reduction procedure mapping a BDG representation into (any) one of the
equivalent reduced graphs. Such an algorithm was defined in [24] and called
shortest-path reduction. Basically, it is an extension of the transitive reduction
algorithm of [1] to the case of weighted directed graphs. Note that, since each
equivalence class may have many maximal elements, shortest-path reduction is
not a properly defined operator on the domain of BDGs. However, the shortest-
path reduction algorithm of [24] provides a canonical form as soon as we fix a
total order for the nodes in the graph.

In summary, the solution to the divergence problem for BDSs is to apply
the operator specified in Definition 2 to a reduced BDG representation of the
first argument of the widening. From the point of view of the user, this will



Widening Operators for Weakly-Relational Numeric Abstractions 9

be a transparent implementation detail: on the domain of BDSs, shortest-path
reduction is the identity function, as was the case for shortest-path closure.

4.1 On the Precision of the Standard Widening

The standard widening on BDSs could result, if used with no precautions, in
poorer precision with respect to its counterpart defined on the syntactic do-
main of BDGs. For increased precision, the specification of [25] prescribes two
conditions that the abstract iteration sequence must satisfy:

1. the second argument of the widening should be represented by a closed BDG
(note that, in this case, no divergence problem can arise);

2. the first BDG of the abstract iteration sequence Go <G; <...<G; <...
should be closed too.

The effects of both improvements can be obtained also with the semantic
domain of BDSs. As for the first one, this can be applied as is, leading to an
implementation where the two arguments of the widening are represented by a
reduced BDG and a closed BDG, respectively. The result of such a widening op-
erator will depend on the specific reduced form computed for the first argument.
The second precision improvement can be achieved by applying the well-known
‘widening up to’ technique defined in [23] or its variation called ‘staged widening
with thresholds’ [14,29]: in practice, it is sufficient to add to the set of ‘up to’
thresholds all the constraints of the shortest-path closure of the first BDG Gj.
Further precision improvements can be obtained by applying any delay strategy
and/or the framework defined in [7,8].

5 Octagonal Graphs and Shapes

From a theoretical point of view, the observations made in the previous section
are immediately applicable to any other weakly-relational numeric domain whose
elements are convex polyhedra and is closed with respect to the application of the
standard widening, therefore including the domains proposed in [15,26,31,33].
From a practical perspective, the success of such a construction depends on
the availability of a reasonably efficient reduction procedure for the considered
subclass of constraints, because the minimization algorithm for arbitrary linear
inequality constraints is not efficient enough. In this section we provide such a
reduction procedure for the octagon abstract domain [26].

The octagon abstract domain allows for the manipulation of octagonal con-
straints of the form av; + bv; < ¢, where a,b € {—1,0,+1} (the same class of
constraints was considered in [11], where octagons were called simple sections).
Bounded differences can then be used to express octagonal constraints by split-
ting each variable v; € V into two forms: a positive form v?‘ , interpreted as +wvj;
and a negative form v, , interpreted as —v;. Thus, an octagonal constraint such as
v;+v; < d can be translated into the bounded difference constraint v;r —v; < d;

alternatively, the same constraint can be translated into v;f —wv; <d. Note that



10 R. Bagnara et al.

unary (octagonal) constraints such as v; < d and —v; < d can be encoded as
vf —v; <2d and v — v;-r < 2d, respectively, so that the special variable 0 is
no longer needed.

In the following we assume that N = {0,...,2n—1} is a fixed and finite set
of nodes where, for all ¢ =0, ..., n— 1, the node 2i represents the positive form
vf and 27 + 1 the negative form v; of the variable v;. Moreover, for all ¢ € N=E,
2 denotes 741 if ¢ is even, and i — 1 if ¢ is odd. Thus, for all i € N+, we also have
» € N* and + = i. Therefore, any finite system of octagonal constraints on the
n variables V = {vp,...,v,—1} can be represented by a weighted directed graph
on the 2n nodes N'*. Note that, for any i, € N, as arcs (4, j) and (7,2) denote
equivalent expressions, the pair is said to be coherent. We restrict attention to
consistent systems of constraints and hence to consistent graphs where coherent
pairs of arcs have the same weight.

Definition 4. (Octagonal graph.) An octagonal graph in N is any consis-
tent graph G = (N'*,w) satisfying the coherence assumption:

Vi, j € N= w(i, §) = w(y,). (3)

Thus any octagonal graph on the 2n nodes N'* encodes a consistent system of
octagonal constraints on n variables. The set O of all octagonal graphs, with
the usual addition of the bottom element representing the empty octagon, is a
sub-lattice of G , sharing the same least upper bound and greatest lower bound
operators. Note that, at the implementation level, coherence can be automati-
cally and efficiently enforced by letting arc (i,7) and arc (j,:) share the same
representation.

The octagon abstract domain developed in [26] is thus a syntactic domain
having octagonal graphs as elements. When dealing with octagonal graphs, one
has to remember the relation linking the positive and negative forms of each vari-
able: in particular, besides transitivity, a proper closure by entailment procedure
should also consider the following inference rule:

1—1<d; J—7 < ds

200 —j) < dy + da @

Thus, the standard shortest-path closure algorithm is not enough to obtain a
canonical form for octagonal graphs: to this end, a modified closure procedure
is defined in [26], yielding strongly closed octagonal graphs.

Definition 5. (Strongly closed graph.) An octagonal graph G = (Nt w) is
strongly closed if it is closed and the following property holds:

Vi, j € N* : 2w(i, j) < w(i,2) + w(3, ). (5)
The strong closure of an octagonal graph G in N'* is

Closure(Q) = |_|{ G°e0 | GC <G and G is strongly closed }.



Widening Operators for Weakly-Relational Numeric Abstractions 11

Similarly to shortest-path closure, strong closure is a kernel operator on the
lattice of octagonal graphs.

By repeating the reasoning of the previous section, we define the semantic
abstract domain of octagonal shapes, whose elements are equivalence classes of
octagonal graphs representing the same geometric shape. Hence, strong closure
maps an octagonal graph representation of a non-empty octagonal shape into the
minimum element of the corresponding equivalence class. The dual procedure,
mapping the octagonal graph into (any) one of the maximal elements in its
equivalence class, is called strong reduction.

Definition 6. (Strongly reduced graph.) An octagonal graph G is strongly
reduced if, for each octagonal graph Go # Gi such that G1 < G3, we have
Closure(G;) # Closure(Gs). A strong reduction for the octagonal graph G is
any strongly reduced octagonal graph Gr such that Closure(G) = Closure(GR).

Note that, in the above definition, we only compare Gy with other octagonal
graphs. Thus, we explicitly disregard those trivial redundancies that are due
to the coherence assumption. This is not a real problem because, as discussed
before, any reasonable implementation will automatically and efficiently filter
away these kinds of redundancies.

5.1 A Strong Reduction Procedure for Octagonal Graphs

In this section we generalize the shortest-path reduction algorithm of [24] so as to
obtain a strong reduction procedure for octagonal graphs. Clearly, the algorithm
of [24] cannot be used without modifications, since it takes no account of the
redundancies caused by the new constraint inference rule (4). Nonetheless, the
high-level structure of the strong reduction procedure is the same as that defined
in [24] for shortest-path reduction:

1. Compute the closure by entailment of the constraint graph;

2. Partition the nodes into equivalence classes based on equality constraints;

3. Decompose the graph so as to separate those arcs that link different equiv-
alence classes (encoding only inequalities) from the partition information
(encoding the equivalence classes themselves, i.e., all the equalities);

4. Reduce the subgraph that gives constraints on different equivalence classes;

5. Reduce the partition information;

6. Merge the results of steps 4 and 5 to obtain the reduced constraint graph.

We now describe each of the above steps, formally stating the correctness of the
overall procedure.

Step 1 of the algorithm can be performed by applying the strong closure
procedure defined in [26].

Step 2 is also easily implemented by observing that, in a strongly closed
octagonal graph, equality constraints correspond to proper zero-cycles having
length two.



12 R. Bagnara et al.

Definition 7. (Zero-equivalence.) Let G = (N*,w) be a strongly closed oc-
tagonal graph. The nodes i,j € N* are zero-equivalent in G, denoted i =¢ j, if
and only if w(i,j) = —w(4,1).

While step 6 carries over from BDGs to octagonal graphs, the formal definition
of steps 3-5 of the reduction algorithm is more difficult for octagonal graphs
than it was for BDGs, as it requires some understanding of the structure of the
zero-equivalence classes.

As a first observation, note that ¢ =¢ j if and only if «+ =¢ 3. Therefore, if
£ C N'* is a zero-equivalence class for the strongly closed octagonal graph G,
then £ := {1 € Nt | i € £} is also a zero-equivalence class for G. We say that £
is non-singular if ENE = @, and singular if £ = &£; there is at most one singular
zero-equivalence class in G. We associate to each zero-equivalence class £ C N+
a leader g := min &; the class having the leader in positive (resp., negative) form
will be said to be a positive (resp., negative) zero-equivalence class. Thus, the
singular zero-equivalence class, if present, is always positive and, for non-singular
zero-equivalence classes £ and &, we have £, = (¢.

We are now ready to provide a formal specification for step 3 of the strong
reduction algorithm. As was the case in [24], the first subgraph resulting from the
decomposition, relating nodes in different zero-equivalence classes, is obtained
by only connecting the leaders. However, we do not connect the leader of the
singular zero-equivalence class to the other leaders. The second subgraph only
encodes those constraints relating nodes in the same zero-equivalence class.

Definition 8. (Non-singular leaders and zero-equivalence subgraphs.)
Let G = (N*,w) be a strongly closed octagonal graph and L C N* the set
of leaders of the non-singular zero-equivalence classes for G. The non-singular
leaders’ subgraph of G is the graph L = (N*,wy), where the weight function
wy, is defined, for each i,j € N+, by
. w(i,j), ifi=jor{i,j} CL;
wy, (i, 7) = Gd), j~ .t
400, otherwise.

The zero-equivalence subgraph of G is the graph E = (N*,wg), where the
weight function wg is defined, for each i,j € N+, by

WE (27 j) Ea .
400, otherwise.
Step 4 of the strong reduction algorithm is implemented by checking, for each
proper arc in the non-singular leaders’ subgraph, whether it can be obtained
from the other arcs by a single application of the constraint inference rules. Once
again, note that we disregard redundancies caused by the coherence assumption.

Definition 9. (Strongly atomic arc and subgraph.) Let G = (N*,w) be
an octagonal graph. An arc (i,j) of G is atomic if it is proper and, for all



Widening Operators for Weakly-Relational Numeric Abstractions 13

ke Nt {i,5}, w(i,j) < w(i, k) +w(k,j). The arc (i,7) is strongly atomic if
it is atomic and either i = 3 or 2w(i,j) < w(i,2) + w(y, j).

The strongly atomic subgraph of G is the graph A = (N*,wa) where the
weight function wa is defined, for all i,j € N+, by

(i) w(i,§), if (i,7) is strongly atomic in G;
wa (i,7) =
. 400, otherwise.

The implementation of step 5 of the algorithm, i.e., the strong reduction of the
zero-equivalence subgraph, is performed by reducing each zero-equivalence class
in isolation. Once again, we exploit the total ordering defined on N'*.

Fig. 1. Strong reduction for non-singular zero-equivalence classes

The strong reduction for a positive non-singular zero-equivalence class £ fol-
lows that of [24]: it creates a single zero-cycle connecting all nodes in £ following
their total ordering, where the weights of the component arcs are as in the
strong closure of the graph. By the coherence assumption, the nodes in the cor-
responding negative zero-equivalence class £ are automatically connected in the
opposite order. Figure 1 shows the arcs in the strong reduction of both £ and
E, where £ = {20,...,2m} is the positive class and where zp < -+ < z,,. The
strong reduction for a singular zero-equivalence class £ is similar except that
there is now a single zero-cycle connecting all the positive and negative nodes
in £. Figure 2 shows the strong reduction for the singular zero-equivalence class
E =1{20,20,--s2m,2Zm}, where 2o < zg < -+ < 2Zym < Zp,. In both Figures 1
and 2, the dashed arcs are those that can be obtained from the non-dashed ones
by application of the coherence assumption.

The following definition formalizes the above observations.

Definition 10. (Zero-equivalence reduction.) Let G= (N, w) be a strongly
closed octagonal graph and let w' be the weight function defined, for alli,j € N'*,
as follows: if i,j € £ for some positive zero-equivalence class € of G and

—if E={z0,...,2m} is non-singular, assuming zo < -+ < Zm,
w(t,§), ifi=zn_1,j=2n, for someh=1...,m;
w'(i,7) == w(i,j), ifi=zm, j =2 and m > 0;

400, otherwise;



14 R. Bagnara et al.

Fig. 2. Strong reduction for the singular zero-equivalence class

—if € =A{20,20, -, 2m, Zm} 18 singular, assuming zo < zg < -+ < Zm < Zm,
w(t,§), ifi=zn_1,j=2n, for someh=1...,m;
w/(Z,j) = UJ(Z,j), Z‘,fiZZO}j:ZO Ori:Zm)j:Zm;
400, otherwise;
and w'(i,j) := 400, otherwise. Then, the zero-equivalence reduction for G is

the octagonal graph Z = (N'*,wz), where, for each i,j € NF,
wz (i, §) = min{w' (i, j), w'(3,2) }

The final step 6 of the strong reduction algorithm is implemented by computing
the greatest lower bound A M Z, where A is the strongly atomic subgraph of L
and Z is the zero-equivalent reduction of F, as obtained at steps 4 and 5 of the
algorithm.

Theorem 1. Given an octagonal graph G, the strong reduction algorithm com-
putes a strong reduction for G.

If n is the cardinality of the original set V of variables, then steps 1 and 4
of the algorithm have worst-case complexity in O(n?), while all the others steps
are in O(n?). Thus, the overall procedure has cubic complexity. As was the case
for the reduction procedure of [24], once the ordering of variables is fixed, the
strong reduction algorithm returns a canonical form for octagonal graphs.

5.2 An Improved Strong Closure Algorithm

The formal proof of Theorem 1 led to a new result regarding the strong closure
operator for octagonal graphs. The strong closure algorithm formalized in [26,30]
performs n local propagation steps: in each step, a rather involved variant of the
constraint propagation in the Floyd-Warshall algorithm is followed by another
constraint propagation corresponding to the new inference rule (4). A finely
tuned implementation of this algorithm [28] performs 20n3 + 24n? coefficient
operations (additions and comparisons), where n is the dimension of the vector
space. It turns out that the interleaving of the two kinds of propagation steps
is not needed: the same final result can be obtained by the application of the
classical Floyd-Warshall closure algorithm followed by a single local propagation
step using the constraint inference rule (4).



Widening Operators for Weakly-Relational Numeric Abstractions 15

Theorem 2. Let G = (NT,w) be a closed octagonal graph. Consider the
graph G® = (NF,w®), where w’ is defined, for eachi,j € N*, by

w3 (i, ) = min{ws (i, j), w (i,2) /2 + w*(3,5)/2}.
Then GS = Closure(G®).

By coupling the above optimization with the classical Floyd-Warshall algo-
rithm, we obtain a much simpler implementation performing 16n3 4+ 4n2 + 4n
coefficient operations: the saving is always above 20% and it is above 30% for
n < 8.

5.3 A Semantic Widening for Octagonal Shapes

A correct implementation of the standard widening on octagonal shapes is ob-
tained by computing any strong reduction of the octagonal graph representing
the first argument. As in the case of BDSs, for maximum precision the strongly
closed representation for the second argument should be computed. Even better,
by adopting the following minor variant, we obtain a “truly semantic” widening
operator for the domain of octagonal shapes.

Definition 11. (Widening octagonal shapes.) Let 51,52 € p(R™), where
@ # .51 C Sy, be two octagonal shapes represented by the strongly reduced octag-
onal graph G1 and the strongly closed octagonal graph G2, respectively. Let also
S € p(R™) be the octagonal shape represented by the octagonal graph G1 V Gs.
Let dim(T") denote the affine dimension of shape T'. Then we define

P {52, if dim(1) < dim(S2);
S, otherwise.

By refraining from applying the graph-based widening when the affine dimension
of the geometric shapes is increasing, the operator becomes independent from
the specific strongly reduced form computed, i.e., from the total ordering defined
on the nodes of the graphs. Also note that the test dim(S;) < dim(S3) can be
efficiently decided by checking whether the nodes of the two octagonal graphs
are partitioned into different collections of zero-equivalence classes.

Theorem 3. The operator ‘V’ of Definition 11 is a proper widening on the
domain of octagonal shapes. Let ‘Vg’ be the standard widening on the domain of
convex polyhedra, as defined in [22]. Then, for all octagonal shapes S1,S2 € R™
such that @ # S1 C Sy, we have S1 V Sy C 51 Vs Ss.

The definition of a semantic widening for the domain of BDSs is obtained by
simply replacing, in Definition 11, the strongly reduced and strongly closed oc-
tagonal graph representations with the reduced and closed BDG representations,
respectively. Then a result similar to Theorem 3 holds for BDSs.



16 R. Bagnara et al.
6 Conclusion

By considering the semantic abstract domains of geometric shapes, instead of
their syntactic representations in terms of constraint networks, we have shown
how proper widening operators can be derived for several weakly-relational nu-
meric abstractions. For what concerns the efficient representation of octagonal
shapes by means of octagonal graphs, we have specified and proved correct a
strong reduction procedure, as well as a more efficient strong closure procedure.

It is worth stressing that both the syntactic and the semantic abstract do-
mains are well defined and may be safely adopted for the implementation of a
static analysis application. Nonetheless, it can be argued that using a semantic
abstract domain provides several advantages, as already pointed out in [25, Sec-
tion 5] where the domain of BDGs is compared to the domain of closed BDGs.?
For instance, it is noted that the domain of closed BDGs allows for the specifica-
tion of a nicer, injective meaning function; also, the least upper bound operator
on BDGs is not the most precise approximation of the union of two geometric
shapes. In summary, the discussion in [25, Section 5] makes clear that the solu-
tion to the divergence problem for the abstract iteration sequence was the one
and only motivation for adopting a syntactic domain.

One disadvantage of syntactic abstract domains concerns the user-level in-
terfaces of the corresponding software implementations. Namely, the user of a
syntactic abstract domain (e.g., the developer of a specific static analysis ap-
plication using this domain) has to be aware of many details that, in principle,
should be hidden by the implementation. As an example, consider the shortest-
path closure and reduction procedures for BDGs, which the user might rightfully
see as semantics-preserving operations. As a matter of fact, for the syntactic do-
main of BDGs, these are not semantics-preserving: their application affects both
the precision and the convergence of the abstract iteration. In such a situation,
the documentation of the abstract domain software needs to include several
warnings about the correct usage of these operators, so as to avoid possible
pitfalls. In contrast, when adopting the semantic domain of BDSs, both the clo-
sure and reduction operators may be excluded from the public interface while
the implementation can apply them where and when needed or appropriate.
Such an approach is systematically pursued in the implementation of the Parma
Polyhedra Library [10] (PPL, http://www.cs.unipr.it/ppl), free software dis-
tributed under the GNU General Public License; future releases of the library
will support computations on the domains of BDSs and octagonal shapes.

Another potential drawback of the adoption of a syntactic abstract domain
can be found in the application of domain refinement operators. As an example,
consider the application of the finite powerset operator [9] to the domains of
BDGs and BDSs, so as to obtain two abstract domains that are able to repre-
sent finite disjunctions of the corresponding abstract elements. In both cases, by
providing the widenings on BDGs and BDSs with appropriate finite convergence
certificates [9], it will be possible to lift them to corresponding widenings on the

2 Similar observations, tailored to the case of octagons, are also in [26, Section VII].



Widening Operators for Weakly-Relational Numeric Abstractions 17

powerset domains. However, when upgrading the syntactic domain, avoidable
redundancies will be incurred, since different disjuncts inside a domain element
may represent the same geometric shape; furthermore, these “duplicates” can-
not be systematically removed, since by doing so we could change the value of
the finite convergence certificate of the powerset element, possibly breaking the
convergence guarantee of the lifted widening.

The shortest-path reduction algorithm of [24] has also been considered in the
PhD thesis of A. Miné [30] as a tool for the computation of hollow (i.e., sparse)
representations for BDGs, as originally proposed in [24], so as to obtain mem-
ory space savings. The author appears not to identify the positive interaction
between reduction and widening and, as a consequence, he conjectures that the
computation of hollow representations could compromise the convergence of the
abstract iteration sequence (see [30, Section 3.8.2]). An adaptation of the reduc-
tion algorithm for the case of octagonal graphs is defined in [30, Section 4.5.2]:
this differs from the one proposed in Section 5.1 and may fail to obtain a strongly
reduced graph in the sense of Definition 6.

The theoretical results concerning weighted directed graphs hold when the
data type adopted for the representation of weights allows for exact computa-
tions. If a floating-point data type is considered, then most of these results will
be broken due to rounding errors, so that the implementation of a truly semantic
abstract domain will not be possible. Nonetheless, the (approximate) reduction
operators allow for the removal of most of the syntactic redundancies.

References

1. A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive reduction of a directed
graph. SIAM Journal on Computing, 1(2):131-137, 1972.

2. J. F. Allen and H. A. Kautz. A model of naive temporal reasoning. In Formal
Theories of the Commonsense World, pp. 251-268. Ablex, Norwood, NJ, 1985.

3. R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Universita di Pisa, Italy, 1997.

4. R. Bagnara, R. Giacobazzi, and G. Levi. Static analysis of CLP programs over
numeric domains. In Proc. WSA 1992, vol. 81-82 of Bigre, pp. 43-50, Bordeaux.

5. R. Bagnara, R. Giacobazzi, and G. Levi. An application of constraint propagation
to data-flow analysis. In Proc. CAIA 1993, pp. 270276, Orlando, FL.

6. R. Bagnara, P. M. Hill, E. Mazzi, and E. Zaffanella. Widening operators for weakly-
relational numeric abstractions. Quaderno 399, Dipartimento di Matematica, Univ.
di Parma, Italy, 2005. Available at http://www.cs.unipr.it/Publications/.

7. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for
convex polyhedra. In Proc. SAS 2003, vol. 2694 of LNCS, pp. 337-354, San Diego.

8. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for
convex polyhedra. Science of Computer Programming, 2005. To appear.

9. R. Bagnara, P. M. Hill, and E. Zaffanella. Widening operators for powerset do-
mains. In Proc. VMCAI 2004, vol. 2937 of LNCS, pp. 135—148, Venice, Italy.

10. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library User’s
Manual. Department of Mathematics, University of Parma, release 0.7, 2004.



18

11

12.
13.
14.
15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

R. Bagnara et al.

V. Balasundaram and K. Kennedy. A technique for summarizing data access and
its use in parallelism enhancing transformations. In Proc. PLDI 1989, vol. 24(7)
of ACM SIGPLAN Notices, pp. 41-53, Portland, OR.

R. Bellman. Dynamic Programming. Princeton University Press, 1957.

G. Birkhoff. Lattice Theory. American Mathematical Society, 3rd edition, 1967.
B. Blanchet, P. Cousot, R. Cousot, J. Feret et al., A static analyzer for large
safety-critical software. In Proc. PLDI 2003, pp. 196-207, San Diego, CA.

R. Claris6é and J. Cortadella. The octahedron abstract domain. In Proc. SAS 2004,
vol. 3148 of LNCS, pp. 312-327, Verona, Italy.

P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proc. ISOP 1976, pp. 106-130, Paris, France.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.
POPL 1977, pp. 238-252, New York.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. POPL 1979, pp. 269-282, New York.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proc. POPL 1978, pp. 84-96, Tucson, AR.

E. Davis. Constraint propagation with interval labels. Artificial Intelligence,
32(3):281-331, 1987.

D. L. Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proc. AVMFSS 1989, vol. 407 of LNCS, pp. 197-212, Grenoble, France.

N. Halbwachs. Détermination Automatique de Relations Linéaires Vérifiées par
les Variables d’un Programme. PhD thesis, Université de Grenoble, France, 1979.
N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Form. Method Syst. Des., 11(2):157-185, 1997.

K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Efficient verification of real-time
systems: Compact data structure and state-space reduction. In Proc. RTSS 1997,
pp. 14-24, San Francisco, CA.

A. Miné. A new numerical abstract domain based on difference-bound matrices.
In Proc. PADO 2001, vol. 2053 of LNCS, pp. 155-172, Aarhus, Denmark.

A. Miné. The octagon abstract domain. In Proc. WCRE’01, pp. 310-319, Stuttgart.
A. Miné. A few graph-based relational numerical abstract domains. In Proc. SAS
2002, vol. 2477 of LNCS, pp. 117-132, Madrid, Spain.

A. Miné. The Octagon Abstract Domain Library. Ecole Normale Supérieure, Paris,
France, release 0.9.6, 2002. Available at http://www.di.ens.fr/~mine/oct/.

A. Miné. Relational abstract domains for the detection of floating-point run-time
errors. In Proc. ESOP 2004, vol. 2986 of LNCS, pp. 3-17, Barcelona, Spain.

A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, Ecole Poly-
technique, Paris, France, 2005.

S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems
using mathematical programming. In Proc. VMCAI 2005, pp. 25-41, Paris, France.
R. Shaham, E. K. Kolodner, and S. Sagiv. Automatic removal of array memory
leaks in Java. In Proc. CC 2000, vol. 1781 of LNCS, pp. 50-66, Berlin, Germany.
A. Simon, A. King, and J. M. Howe. Two variables per linear inequality as an
abstract domain. In Proc. LOPSTR 2002, vol. 2664 of LNCS, pp. 71-89, Madrid.



Generation of Basic Semi-algebraic Invariants
Using Convex Polyhedra*

Roberto Bagnara®, Enric Rodriguez-Carbonell?, and Enea Zaffanella'

! Department of Mathematics, University of Parma, Italy
{bagnara, zaffanella}@cs.unipr.it
2 Software Department, Technical University of Catalonia, Spain
erodri@lsi.upc.edu

Abstract. A technique for generating invariant polynomial inequalities
of bounded degree is presented using the abstract interpretation frame-
work. It is based on overapproximating basic semi-algebraic sets, i.e., sets
defined by conjunctions of polynomial inequalities, by means of convex
polyhedra. While improving on the existing methods for generating in-
variant polynomial equalities, since polynomial inequalities are allowed in
the guards of the transition system, the approach does not suffer from the
prohibitive complexity of the methods based on quantifier-elimination.
The application of our implementation to benchmark programs shows
that the method produces non-trivial invariants in reasonable time. In
some cases the generated invariants are essential to verify safety proper-
ties that cannot be proved with classical linear invariants.

1 Introduction

The discovery of invariant properties is at the core of the analysis and verification
of infinite state systems such as sequential programs and reactive systems. For
this reason, invariant generation has been a major research problem since the
seventies. Abstract interpretation [11] provides a solid foundation for the devel-
opment of techniques automatizing the synthesis of invariants of several classes,
most significantly intervals [10], linear equalities [20] and linear inequalities [14].

For some applications, linear invariants are not enough to get a precise anal-
ysis of numerical programs and nonlinear invariants may be needed as well. For
example, the ASTREE static analyzer, which has been successfully employed to
verify the absence of run-time errors in flight control software [13], implements
the ellipsoid abstract domain [7], which represents a certain class of quadratic
inequality invariants. Moreover, it has been acknowledged elsewhere [28,30] that
nonlinear invariants are sometimes required to prove program properties.

As a consequence, a remarkable amount of work has been recently directed
to the generation of invariant polynomial equalities. Some of the methods plainly

* This work has been partially supported by PRIN project “AIDA — Abstract In-
terpretation: Design and Applications,” by the “LogicTools” project (CICYT TIN
2004-03382), and the FPU grant AP2002-3693 from the Spanish MEC.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 19-34, 2005.
© Springer-Verlag Berlin Heidelberg 2005



20 R. Bagnara, E. Rodriguez-Carbonell, and E. Zaffanella

ignore all the conditional guards [25,27]; other methods can only consider the
polynomial equalities in the guards [8,31], whereas some other proposals [23,26]
can handle polynomial disequalities in guards (i.e., guards of the form p # 0
where p is a polynomial). None of the techniques previously mentioned can
handle the case of polynomial inequalities in the guards: these are ignored to the
expense of precision.

In this paper we present a method for generating conjunctions of polynomial
inequalities as invariants of transition systems, which we have chosen as our
programming model. The transition systems that the approach can handle admit
finite conjunctions of polynomial inequalities as guards and initial conditions,
as well as polynomial assignments and nondeterministic assignments where the
rvalue is unknown (these may correspond, for instance, to the assignment of
expressions that cannot be modeled by means of polynomials).

Formally, our technique is an abstract interpretation in the lattice of poly-
nomial cones of bounded degree, which are the algebraic structures analogous
to vector spaces in the context of polynomial equality invariants [8]. Intuitively,
the approach is based on considering nonlinear terms as additional independent
variables and using convex polyhedra to represent polynomial cones in this ex-
tended set of variables. In order to reduce the loss of precision induced by this
overapproximation, additional linear constraints are added conservatively to the
polyhedra, so as to enforce some (semantically redundant) nonlinear constraints
that would be lost in the translation. The strength of the approach is that, while
allowing for a much broader class of programs than linear analysis, it uses the
very same underlying machinery: this permits the adoption of already existing
implementations of convex polyhedra like [4], as well as the possibility of resort-
ing to further approximations, such as bounded differences [1] or octagons [22],
when facing serious scalability problems.

The rest of the paper is organized as follows. In the next subsection, related
work is briefly reviewed. Section 2 gives background information on algebraic
geometry, transition systems and abstract interpretation. Section 3 presents the
main contribution of the paper, where it is shown how polynomial inequalities
can be discovered as invariants by means of polynomial cones, represented as
convex polyhedra. The experimental evaluation of our implementation of these
ideas is described in Section 4. Finally in Section 5 we summarize the contribu-
tions of the paper and sketch some ideas for future work.

1.1 Related Work

To the best of our knowledge, the first contribution towards the generation of
invariant polynomial inequalities is [6]. The authors consider a simple class of
transition systems, where assignments are of the form z := x + k or x := k with
k € Z. Such a transition system is soundly abstracted into a new one whose
exact reachability set is computable and overapproximates the reachability set
of the original system. Besides the fact that the programming model is more
restrictive than the one used in this paper, these ideas do not seem to have



Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra 21

undergone experimental evaluation so that, as far as we can tell, their practical
value remains to be assessed.

In [19], Kapur proposes a method based on imposing that a template poly-
nomial inequality with undetermined coefficients is invariant and solving the
resulting constraints over the coefficients by real quantifier elimination. Unfor-
tunately, the great computational complexity of quantifier elimination appears
to make the method impractical: as the author reports, an experimental imple-
mentation performed poorly or did not return any answer for all the analyzed
programs [D. Kapur, personal communication, 2005].

A similar idea is at the core of [9,28], where, instead of real quantifier elimina-
tion, semidefinite programming is employed. The method, which is reported to
perform rather efficiently for several interesting cases, automatically determines
one solution to the constraint system on the template parameters. This is par-
ticularly appropriate for proving program termination because, once a class of
candidate ranking functions has been chosen, any solution belonging to this class
is good enough. The same approach has also been applied to the computation
of invariant properties. In this case, according to [9], the one above becomes the
main limitation of the method: any invariant property, even a weak one, may
be obtained and it is unclear whether it is possible to drive the solver so as to
produce a more precise invariant in the same class.

In [30], Sankaranarayanan et al. propose a technique for generating linear
invariants by linear programming. It is based on imposing, as invariants, con-
straints where the coefficients of the variables are fixed a priori; the analysis
then returns, for each such constraint, an independent term for which the con-
straint is indeed an invariant of the system (in the case where this is not possible,
the analysis returns +o00). A generalization of this approach for the discovery
of invariant polynomial inequalities by means of semidefinite programming is
sketched. Similarly, the ellipsoid abstract domain [7] allows to generate invari-
ant quadratic inequalities with two variables by also fixing the coefficients of
terms and leaving the independent term to be determined by the analysis. The
approach proposed in this paper differs in that we do not need to fix any of
these coefficients in advance, but rather it is the analysis itself that determines
all coefficients.

2 Preliminaries

2.1 Algebraic Geometry

We denote the real numbers by R, and the nonnegative real numbers by R .
A term in the tuple of variables @ = (z1,...,x,) is any expression of the form
x® = xtxy? - 2%, where a = (aq,...,a,) € N*. A monomial is an expres-
sion of the form ¢ - &%, simply written as cx®, where ¢ € R and ® is a term.
The degree of a monomial cx® with ¢ # 0 is deg(cx®) := a1 + -+ + ay; the
degree of 0 is deg(0) := —oo. A polynomial is a finite sum of monomials. The set
of all polynomials in & with coefficients in R is denoted by R[x]. In the follow-

ing we will only consider polynomials in canonical form, meaning that all the



22 R. Bagnara, E. Rodriguez-Carbonell, and E. Zaffanella

monomials occurring in them have non-null coefficients and distinct terms. The
degree of a non-null polynomial is the maximum of the degrees of its monomials.
We denote by Ry[z] the set of all polynomials in R[x] having degree at most d.
In particular, the polynomials in Rq[x], i.e., having degree at most 1, are called
linear; similarly, the polynomials in Rq[x] are called quadratic.

A polynomial equality (resp., polynomial inequality) is a formula of the form
p = 0 (resp., p > 0), where p € R[z]. Both will be referred to as polynomial
constraints or simply constraints. Given a constraint system 1, i.e., a finite set
of polynomial constraints, we define

poly(¢) ::{pER[azH(sz)Ewor (-p=0)etor(p>0)cv}.

We will sometimes abuse notation by writing the set ¥ to denote the finite
conjunction of the constraints occurring in it.

The algebraic set defined by a finite set of polynomials {pi,...,pr} C R[]
is the set of points that satisfy the corresponding polynomial equalities, i.e.,
{v € R" | p1(v) = 0,...,pk(v) =0 } Similarly, the basic semi-algebraic set
defined by the same set of polynomials is the set of points that satisfy all the
corresponding polynomial inequalities: { v € R" ‘ p1(v) >0,...,pr(v) >0},

2.2 Transition Systems
In this section we define our programming model: transition systems.

Definition 1. (Transition system.) A transition system (x,£,7,Z) is a tu-
ple that consists of the following components:

— An n-tuple of real-valued variables © = (z1,...,z,).

— A finite set L of locations.

— A finite set T C Lx L x p(R™) x (R" — p(R™)) of transitions. A transition
(£,0',v,p) € T consists of a source location £ € L, a target location ¢’ € L,
a guard v € (R™) that enables the transition, and, finally, an update map
p: R" — o(R™) that relates the values of the variables before and after the
firing of the transition.

— A map I: L — p(R™) from locations to initial conditions.

The guards, the update maps and the initial conditions are all assumed to be
finitely computable.

The state of a transition system is completely characterized by the location
at which control resides and by a valuation for the variables.

Definition 2. (Local and global state.) A local state (at some unspecified
location) is any real vector v = (v1,...,v,) € R", interpreted as a valuation for
the variables @ = (x1,...,2y): in local state v, we have x; = v; for each i =1,

.., n. A global state is a pair (¢{,v), where £ € L and v is the local state at L.



Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra 23

Definition 3. (Run, initial state.) A run of the transition system (x,L,T,T)
is a sequence of global states (Lo, vg), (£1,v1), (f2,v2), ... such that (1) (¢, vo)
is an initial state, that is vog € Z({p), and (2) for each pair of consecutive
states, (0;,v;) and (£iy1,viy1), there exists a transition (€;,4i41,7,p) € T that
is enabled, i.e., v; € 7y, and such that v;41 € p(v;).

The fundamental notion is that of an invariant of a transition system:

Definition 4. (Reachable state, invariant property and map.) A global
state (£,v) is called reachable in the transition system S = (x, L, T,T), if there
exists a run (Lo, vg), (€1,v1), ..., (bm,Vm) of S such that ({,v) = (b, V). We
denote the set of reachable states of S by reach(S), and the set of (local) reachable
states at location £, i.e., those v such that (¢,v) € reach(S), by reachy(S).

If x = (z1,...,2,), an invariant property of S at location ¢ € L (also called
an invariant) is any set I € p(R™) such that reachy(S) C I. Finally, an invariant
map is a map inv: L — p(R™) such that for any ¢ € L, inv({) is an invariant
of S at location .

In this paper we focus on a particular class of transition systems, basic semi-
algebraic transition systems:

Definition 5. (Basic semi-algebraic transition system.) A transition sys-
tem (¢, L,7T,T), where ® = (x1,...,2,), is called basic semi-algebraic if:

1. for all (¢,0,~,p) € T, v is a basic semi-algebraic set and there exist k < n
polynomials pl, .,pr € Rz ] and distinct indices i1,...,1, € {1 n}
such that p(v 7{ vi,...,0,) € R? |v = p1(v),...,v;, = pi(v }for
each v € R";

2.Z(0) is a basic semi-algebraic set, for each ¢ € L.

Notice that a basic semi-algebraic transition system can also model nonde-
terministic assignments, that is, assignments whose rvalue is unknown.

Ezxample 1. The program shown on the left of Figure 1 is a minor variant of the
program in [15, p. 64], computing the floor of the square root of a natural number
a. The basic semi-algebraic transition system shown on the right of the figure
models the (second loop of the) program. Note that even the original program
n [15], which has the disequality ¢ # 1 in the guard of the second loop, can
be modeled as a basic semi-algebraic transition system (by translating ¢ # 1 as
¢ < 0Vc>2and then having four transitions instead of two). The variant in
Figure 1 has been adopted just for presentation purposes: its analysis leads to
the same invariants that are computed when analyzing the original program.

2.3 Abstract Interpretation

Abstract interpretation [11] is a general theory of approximation of the behavior
of dynamic discrete systems. One of its classical applications is the inference of
invariant properties of transition systems [12]. This is done by specifying the set



24 R. Bagnara, E. Rodriguez-Carbonell, and E. Zaffanella

{az0} T0 := Y0 — P0

b:=0;c:=1; ~
: 2t — 1)
while ¢ < a do
c = 2c;

end while
T =71 — pP1

lo : while ¢> 2 do

ci=c/2; I() :={a>0,b=0,c>1,c*>a+1}
if (b4 ¢)? < a then )
b:=b+c 70::{022,(2b+c) §4a}
end if po = (a',b',c) = (a,b+c/2,¢c/2)
end while

T o= {cZ 2,(2b—l—c)2 Z4a+4}
return b; pLi= (a/7 b/,CI) _ (CL, b, 0/2)

Fig. 1. A program and its model as a basic semi-algebraic transition system

of reachable states of the given transition system as the solution of a system of
fixpoint equations. The concrete behavior of the transition system is then over-
approximated by setting up a corresponding system of equations defined over an
abstract domain, providing computable representations for the abstract properties
that are of interest for the analysis, as well as abstract operations that are sound
approximations of the concrete operations used by the transition system being
analyzed. An approximation of one solution of the system of abstract equations
can be found iteratively, possibly applying further conservative approximations
and using convergence acceleration methods, such as widenings [11]. One of the
main advantages of this methodology for the inference of invariant properties is
that the correctness of the obtained results follows by design.

More specifically, given a transition system S = (x,£,7,Z), the set of its
reachable states reach(.S) can be characterized by means of the following system
of fixpoint equations where, for each ¢ € L, we have the equation

reachy(S) =Z(0) U U{p(reachp(S) Ny) ’ (0 by, p) € T}. (1)

The least fixpoint of this system of equations, with respect to the pointwise
extension of the subset ordering on p(R™), is reach(S); any overapproximation
of reach(S) yields an invariant map for S.

3 Approximating Basic Semi-algebraic Sets

The construction of our abstract domain is analogous to that in [8], where
pseudo-ideals of polynomials are introduced to infer polynomial equalities as
invariants, while still reasoning in the framework of linear algebra. Here, we
extend this approach so as to handle polynomial inequalities as invariants.



Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra 25

In [8], the basic underlying definition is that of a vector space of polynomials:

Definition 6. (Vector space.) A set of polynomials V. C R[x] is a vector
space if (1) 0 € V; and (2) Ap + uq € V whenever p,q € V and A\, € R. For
each @ C R[x], the vector space spanned by @, denoted by V(Q), is the least
vector space containing Q, that is,

V(Q) 2_{ZMQ¢GR[$] sGN,ViG{l,...,s}:)\iGR,%GQ}.
i=1

Given a vector space V', we associate the constraint p = 0 to any p € V.
Notice that, if p, ¢ € R[x] and v € R™ are such that p(v) = 0 and ¢(v) = 0, then
(Ap+ puq)(v) =0, for any A, u € R. Further, for any v € R™, the zero polynomial
trivially satisfies O(v) = 0. Thus, the set of polynomials that evaluate to 0 on a set
of states S € p(R"), that is { p € R[z] | Vv € S : p(v) = 0}, has the structure
of a vector space. Unfortunately, this vector space has infinite dimension. In
order to work with objects of finite dimension, it is necessary to approximate by
bounding the degrees of the polynomials.

Moreover, when considering polynomials as elements of a vector space, the
algebraic relationships between terms such as x1, x2 and zixo are lost. For in-
stance, consider the vector space V ({xl, To—T1 xz}), generated by the polynomial
equalities 1 = 0 and z9 = zjx2. Then, even though the polynomial equality
xo = 0 is semantically entailed by the previous ones, zo ¢ V({:cl, To — xlxg}).
The reason is that the vector space generated by x; and x5 — z12z2 only includes
the linear combinations of its generators, whereas in the case above x4 can only
be obtained by a monlinear combination of the generators, namely xo = xo -
(z1)+1-(z2 —x122). This problem can be solved by adding the polynomial z1x2
to the set of generators, so that the polynomial x5 € V({:cl, T1To, Ty — 1'11'2})
can be obtained by the linear combination 0 (z1) + 1 - (z122) + 1 - (22 — z122).

In general, in order to reduce the loss of precision due to the linearization
of the abstraction, additional polynomials are added taking into account that,
when p € R[z] and v € R™ are such that p(v) = 0, we have (pg)(v) = 0 for each
q € R[zx]. Therefore, pseudo-ideals are defined as follows:

Definition 7. (Pseudo-ideal.) A pseudo-ideal of degree d € N is a wvector
space P C Ry[x] such that pg € P whenever p € P, q € R[x] and deg(pq) < d.
For each @Q C Ry[x], the pseudo-ideal of degree d spanned by @, denoted by
pseudo,(Q), is the least pseudo-ideal of degree d containing Q.

Pseudo-ideals are closed under addition, product by scalars and degree-
bounded product by polynomials. For instance, for the example above xizs €
pseudo, ({z1, z2}). Pseudo-ideals are the elements of the abstract domain used
in [8].

In order to extend this methodology to the generation of invariant polynomial
inequalities, a first, necessary step is the identification, in the basic semi-algebraic
context, of an adequate algebraic structure playing the same role of vector spaces
for polynomial equalities. It turns out that polynomial cones are the right notion:



26 R. Bagnara, E. Rodriguez-Carbonell, and E. Zaffanella

Definition 8. (Polynomial cone.) A set of polynomials C C R[x] is a poly-
nomial cone if (1) 1 € C; and (2) Ap+puq € C whenever p,q € C and A\, € R
For each @Q C R[x], the polynomial cone generated by @, denoted by C(Q), is
the least polynomial cone containing Q, that is,

CQ):= {)“"Z)""h ER[x] | A eR;,seNVie{l,...,s}: N\, €Ry,q € Q}.

i=1

Mimicking the reasoning done before for vector spaces, we associate the con-
straint p > 0 to any polynomial p in the polynomial cone C. Consider the basic
semi-algebraic set defined by the constraint system

w:{flzoa"w h:()aglzoa"'7gk20} (2)

where, foreachi=1,...,hand j =1, ..., k, we have f;, g; € R[x]. Then, the set
of polynomial inequalities that are consequences of v define a polynomial cone.
Indeed, ¢y = (1 > 0) trivially; and, if ¥ = (p >0) and ¢y = (¢ > 0),
clearly v = (Ap+ pg > 0) for each A\, u € R4. As was the case for the vector
space of polynomials, this set of polynomials has infinite dimension. In order to
deal with objects of finite dimension, we again fix an upper bound for the degrees
of the polynomials. Moreover, to mitigate the precision loss due to linearization,
we close this cone with respect to degree-bounded product by polynomials. Thus,
the analog of pseudo-ideals in the basic semi-algebraic setting are product-closed
polynomial cones:

Definition 9. (Product-closed polynomial cone.) A product-closed poly-
nomial cone of degree d € N is a polynomial cone C C Ry[x] satisfying:

(1) pq € C whenever {p, —p} C C, q € Rlz] and deg(pq) < d;
(2) pg € C whenever p,q € C and deg(pq) < d.

For each Q@ C Ry[x], the product-closed polynomial cone of degree d generated
by Q, denoted by prod,(Q), is the least product-closed polynomial cone of degree
d containing Q.

Let 9 be a constraint system defining a basic semi-algebraic set. Then, once
the degree bound d € N is fixed, 1 can be abstracted by the product-closed poly-
nomial cone prod, (poly(fg/)) N Ry [:c]) The approximation forgets those polyno-
mials occurring in ¢ having a degree greater than d. Also note that the precision
of the approximation depends on the specific constraint system .

The abstraction is clearly sound. For the linear case it is also complete. In
fact, consider any finite set of linear constraints ¢ = {p; > 0,...,pr > 0}, which
we assume to be satisfiable. Then, the corresponding product-closed polynomial
cone of degree 1 is L = prod, (poly(¢)) = C(poly(p)), whose elements are the
nonnegative linear consequences of ¢. On the other hand, if p € Ry[z] is a lin-
ear polynomial such that ¢ = (p > 0), then by Farkas’ lemma there exists

= (poy...,ux) € R’fjl such that p = po + Zle W;p;; in other words, p € L.



Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra 27

In the general nonlinear setting, the abstraction constituted by product-closed
polynomial cones is not complete. Notice however that the set of all invari-
ant polynomial inequalities is not computable in basic semi-algebraic transition
systems. Worse, the set of all invariant linear equalities is not computable in
transition systems even if restricted to linear equality guards [24].

3.1 Representation

Given a finitely generated polynomial cone, by exploiting classical duality re-
sults [33], each polynomial generator p is interpreted as the constraint p > 0;
these polynomial constraints are then linearized so as to define a convex polyhe-
dron on an extended ambient space. The linearization in the abstraction process
implies that all terms are considered as different variables. For instance, in Ex-
ample 1, the terms a, b, ¢, c? are all regarded as different and potentially indepen-
dent variables, and the initial condition Z(¢y) = {a > 0,6 =0,c¢>1,c> > a+ 1}
is interpreted as defining, by means of 4 constraints, a convex polyhedron in an
ambient space of dimension at least 4. In general, given a transition system on
an n-tuple x of variables and a degree bound d, the introduction of the auxiliary
variables, standing for all the nonlinear terms of degree at most d, yields an
m-tuple y of variables, where each y; corresponds to one of the m = ("jl'd) -1
different terms x® € Ry[x], where a # 0. Thus, computation in the abstract
domain of cones of degree d is only feasible provided d is small, e.g., 2 or 3. In
the following, we will denote each y; by writing the corresponding term x<.

It remains to be seen how the linearized constraint system can be closed, ac-
cording to Definition 9, with respect to bounded-degree product by polynomials.
Rather than trying to obtain the exact product-closed polynomial cone by means
of a potentially expensive fixpoint computation, we actually approximate it as
follows. Consider the constraint system 1 as defined in (2). Let M(g1,...,gx)
be the multiplicative monoid generated by the g;’s, i.e., the set of finite prod-
ucts of g;’s including 1 (the empty product). Let us consider the polynomials
p= Z?Zl rifi + Zj Ajg;, where for each i = 1, ..., h, 7; € R[z] is such that
deg(rifi) < d, and for each j, \; € Ry and g7 € M(g1,...,gx) N Ry[x]. These
polynomials belong to prod, (poly(fg/)) N Rd[:v]), and thus soundly overapproxi-
mate the basic semi-algebraic set corresponding to 1. Algorithm enrichy, given
in Figure 2, computes this approximation, which in practice provides comparable
precision to the product closure at much less computational cost.

Ezample 2. Consider Example 1. The application of procedure enrichs to the
initial condition ¢ = Z(¢y) yields the system of constraints

¢’ = enrichy (¢ N Ra[x])
= enrichy ({b=0}U{a>0,c>1,¢* > a+1})
={b=0,ab=0,b*> =0,bc =0}
U{a>0,c>1,c*>a+1,a*>>0,¢®>1,ac>0}.



28 R. Bagnara, E. Rodriguez-Carbonell, and E. Zaffanella

Require: A finite set of polynomial equalities ¢ = {f1 = 0,..., fr = 0} and a finite
set of polynomial inequalities ¢ = {g1 > 0,...,gx > 0}.

Ensure: ¢ = {f{ =0,...,f,, =0} and ¥’ = {g1 > 0,...,g, > 0} are finite sets of
polynomial equalities and inequalities, respectively, such that poly (¢’ U’) C Ry[z]
and C(poly(¢ U ) NRy[xz]) C C(poly(¢’ Uv')) C prod,(poly(p Uv) NRa[x]).

g =y =0
for all (f =0) € ¢ do
if deg(f) < d then
for all % such that deg(z®) < d — deg(f) do
¢ =9 U{z*f=0}
for all finite product ¢’ of g’s such that (g > 0) € ¢ do
if deg(g’) < d then
W' =" U{g >0}
Fig. 2. Algorithm enrichg

In this case, C(poly(cb’)) = prod, (poly(cb) N Ry [w]) In general, a precision loss
may occur; for instance, letting x = {z > 0,22 > 0,y — 3> > 0,5? > 0}, we have
x = enrichy(x), but (zy > 0) € prody (poly(x)) \ C(poly(x))-

3.2 Abstract Semantics

In this section we review the operations required in order to perform abstract
interpretation of transition systems using polynomial cones as abstract values.

Union. Given two (finitely generated) polynomial cones C; and Cy repre-
senting the polynomial constraint systems 1, and 1, respectively, we would like
to approximate the union of the corresponding basic semi-algebraic sets using
another basic semi-algebraic set. By duality, this amounts to computing the in-
tersection cone C1NCsy: for each p € C1NCs and v € R™ such that ¥ (v) Vs (v),
either v (v), so that p(v) > 0 as p € Cy; or 92(v), so that p(v) > 0 as p € Cs.
Thus, the approximation is sound. At the implementation level, since polynomial
cones are represented by means of their (linearized) duals, this intersection of
cones corresponds to the convex polyhedral hull operation.

Intersection. Given two (finitely generated) polynomial cones C; = C(Q1)
and Cy = C(Q2), we would like to compute the intersection of the respective
basic semi-algebraic sets. Then a sound approximation is to compute the cone
spanned by the union of the generators, C(Q; U @2). In order to reduce the
loss of precision due to linearization, we enrich this cone with respect to degree-
bounded product by polynomials as explained above. Thus, the polynomial cone
corresponding to the intersection is enrichy(Q1 U Q2).

Update. Each basic semi-algebraic update map p: R™ — p(R™), defined over
the original n-tuple of variables x, is approximated by a linearized update map
p*: R™ — o(R™), where m = (";d) — 1, defined over the extended m-tuple y of
terms. The new update map p* is obtained by composing a sequence of simpler
maps, each one approximating the effect of p on a single term. For the sake of
notation, if variable y; corresponds to term x® and p € Ry[x], let € — p denote
the deterministic update map such that, for each w € R™,



Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra 29

(% — p)(w) := {(wl, . ,wi,l,p(w),wiﬂ,...,wm)} C R™, (3)

Note that the (possibly nonlinear) polynomial p € Ry[x] on the original tuple
of variables is interpreted as a linear polynomial p € Rj[y] on the extended
ambient space, so that Equation (3) indeed defines an affine map. Similarly,
x® — 7 denotes the nondeterministic update map such that, for each w € R™,

(> ?)(w) == { (w1,..., wi—1, U, Wis1,..., wm) ER™ [u R }.

By hypothesis, p is defined by k& < n polynomials pi,...,pr € R[z] and
distinct indices i1, ...,4; € {1,...,n} such that, for each v € R",

/

p(v) = { (v],...,u,) €ER" ‘ v, = p1(v),...,v;, = pr(v) }
Then, for each term x® € Ry[x] where a # 0, we distinguish the following cases:

— Suppose there exists j € {1,...,n} such that o; > 0 and j & {i1,..., 4k}
This means that p nondeterministically updates at least one of the relevant
factors of the term x®. Thus, we conservatively approximate the overall
effect of p on * using ™ — 7, as if it was a nondeterministic assignment.

— Suppose now that, for each j =1, ..., n,if o; > 0 then j € {i1,...,ix}, i€,
all the relevant factors of x® are deterministically updated by p. Then:

e if the polynomial p := [[{ p;’ () | je{l,...,n},a; > 0,5 =iy} is
such that ps € Ry[z], we apply the affine map x — pq;

e otherwise, since we cannot represent the effect of p on x®, we (again)
conservatively overapproximate it as £® +— 7.

Since p updates all terms simultaneously, these maps are ordered topologically
according to the dependencies of terms (possibly adding temporary copies of
some term variables, which are eliminated at the end).

Example 3. Consider the transitions of Example 1. For the transition 7y we have
po = (a,V,c) = (a,b,¢/2). This update is linearized by composing the affine
maps ac — ac/2, bc — be/2, ¢ — ¢?/4 and ¢ — ¢/2, leading to pf defined as

(a/,b', ¢ ab’,ac’,bc, (a®), (b%), (c®)') = (a,b,¢/2,ab,ac/2,bc/2,a® b*, ¢ /4).

Test for inclusion. The test for inclusion can be conservatively overapproxi-
mated by means of the test for inclusion for convex polyhedra.

Widening. Any widening for convex polyhedra, e.g., the standard widen-
ing [14] or the more sophisticated widenings proposed in [2,3], will serve the
purpose of guaranteeing termination, with different trade-offs between efficiency
and precision.

Ezxample 4. For the transitions of Example 1, using the abstract semantics shown
above, we obtain the invariant

reachy, (S) = {(b+c)2 >a+1,a>b%b>0,¢>1,
a®>0,ab>0,ac > 0,b> > be,be > b, (c — 1)? ZO}.



30 R. Bagnara, E. Rodriguez-Carbonell, and E. Zaffanella

Notice that all the constraints appearing on the second line are in fact redun-
dant. Some of these, such as a? > 0 and (c — 1)? > 0, are trivially redundant
in themselves. Other ones are made redundant by the constraints appearing
on the first line (for instance, ab > 0 is implied by a > b% and b > 0). This
phenomenon is due to the interaction of the enrichy procedure, which adds re-
dundant constraints to polynomial cones, with the underlying linear inequalities
inference rules, which are treating different terms as independent variables and,
as a consequence, are only able to detect and remove some of the redundancies.

The two constraints (b + ¢)? > a + 1 and a > b? in the invariant above are
essential in a formal proof of the (partial) correctness of the program in Figure 1.
Note that the computed invariant assumes that the integer division ¢ := ¢/2 is
correctly modeled by rational division. Such an assumption can be validated by
other analyses, e.g., by using a domain of numerical powers [21], which could
infer that ¢ evaluates to a power of 2 at location £y. Since on termination ¢ = 1
holds, the conjunction of these constraints implies (b+ 1)? > a > b?.

4 Experimental Evaluation

The approach described in this paper has been implemented in a prototype
analyzer that infers polynomial inequalities of degree not greater than d = 2.
The prototype, which is based on the Parma Polyhedra Library (PPL) [4], first
performs a rather standard linear relations analysis, then assumes the linear in-
variants so obtained for the analysis of (possibly) nonlinear invariants described
in the previous sections. We have observed that this preliminary linear anal-
ysis improves the results in a significant way. In fact: (1) it ensures that we
never obtain less information than is achievable with the linear analysis alone;
(2) the availability of “trusted” linear invariants increases the precision of the
nonlinear analysis considerably; and (3) the time spent in the linear analysis
phase is usually recovered in the quadratic analysis phase. The prototype uses
the sophisticate widening operator proposed in [2] enhanced with variations of
the “widening up to” technique described in [17] and with the “widening with
tokens” technique (a form of delayed widening application) described in [3].
Considering that, with the chosen degree bound d = 2, we are working on
an ambient space that has a dimension which is quadratic in the number of
variables of the transition system being analyzed, and considering that polyhedra
operations have exponential worst-case complexity, some care has to be taken in
order to analyze systems of realistic complexity. In our prototype, we exploit the
capability of the PPL concerning the support of time-bounded computations.
All polyhedra operations are subject to a timeout (5 seconds of CPU time in
the experimentation we are about to report); when a timeout expires, the PPL
abandons (without leaking memory) the current computation and gives control
back to the analyzer. This situation is handled by the analyzer by using a less
precise operation (such as replacing the precise convex polyhedral hull of two
polyhedra P; and P, by the polyhedron obtained by removing, from a system



Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra

Table 1. A summary of the experimental results

Program name Origin
array

bakery (34]
barber FAST
berkeley FAST
cars StInG
centralserver FAST
consistency FAST
consprodjava FAST
consprodjavalN FAST
cousotO5vmcai [9]
csm FAST
dekker FAST
dragon FAST
efm FAST
rfmO5hscc (28]
firefly FAST
fms FAST
freire [16]
futurbus FAST
heap StInG
illinois FAST
kanban FAST
lamport FAST
lifo StInG
1ift FAST
mesi FAST
moesi FAST
multipoll FAST
peterson FAST
producer-consumer FAST
readwrit FAST
rtp FAST
see-saw StInG
sqrooti [15]
sqroot2 (15]
sqroot3 [15]
sqroot4 [15]
sqrootb 18]
sqroot6 (18]
swim-pool StInG
synapse FAST
ticket2i FAST
ticket3i FAST
train-beacon StInG
train-one-loc StInG
ttp FAST

n|L|

N T e e e L I T e e e e e e e e e e el e e e e e el e T e = T A S o 1 |

— — = — =
O W WO O WWUL R R WWNDN O WU 00U ROk Ut ow

Linear analysis

|7] CPU time
6 0.2
24 18.6
12 18.7
3 0.0
2 18.5
8 5.4
7 2.5
14 325.6
14 308.0
1 0.0
13 29.3
22 4584
12 0.5
5 0.1
2 0.1
8 0.1
893.2
0.0
2.8
0.1
0.1
60.5
3.1
14
0.1
0.0
0.1
116.3
17.6
0.1
7.7
2.6
0.0
0.0
0.0
0.0
10.3
0.0
0.0
1.5
0.0
0.3
9.5
0.1
0.0
9.3

[\]
o

—

—

— =

— —
NN O DWDHINHFH OO O ERBRDNOWNRIITO OO O

[y

79.8
0.2
2.7
0.1

45.9

193.4
10.0
601.9
611.6
0.1
219.5
1218.1
1.4
0.3

38.5
0.2

2795.0
6.4

23.2

10.9
0.3

340.4

13.4

14.8

22.1
0.1
0.3

476.8
88.5
15.5

2147.3

=+ 4+ 1 +3+ |

([ N

1 N e

I+ -+

=+

— 5.3
= 0.0
+ 15.6
== 10.3
=+ 8.2
6.1
15.5
46.5
0.0
5.8
82.6

++++ 0+

———= 205

- 0.4
++++ 126.9

ENENENENEN

SN

AN

31

Quadratic analysis
vs StInG CPU time Improves

+ A+



32 R. Bagnara, E. Rodriguez-Carbonell, and E. Zaffanella

of constraints defining P, all constraints that are not satisfied by P,) or by
simplifying the involved polyhedra resorting to a domain of bounded differences.
With this technique we are able to obtain results that are generally quite precise
in reasonable time (note that the prototype was not coded with speed in mind).

We have run the prototype analyzer on a benchmark suite constituted by
all the programs from the FAST suite [5] (http://www.lsv.ens-cachan.fr/fast/),
programs taken from the StInG suite [29] (http://www.stanford.edu/ sri-
rams/Software/sting.html), all square root algorithms in [15], programs from
[9,18,28,34], and a program, array, written by the authors. From the StInG suite
we have only omitted those programs with nondeterministic assignments where the
rvalue is bounded by linear expressions (like 0 > 2’ > x + y), since they do not fall
into the programming model used here.

A summary of the experimental results is presented in Table 1. Besides the
program name, its origin and the number of variables, locations and transitions
(columns from 1 to 5, respectively), the table indicates: (1) the CPU time, in
seconds, taken to compute our linear invariants (column 6) and how they com-
pare with the ones computed by StInG (column 7: ‘+’ means ours are better, ‘—’
means ours are worse, ‘=" means they are equal, ‘%’ means they are not compa-
rable); and (2) the time taken to generate quadratic invariants (column 8) and
whether these invariants improve upon (that is, are not implied by) the linear
ones, taking into account both our linear invariants as well as those generated
by StInG (column 9: ‘v’ means we improve the precision). The measurements
were performed on a PC with an Intel® Xeon™ CPU clocked at 1.80 GHz,
equipped with 1 GB of RAM and running GNU/Linux. Notice that for about
80% of the locations, our linear invariants are at least as strong as the ones
produced by StInG, and that, in fact, for one third ours are stronger. Most
importantly, for about half of the programs, the obtained quadratic invariants
improve the precision of the linear analysis.

5 Conclusion

We have presented a technique for generating invariant polynomial inequalities
of bounded degree. The technique, which is based on the abstract interpretation
framework, consists in overapproximating basic semi-algebraic sets by means of
convex polyhedra, and can thus take advantage of all the work done in that field
(e.g., refined widening operators, devices able to throttle the complexity of the
analysis such as restricted classes of polyhedra, ways of partitioning the vector
space and so forth). The application of our prototype implementation to a num-
ber of benchmark programs shows that the method can produce non-trivial and
useful quadratic invariant inequalities in reasonable time, thus proving the fea-
sibility of the automatic inference of nonlinear invariant inequalities (something
that was previously unclear).

For future work, we want to generalize our definition of basic semi-algebraic
transition system so as to capture a form of nondeterministic assignments where
the rvalue is bounded by means of polynomial inequalities, rather than being



Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra 33

completely unknown. We would also like to increase the precision of the ap-
proach by incorporating, in the enrichy algorithm, other forms of inference, such
as relational arithmetic [1,32]. This technique allows to infer constraints on the
qualitative relationship of an expression to its arguments and can be expressed by
a number of axiom schemata such as (z > 0Ay > 0) = (:v N1 = xyx y),
which is valid for each <t € {=,#, <, <,>,>}. Finally, there is much room for
improving the prototype implementation. To start with, we believe its perfor-
mance can be greatly enhanced (there are a number of well-known techniques
that we are not currently using); this may even bring us to the successful infer-
ence of cubic invariants for simple programs. The simplification of the analysis
results is another natural candidate for this line of work.

Acknowledgments. The authors are grateful to Deepak Kapur and Alessandro
Zaccagnini for their help and comments.

References

1. R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages. PhD
thesis, Dipartimento di Informatica, Universita di Pisa, Pisa, Italy, March 1997.

2. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for
convex polyhedra. In Proc. SAS 2003, vol. 2694 of LNCS, pp. 337-354, San Diego.

3. R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening operators for
convex polyhedra. Science of Computer Programming, 2005. To appear.

4. R. Bagnara, E. Ricci, E. Zaffanella, and P. M. Hill. Possibly not closed convex
polyhedra and the Parma Polyhedra Library. In Proc. SAS 2002, vol. 2477 of
LNCS, pp. 213-229, Madrid, Spain.

5. S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration of
Symbolic Transition systems. In Proc. CAV 2003, vol. 2725 of LNCS, pp. 118-121,
Boulder, CO.

6. S. Bensalem, M. Bozga, J.-C. Fernandez, L. Ghirvu, and Y. Lakhnech. A trans-
formational approach for generating non-linear invariants. In Proc. SAS 2000, vol.
1824 of LNCS, pp. 58-74, Santa Barbara, CA.

7. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proc. PLDI
2003, pp. 196207, San Diego, CA.

8. M. Colén. Approximating the algebraic relational semantics of imperative pro-
grams. In Proc. SAS 2004, vol. 3148 of LNCS, pp. 296-311, Verona, Italy.

9. P. Cousot. Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In Proc. VMCAI 2005, vol.
3385 of LNCS, pp. 1-24, Paris, France.

10. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proc. ISOP 1976, pp. 106-130, Paris, France.

11. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.
POPL 1977, pp. 238-252, New York.

12. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
Proc. POPL 1979, pp. 269282, New York.



34

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

R. Bagnara, E. Rodriguez-Carbonell, and E. Zaffanella

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The ASTREE analyzer. In Proc. ESOP 2005, vol. 3444 of LNCS, pp. 21-30,
Edinburgh, UK.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proc. POPL 1978, pp. 84-96, Tucson, AR.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

P. Freire. SQRT. Retrieved  April 10, 2005, from
http://www.pedrofreire.com/sqrt, 2002.

N. Halbwachs. Delay analysis in synchronous programs. In Proc. CAV 1993, vol.
697 of LNCS, pp. 333-346, Elounda, Greece.

P. Hsieh. How to calculate square roots. Retrieved April 10, 2005, from
http://www.azillionmonkeys.com/qed/sqroot.html, 2004.

D. Kapur. Automatically generating loop invariants using quantifier elimination.
In Proc. ACA 2004, Beaumont, Texas.

M. Karr. Affine relationships among variables of a program. Acta Informatica,
6:133-151, 1976.

I. Mastroeni. Algebraic power analysis by abstract interpretation. Higher-Order
and Symbolic Computation, 17(4):297-345, 2004.

A. Miné. The octagon abstract domain. In Proc. WCRE’01, pp. 310-319, Stuttgart,
Germany.

M. Miiller-Olm and H. Seidl. Computing polynomial program invariants. Infor-
mation Processing Letters, 91(5):233-244, 2004.

M. Miiller-Olm and H. Seidl. A note on Karr’s algorithm. In Proc. ICALP 2004,
vol. 3142 of LNCS, pp. 1016-1028, Turku, Finland.

M. Miiller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-
bra. In Proc. POPL 2004, pp. 330-341, Venice, Italy.

E. Rodriguez-Carbonell and D. Kapur. An abstract interpretation approach for
automatic generation of polynomial invariants. In Proc. SAS 2004, vol. 3148 of
LNCS, pp. 280-295, Verona, Italy.

E. Rodriguez-Carbonell and D. Kapur. Automatic generation of polynomial loop
invariants: Algebraic foundations. In Proc. ISSAC 200/, pp. 266—273, Santander.
M. Roozbehani, E. Feron, and A. Megrestki. Modeling, optimization and compu-
tation for software verification. In Proc. HSCC 2005, pp. 606—622, Ziirich.

S. Sankaranarayanan, H. Sipma, and Z. Manna. Constraint-based linear-relations
analysis. In Proc. SAS 2004, vol. 3148 of LNCS, pp. 53—68, Verona, Italy.

S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems
using mathematical programming. In Proc. VMCAI 2005, vol. 3385 of LNCS, pp.
25-41, Paris, France.

S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-linear loop invariant gen-
eration using Grobner bases. In Proc. POPL 2004, pp. 318-329, Venice, Italy.

R. Simmons. Commonsense arithmetic reasoning. In Proc. AAAI 1986, vol. 1, pp.
118-124, Philadelphia, PA.

J. Stoer and C. Witzgall. Convexity and Optimization in Finite Dimensions I.
Springer-Verlag, Berlin, 1970.

A. Tiwari, H. RueB}, H. Saidi, and N. Shankar. A technique for invariant generation.
In Proc. TACAS 2001, vol. 2031 of LNCS, pp. 113-127, Genova, Italy.



Inference of Well-Typings for Logic Programs
with Application to Termination Analysis

Maurice Bruynooghe!*, John Gallagher?®**, and Wouter Van Humbeeck!

! Katholieke Universiteit Leuven, Department of Computer Science,
Celestijnenlaan 200A, B-3001 Heverlee, Belgium
Maurice.Bruynooghe@cs.kuleuven.ac.be
2 Roskilde University, Computer Science, Building 42.1
DK-4000 Roskilde, Denmark
jpg@ruc.dk

Abstract. A method is developed to infer a polymorphic well-typing
for a logic program. Our motivation is to improve the automation of ter-
mination analysis by deriving types from which norms can automatically
be constructed. Previous work on type-based termination analysis used
either types declared by the user, or automatically generated monomor-
phic types describing the success set of predicates. The latter types are
less precise and result in weaker termination conditions than those ob-
tained from declared types. Our type inference procedure involves solving
set constraints generated from the program and derives a well-typing in
contrast to a success-set approximation. Experiments so far show that
our automatically inferred well-typings are close to the declared types
and result in termination conditions that are as strong as those obtained
with declared types. We describe the method, its implementation and
experiments with termination analysis based on the inferred types.

1 Introduction and Motivation

For a long time, the selection of the right norm was a barrier to progress to-
wards the full automation of termination analysis of logic programs. Recently,
type-based norms have been introduced [23] as well as a technique to perform
an analysis based on several norms [8]. There is evidence that the combination
of both techniques solves in many cases the problem of norm selection [13,1].
However, most logic programs are untyped. Hence, obtaining type information
is a new barrier to full automation. Systems for the automated inference of types
do exist [7,24]. They derive monomorphic types that approximate the success-set
of the program, and such inferred types are used to generate norms in a system
for termination analysis [13]. Success types cannot in general be used directly by
methods that require a well-typing [1]. In any case, inferred types obtained by

* Work supported by FWO-Vlaanderen and by GOA /2003/08.
** Work supported in part by European Framework 5 Project ASAP (IST-2001-38059),
and the IT-University of Copenhagen.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 35-51, 2005.
© Springer-Verlag Berlin Heidelberg 2005



36 M. Bruynooghe, J. Gallagher, and W. Van Humbeeck

current methods are often less precise than declared types, which are not neces-
sarily over-approximations of the success set. The derived termination conditions
are thus weaker than those obtained with declared types. The type inference de-
scribed in this paper yields well-typings rather than success-set approximations
and in all experiments so far yield types — and hence termination conditions —
comparable to user-declared types.

We start by sketching an example of type-based termination analysis [1].

Example 1. Consider the append/3 predicate and its abstraction according to
the type signature append (1ist(T),list(T),1list(T)). Each argument is ab-
stracted by the type-based 1ist (T) norm that abstracts a term by the number
of subterms of type 1ist (T) and the type-based T norm that abstracts a term by
the number of subterms of type T (subscripts [ and e for abstracted variables).

append([],L,L).

append ([X|Xs],Ys, [X|Zs]) :- append(Xs,Ys,Zs).

append(1,0, 1+L;,L., 1+L;,L.).

append (1+1+Xs; , 1+Xc+Xse, 1+Ys;,Ys., 1+1+Zs;,1+Xc+Zsc) :-
append (1+Xs; ,Xs., 1+Ys;,Ys., 1+Zs;,Zsc).

This suffices to infer that a call to append/3 terminates if it is 1ist (T)-rigid!
in either the first or the last argument. A goal independent type inference [7,24]
infers the type append(list(any),any,any), giving rise to the abstract program:

append(1,0, 1+L,, 1+L,).
append (1+1+Xs;,1+X,+Xsq, 1+Ysq, 1+1+X,+1+Zs,):—
append (1+Xs; ,Xsq, 1+Y¥s,, 1+Zs,).

The subscripts [ and a of abstracted variables correspond to respectively the
list(any) and any-norm; a term of type any has only subterms of type any, so
the second and third argument have only an any-abstraction. The termination
condition for the third argument is weaker than with the declared type as it
requires any-rigidity and this corresponds to groundness.

In this paper, the signature append(a;(T) ,a2(T),as(T)) is inferred, with
the types defined as a; (T) — []; [Tla;(T)] and as(T) — [Tlax(T)].
The type a; (T) is equivalent to 1ist (T); the type as (T) may look odd as it lacks
a “base case” but it gives a well-typing. Calls such as append([a]l, [b|X],Y)
are well-typed, and give rise to well-typed calls in their computations. In short
“well-typed programs do not go wrong” even with such peculiar types. Now, the
abstracted program is:

append (1,0, 1+L,,,L7, 1+Lg,,L7).
append (1+1+Xsq, , 1+Xp+Xsr, 1+Ysq,,Ysr, 1+1+Zs,,,1+X7+Zs7) i~
append (1+Xsq, ,Xs7, 1+Ys,,,Ys7, 1+Zsq,,ZsT).

Hence calls terminate when a;-rigid in the first or as-rigid in the third argu-
ment.

! Rigid: all instances have the same size under the norm.



Inference of Well-Typings for Logic Programs with Application 37

As the next example shows, a call from outside can extend the type of a
predicate.

Ezxample 2. The naive reverse procedure is given by the clauses

rev([1,[1).
rev([X|Xs],Zs) :- rev(Xs,Ys),append(¥s, [X],Zs]).

together with the clauses for append. The inferred signatures and types are

t1(T) —=> [TIt1(D]; (I rev(t2(T),t1(T)).
t2(T) -=> [Tlt2(T)]; (I app (t1(T) ,t1 (T ,t1 (T))

Note that the two types denote the same set of terms. The analysis derives
two distinct types because the cons-functors of both do not interact with each
other.

Ezample 3. A program to transpose a matrix represented as a list of rows [1]:

transpose(A,B) :- transpose aux(4,[],B).
transpose aux([], W, W).
transpose aux([R|Rs],Z,[C|Cs]) :-
row2col(R, [C|Cs],Clsl,[],Acc), transpose aux(Rs,Acc,Clsl).
row2col([1,[1,[]1,4,4).
row2col ([X|Xs], [[X|Ys]|Cols], [Ys|Cols1],B,C) :-
row2col (Xs,Cols,Cols1,[[]1B],C).

The inferred signature and type definitions are as follows:

t1(T) — [1; [ta(T) It (T)] transpose (t1 (T),t2(T))
t2(T) — [1; [£3(T) 1t2(T)] transpose aux(ti (T),t2(T),t2(T))
t3(T) — [1; [Tlts(T)] row2col (t3 (T),t2(T),t2(T),t2(T),t2(T))

ta(T) — [1; [Tlta(D)]

The types t3(T) and t4(T) are equivalent and denote a row of elements T.
Also t1(T) and t2(T) are equivalent; they denote a list of rows of T. These
types are equivalent to what a programmer would declare: the first argument
of row2col/5 is a row and all others are lists of rows. Types inferred by over-
approximation of success sets using current techniques, even when using a goal-
directed analysis with the goal transpose(X,Y) are less accurate.

We define the basic notions of types and set constraints in Section 2; we
present the type inference procedure in Section 3. The implementation, com-
plexity and some experiments in both type inference and the use of the types in
termination analysis are described in Section 4. An extension for obtaining more
polymorphism is given in Section 5. Finally we discuss related work in Section 6
and future research in Section 7.



38 M. Bruynooghe, J. Gallagher, and W. Van Humbeeck
2 Preliminaries

2.1 Types

For type definitions, we adopt the syntax of Mercury [19]. Type expressions
(types), elements of 7, are constructed from an infinite set of type variables
(parameters) Vr and an alphabet of ranked type symbols X'7; these are disjoint
from the set of variables V and alphabet of functors X used to construct terms.
Variable free types are called monomorphic; the others polymorphic. Type sub-
stitutions of the form {T1/m,...,T,/7»} with the T; parameters and the 7;
types define mappings from types to types by the simultaneous replacement of
the parameters T; by the corresponding types ;.

Definition 1 (Type definition). A type rule for a type symbol h/n € X1 is
of the form h(T) — f1(71);...; fx(Tx); (k> 1) where T is a n-tuple of distinct
type variables, fi,..., fr are distinct function symbols from X, 7, (1 < i < k)
are tuples of corresponding arity from T, and type variables in the right hand
side, if any, are from T?. A type definition is a finite set of type rules where no
two rules contain the same type symbol on the left hand side, and there is a rule
for each type symbol occurring in the type rules.

A predicate signature is of the form p(7) and declares a type 7; for each
argument of the predicate p/n. The mapping 7; — h(T) can be considered the
type signature of the function symbol f;. As in Mercury [19], a function symbol
can occur in several type rules, hence can have several type signatures.

A typed logic program consists of a logic program, a type definition and
a predicate signature for each predicate of the program. Given a typed logic
program, a type checker can verify whether the program is well-typed, i.e., that
the types of the actual parameters passed to a predicate are an instance of
the predicate’s type signature. To formalize the well-typing, we first inductively
define the well-typing of a term.

Definition 2. A variable typing is a mapping from variables to types. A term
t has type h(T) (notation t : h(T)) under a variable typing p iff either t is a
variable X and p(X) = h(T) ort is of the form f(t1,...,tn), the type rule for
h(T) has an alternative f(71,...,7,) and, for all i, t; has type 7,{T/7}.

Definition 3 (Well-typing). A typed program P has a well-typing if each
clause p(t1,...,tn) < B1,...,Bm € P has a variable typing p that satisfies:

1. Let p(11,...,7n) be the predicate signature of p/n. Then t; has the type 7;
under the variable typing p (1 <i<n).

2. For 1 < j < m, let B; = q(s1,...,s1) and q(71,...,7) be the predicate
signature of q/l. Then there is a type substitution 0 such that, for all k, sy
has type 11,0 under the variable typing p.

2 The last condition is known as transparency and is necessary to ensure that well-
typed programs cannot go wrong [17,10].



Inference of Well-Typings for Logic Programs with Application 39

Ezample 4. Given a type definition 1ist(T) — []1; [T | 1ist(T)] the sig-
nature append(1list(T),1ist(T),1list(T)) gives a well-typing of the program
of Example 1. The variable typing of the first clause is {L/1ist (T)} and that of
the second clause is {X/T,Xs/1ist(T),Ys/1list(T),Zs/1list(T)}.

To establish the connection with set constraints (Section 2.2) we formalize the
denotation of a type. Let D : V7 — 2T¢™> be a mapping from parameters to sets
of ground terms. Let h(7) be defined by the type rule h(T) — f1(71);...; fx(T)-
Using e; to denote the 7" element in a sequence &, the denotation of h(7) with
respect to D, written Denp(h(7)) is inductively defined as:

1. For all T € Vr, DenD(T) = D(T)
2. Denp(h(7)) = {fi(5) | 1 <i < k,s; € Denp(ry, {T/7}) for all j}.

Proposition 1. Let t[X] denote a term with variables X; u a variable typ-
ing and D : Vr — 2Tems o mapping from type variables to sets of ground
terms. Then t[X]| has type h(T) under p iff Denp(h(T)) 2 {¢t[X]{X/5} | s; €
Denp (u(Xi))}-

2.2 Set Constraints for Well-Typings

Set Constraints and Their Solutions. Set expressions are terms constructed
from an infinite set of set variables Vs and the same alphabet of functors X
as used for constructing terms. Given a mapping V : Vs — 27> from set
variables to sets of ground terms, one can inductively define the denotation for
set expressions e with respect to V', written Deny (e), as follows:

1. For all s € Vs, Deny (s) = V(s).
2. Deny(f(e1,...,en)) ={f(s1,...,8n) | si € Deny(e;),1 <i <n}.

The set constraints that we consider are of two kinds, namely t; = t2 where
t1,t2 € Vs and t1 O f(e1,...,e,) where t1 € Vs and f(e1,...,e,) is a set
expression. We call set constraints of the first kind equality constraints and those
of the second kind containment constraints.

Let S be a set of set constraints (or constraint system). A solution for S is
any mapping S : Vs — 27®™> such that for each constraint the following holds.

1. Forall t; =ty € S, Deng(tl) = Deng(tg).
2. For all t1 D f(e1,...,e,) €S, Deng(t1) 2 Deng(f(e1,...,en)).

Solved Form and Normal Form. A constraint system S is in solved form if,
for each equality constraint ¢; = t2, £; has no other occurrences in S.

Given a constraint system, one can derive an equivalent solved form by re-
peatedly taking an equality constraint t; = to where t; has other occurrences
and substituting t; by to (or alternatively, replacing the equation by t5 = ¢; and
substituting to by 1) throughout the other constraints. Any resulting equalities
t =t are removed. As each such step reduces the number of set variables on the



40 M. Bruynooghe, J. Gallagher, and W. Van Humbeeck

left hand side of an equality with other occurrences, and no new variables are
introduced, the process terminates and yields a solved form.

Let S be a constraint system in solved form, and let ¢ € Vs be a set variable.
Then t is constrained in S if t appears on the left hand side of a constraint,
otherwise t is unconstrained in S. Note that a constrained set variable in a solved
form occurs either in the left hand side of one equality constraint or in the left
hand side of one or more containment constraints. In constructing a solution for
a constraint system S in solved form, one can freely choose a denotation for its
unconstrained variables. We denote a solution for the unconstrained variables in
S by U. Denote by S[U] any solution of S that extends U.

Definition 4 (Minimal solution). A solution S[U] of S is minimal with
respect to U iff for each solution S'[U], it holds that for all set variables s,
S[U(s) € S'[U(s)-

We often omit U when it is not relevant and denote a solution by S.

Proposition 2. Let S be a minimal solution of a constraint system S in solved
form and t a set variable constrained by containment constraints. f(3) € Deng(t)
iff there is a containment constraint t O f(€) such that f(3) € Deng(f(e)).

Definition 5 (Normal form). A constraint system is in normal form if it is
in solved form and additionally the following conditions are satisfied.

1. It does not contain two distinct containment constraints t 2 f(e1, ..., ey)
and t D f(ey,...,en).
2. All e; in containment constraints t 2 f(ey,...,e,) are set variables.

Note that 1 corresponds to the requirement that functions symbols are dis-
tinct in the right hand side of a type rule. A constraint system S can be nor-
malised by applying the following operations until a fixpoint is reached.

1. If S contains t O f(e1,...,en) andt D f(e),...,el) withey,... en, €},... €,
set variables then replace the latter by the constraints e; = €f,...,e, = €l,.

2. If S contains t O f(e1,...,€j,...,e,) wWhere e; is not a set variable, then
replace it by t O f(eq,...,s,...,en) and s D e; with s a fresh set variable.

3. Apply the rules for deriving a solved form.

Proposition 3. The reduction to normal form terminates. Moreover, if S is a
constraint system and S’ is the normal form obtained by applying the procedure
above, then every solution of S’ is also a solution of S.

Given a normalised constraint system with a set variable ¢, we define type(t)
as a type that has the same denotation as the minimal solution of ¢ as follows.
First, define a directed graph with the set variables as nodes. For each con-
straint ¢ O f(s1,...s,) add, for all 4, the arc (¢,s;); for each constraint t = s



Inference of Well-Typings for Logic Programs with Application 41

add the arc (t, s). Note that unconstrained variables have no out-arcs. For each
constrained set variable ¢, define params(t) to be the set of unconstrained vari-
ables reachable from ¢ in the graph. For each unconstrained variable s define
a unique type parameter Ts. For each variable t constrained by containment
constraints, define a unique type symbol 7;/n where n = |params(t)|.

Now, for each set variable ¢ define type(t) as T; if ¢ is unconstrained, as
type(s) if t is constrained by an equality constraint ¢ = s, and as 7(T4,...,Ty)
if ¢ is constrained by containment constraints where 77, ..., T, are the type pa-
rameters corresponding to params(t) (enumerated in some order). To construct
the type rules, let ¢ be a constrained variable, and ¢t O f1(t1),...,t 2 fin(tm)
the containment constraints having ¢ on the left. Then construct a type rule
type(t) — f1(71);...; fm(Tm) where 71, ..., 7, are obtained from f1,. .., &y, by
substituting each set variable ¢; ; by type(t; ;).

Ezample 5. Consider the set variables aj, as, ag and the solved form a; O [],
a; 2 [xlail, a3 2 [xlasl, ag = as.

The associated directed graph is {(a1,x), (a1,a1), (a2, a3), (a3, %), (as, as)}
The set variable x is unconstrained; let type(x) = X. We have params(aj)
= {x} and params(az) = {x}. We use 13, = a;, so type(a;) = a;(X) and
type(az) = az(X). Hence the derived type rules are az(X) — [X| ag(X)]
and a; (X) — [1; [X | a;(X)]. Finally, type(as) = az(X) because az = a3.

From Proposition 2 and the way the types are derived the following propo-
sition follows immediately.

Proposition 4. Let S be a constraint system in normal form and let S[U] be
a minimal solution. Let type(s) be as defined above and let p denote the type
definition derived from S. For all u € domain(U) define D(type(u)) = U(u).
Then, for each set variable s it holds that Denp (type(s)) = Deng[U](s).

3 Inference of a Well-Typing

The purpose of type inferencing is to derive a typed program, that is, a type
definition and a set of predicate signatures such that the program is well-typed.
Whereas well-typing allows the type of a call to be an instance of the declared
type, we will derive types such that they are equal. In Section 5 we outline a
method for deriving truly polymorphic well-typings. Here, the approach is to
associate a set variable with each type in the signatures of the predicates and
one with each variable in the program code and to formulate a constraint system
whose solution denotes a well typing. Then the constraint system is reduced
to normal form. According to Proposition 3, its solutions are solutions of the
original system, hence well-typings. From the normal form, the type definition is
extracted as described in Section 2.2 and the predicate signatures are obtained
by taking the types type(s) of the corresponding set variables.



42 M. Bruynooghe, J. Gallagher, and W. Van Humbeeck

3.1 Generation of Constraints

Let P be a program. We introduce fresh set variables p1, . . ., p, for each predicate
p/n of P and a fresh set variable t, for each variable z of P3. In concrete
examples we reuse the program variables as set variables in the constraints (that
is, t, = x), since there can be no confusion between them. The constraint system
for a program is the union of the constraint systems generated for each atom in
the program. The constraints generated from an atom p(uq, ..., u,) are:

{pj D u; | if u; is not a variable} U {p; = u; | if u; is a variable}

Example 6. Consider the append/3 program of Example 1. Using the set vari-
ables apl, ap2 and ap3 for the append/3 predicate, we obtain:

— From append([],L,L): apl D [], ap2 = L, ap3 = L.
— From append ([X|Xs],Ys, [X|1Zs]): ap1D[X|Xs], ap2 = Ys, ap32D[X|Zs].
— From append(Xs,Ys,Zs): apl = Xs, ap2 = Vs, ap3 = Zs.

A normal form of this system consists of the constraints

apl 2 [] apl D [X|apl]l ap3 D [X|ap3]
Ys = ap3 L = ap3 Xs = apl ap2 = ap3 Zs = ap3

As shown in Example 5, we obtain the following types and signature:

ap1(X) — [1; [X | ap1(X)] append (ap: (X) ,ap3 (X) ,ap3 (X))
ap3(X) — [X | ap3(X)]

While the type of the first argument is isomorphic to the 1ist (T) type, that of
the second and third argument is not as the [] alternative is not included. Inter-
estingly, this type is accepted by Mercury [19]. It is only when append/3 is called
from elsewhere in the program as e.g. in the rev program of Example 2 that our
type inference extends the type aps(X) with a base case. The type inference
on the rev program still results in two distinct (although equivalent) types. Al-
though we are used to a signature append (1ist (T) ,1ist(T),1ist(T)),nothing
in the code of append/3 imposes this; append (1ist (T) ,mylist(T) ,mylist(T))
where mylist(T) — mynil; [X | mylist(X)] is an equally good signature.
In fact, unless there is a call that imposes a base case, the choice of the base
case is open, so one can argue that ap3(X), a type without a base case is the
most general and the most natural one.

Theorem 1. The type signatures and the type rules derived from the normal
form of the constraints generated from a program P are a well-typing for P.

The proof follows immediately from Propositions 1, 3 and 4 (see [3]).

3 We assume program clauses do not share variables and predicates p/n and p/m with
n # m do not occur.



Inference of Well-Typings for Logic Programs with Application 43
4 Implementation and Experiments

The algorithm for type inference system consists of four main stages: (i) gener-
ation of the constraints from the program text, (ii) realisation of a solved form,
(iii) normalisation and (iv) generation of the parameterised type definitions. Of
these, normalisation is the only stage whose implementation requires careful
consideration in order to be able to apply the system to larger programs.

Constraint Generation. One constraint is generated for each argument of each
atom (see Section 3.1). This is achieved in a single pass over the program.

Solved Form. Constraint generation implies that the number of constraints is
linear in the size of the program. Collecting the set of all the equalities, we
compute the set of equivalence classes such that all members of an equivalence
class are equal to each other. This can be done in time linear in the number
of equality constraints. An element of each class is selected; denote by rep(s)
the selected element of s’s class. The constraints of the solved form then consist
of (i) the set of equalities {s = rep(s) | s is different from rep(s)} and (ii) the
containment constraints with each variable s replaced by rep(s). Given a suitable
representation of the equivalence classes (see the discussion on union-find below)
the substitution can be done in time proportional to the number of containment
constraints. The resulting system is in solved form. Thus reduction to solved
form can be achieved in linear time (with respect to the size of the program).

Normal Form. Normalisation is achieved starting from the containment con-
straints of the solved form. As described in Section 2.2, normalisation causes
new constraints to be added, which can destroy solved form.

We focus on the removal of non-normal constraints ¢ O f(51), t 2 f(32); the
other case of non-normal constraints is trivial and can be removed in one pass.
The algorithm for producing normal form is as follows, in outline.

Initialise equivalence classes, one class per variable;
wvhile (not in normal form) {
Pick a pair of comstraints t1 D f(...) and t2 D £(...),
where tl and t2 are in the same equivalence class;
Generate the appropriate constraints to remove the violation;
Adjust equivalence classes using the generated equalities;
endwhile

The adjustment of the equivalence classes is essentially merging; when a constraint
s = t is generated we merge the equivalence classes of which s and t respectively
are members. All the containment constraints whose left-hand-sides are in the
same equivalence class are stored with the representative element of that class.
The management of the equivalence classes uses the well-known union-find algo-
rithms [21], so that the adjustment of the equivalence classes, and the location of
the representative for a given class, can be done in close to constant time.

Thus the time taken to normalise is roughly linear in the number of con-
straints generated during normalisation. This is not directly determined by the



44 M. Bruynooghe, J. Gallagher, and W. Van Humbeeck

size of the program, since it depends on the distribution of variables in the pro-
gram, the number of clauses for each predicate, and so on. However for typical
programs the number of generated constraints is roughly proportional to the size
of the program.

Conversion to parametrised type definitions. The procedure for finding the pa-
rameters involves constructing the dependency graph and finding the reachable
unconstrained variables from each constrained variable, as described in Section
3. The time required for reachability computation is proportional to the number
of normalised constraints, for each constrained variable.

In summary, each stage can be achieved efficiently in time roughly proportional
to the size of the program. In our Prolog implementation, the elements of the
equivalence classes in the union-find algorithm are stored in a balanced tree,
thus giving logarithmic-time rather than constant-time execution of the find
operation. Our experiments confirm that the running time of the type inference
is roughly O(n.log(n)) where n is the size of the program.

4.1 Inference Experiments

We applied the procedure to a range of programs from the termination analysis
literature as well as many other programs (including the implementation of the
procedure itself). The procedure shows reasonable scalability: space does not
permit a detailed table of statistics so we quote a few timings to give an impres-
sion. The largest program we attempted is the Aquarius compiler benchmark
(4,192 clauses, 19,976 generated constraints, 18,168 normalisation constraints)
for which type inference takes approximately 100 seconds on a Macintosh Power-
book G4. The Chat parser (515 clauses, 2,010 generated constraints, 1,613 nor-
malisation constraints) requires 4.5 seconds. Programs of 100 clauses or less are
analysed in fractions of a second. The software runs in Ciao or SICStus Prolog
and can be downloaded from http://www.ruc.dk/~jpg/Software/. A sample
of derived types can be found in [3].

4.2 Termination Analysis Experiments

We took a set of 45 small programs from [1] (most of them in turn are from the
experiments in [13]) which included declared types. We compared the termina-
tion conditions obtained from the inferred types with those obtained from the
declared types. We did so using the TerminWeb analyser [20]. On all examples,
the termination conditions were equivalent.

In a second experiment, we inferred regular types [6] that approximate the
success set of the program and used them for type-based termination analysis.
Regular types are not always well-typings. As TerminWeb expects well-typings,
we used the ¢TI termination analyser [13] for this experiment. The system is
weaker than TerminWeb and cannot prove termination for 4 of the programs.
For 3 programs, termination conditions are obtained with the well-typing but
not with the regular types. For 14 programs, the termination conditions are



Inference of Well-Typings for Logic Programs with Application 45

equivalent. For the remaining 24 programs, the well-typing results in stronger
termination conditions. Typically, using the regular types, some argument is
required to be ground while rigidity of some type constituent suffices when using
the well-typing.

It is interesting to compare the inferred types with the declared types. For
27 of the 45 programs the inferred type is equivalent to the declared types
in the sense that there is a simple renaming of type symbols that maps the
inferred types to the declared types. The reverse mapping is not always pos-
sible, because sometimes distinct types are inferred that are a renaming of
each other (and hence of a single declared type). Moreover, in most remain-
ing cases one can say that the inferred type is more precise in the sense that
the type allows fewer cases. Typically, a base case is missing as in the type
ap3(X) — [X | ap3(X)] of the third argument of append. For two programs,
der and parse, the analysis distinguishes somewhere two types whereas the
declared type has a single type that is the union of both. For the program
minimum shown in Example 9 of Section 5 there is a more substantial differ-
ence. The declared type signature is minimum(t(X),X) with type rule t(X)
— void; tree(X,t(X),t(X)). The code in question does not access the right
branch of the tree, hence there is no reason to infer it is a tree; the type in-
ference derives the signature minimum(t1(X,Y),X) with t1(X,Y) — void;
tree(X,t1(X,Y),Y). This difference is irrelevant when analysing termination.
In this case one can observe that the declared type is an instance of the inferred
type, since the denotations of t(X) and t1(X,t(X)) are the same.

This experiment suggests that the types we infer are comparable to those one
would declare. Often they are identical, and in the remaining cases, the most
frequent situation is that the solved form that corresponds to the declared types
is an extension of the solved form derived by our analysis.

5 Towards Inference of a Polymorphic Well-Typing

So far we derive a single signature for a predicate p that is valid for all its
occurrences. While we do derive parametric types, our types are not truly poly-
morphic, because we insist that the type of a call is identical to the signature
of the predicate rather than being an instance of it. When using the types for
type-based termination analysis, polymorphic types are potentially more useful
since the norms are more simple and more reuse of results is feasible [2,13]. We
develop an extension where the type of calls can be different instances of the
predicates signatures. First we illustrate the difficulty of achieving this.

Example 7. Consider the artificial program P consisting of the clause p :-
append([a], [b],M), append([M], [M],R). together with P,y the definition
of append. The relevant part of the normal form of the constraint system gen-
erated from P,y and the extracted well-typing are respectively

apl D [] apl O [Xlap1] ap3 O [X|ap3] ap2 = ap3
ap1 (X)) — [1; [X | ap1 (X)] append (ap: (X) ,aps (X) ,ap3 (X))
aps(X) — [X | aps(X)]



46 M. Bruynooghe, J. Gallagher, and W. Van Humbeeck

The extra constraints on append coming from the p clause are apl D [a], ap2 2O
[b],ap3 =M, apl D [M], ap2 O [M], and ap3 = R. The constraints on ap1 and ap2
giverisetoM = X, X D a,X D band ap3 D []. Finally, ap3 = M enforces the same
type for X and ap3; hence we obtain the signature append(ap;,aps,aps) with
the types apy — [J1; [aps | api] and aps — []; a; b; [aps | aps].

Note that one cannot obtain types equivalent to the latter signature by in-
stantiating the type parameter of the former. Moreover, we obtain an imprecise
type for aps that includes a and b as alternatives because the constraints imply
that all calls to append have the same type.

Procedure for Deriving Polymorphic Types. We first introduce some con-
cepts and notations. A predicate p depends directly on a predicate ¢ when g occurs
in the right hand side of a clause with p in the head. A set variable s depends
directly on a set variable ¢ when ¢ occurs in the right hand side of a constraint
with s in the left hand side. In both cases, the depends relation is the transitive
closure of the directly depends relation. With P,, we denote the part of a pro-
gram defining predicate p and the predicates p depends on. With Sp, we denote
the constraint system generated by program P. With SP, we denote the part of
the normal form of & that contains all constraints with on the left hand side
either one of the p; or a set variable on which one of the p; depends, i.e., the
part of the normal form needed to construct the complete type definitions of the
types type(p;). With p;(S) we denote a renaming of S where each set variable s
is replaced by s’. Finally, when using s= in the context of S, we mean either s
itself or a t such that s =t belongs to the normal form of S.

Now consider the partitioning of a program in two parts P and @Q such that
if P has a clause with head p, then it has all clauses with as head either p
or predicates on which p depends*. Our goal is to derive a well-typing for all
predicates such that the variable typing in @ of calls to P are instances of the
(polymorphic) signatures of the predicates in P. As shown in Example 7, this
is not straightforward to achieve. For each call p(f) in @ to a predicate in P,
we assume that the function id(p(f)) returns an index that is unique for the
call. From P we generate the constraint system Sp as described in Section 3.1.
When generating Sp, calls p(t) to predicates in P are treated differently. Instead
of the constraints p; rel t; (with rel € {=,2}), we generate p;q(p(7))(p;) rel t;
(the left hand side is renamed); moreover we add to Sg the constraint system
pid(p(t-))(S?,), a renaming of the constraints relevant for type(p;) (for all j). Cre-
ating a different instance for each call ensures that each call can have a distinct
well-typing. Note that Sp and S do not share any set variables.

Next, the following operations are exhaustively applied on (the normal form
of) Sp and Sg.

1. Let ¢ be a set variable from Sp with type(q) not a type parameter. If, for
some i, ¢'— D f(f) € Sg and there is no 5 such that g= 2 f(5) € Sp (i.e., q
contributes to the type signature of one or more predicates in P and type(q)
has no case for functor f while type(q®) of the signature of the call with

4 More generally, one could consider a partition of strongly connected components.



Inference of Well-Typings for Logic Programs with Application 47

identifier i does) then add ¢ 2 f(7) to Sp with 7 new set variables® and, for
all j such that ¢/ exists in @, add p;(g 2 f(7)) to Sg (all copies in Q are
updated).

2. Let s and t be different set variables in Sp such that s depends on ¢ or ¢ on
s. If, for some i, sL = tL € Sg and s= = t= ¢ Sp, then add s =t to Sp
and, for all j # i such that s/ exists in @, add p;(s = t) to Sg. This rule
is needed because, if type(s) is different from type(t), then there is no way
—because of the dependency— that their instances can be equal.

Finally the (polymorphic) type signatures for the predicates defined in P are
extracted from Sp. The extraction of the types from Sg needs a small adjust-
ment. For a predicate p defined in P, the type of its j** argument type(pg) is

type(p;){s1/type(si), ..., sk/type(sL)} with {s1,..., sk} = params(type(p;)).

Ezample 8. We reconsider Example 7. P consists of the append clauses. SH”;
the relevant part of the solved form is as follows:

ap: 2 [] ap1 2 [Xlapi] ap2 = aps apz O [Xlaps]

S¢ consists of

api 2 [1  api D [X'lapi]  ap; = ap;  aps 2 [X'lapi]
api 2 [al apy O [b]  api =M
ap; O [1  ap! D [X*lapi]  ap5 = ap3 ap; 2 [X*lap3]
api 2 M aps O [M] ap? = R
The normal form is:
apt O [] aps = ap3' apy D [] X! Da M=ap}
apt D [X'lapi] apt D [X'lapi] X' Db
ap; 2 [1] ap; = ap;  ap; 2 [] X* = ap; R = apj
ap; D [X’lapi] ap? D [X%lap?]

Rule 1 applies on aps, the constraint aps 2 [] is added to Sp (ap} 2 [1]
and ap? O [] are already in Sg) and the extracted types are:

apl(X) — [1; [X | ap1(X)] append (ap1(X) ,ap3(X) ,ap3(X))
ap3(X) — [1; [X | ap3(X)]

The signature of the first call is append (type (api) ,type (api) , type (api))
which is an instance of the above; the instance of the type parameter X is given by
type (X!) whichist1 — a; b. Similarly, in the second call, the type parameter
is instantiated into type (X?) = type(apl) which is the type ap3(t1).

Ezxample 9. This example illustrates the need for the second rule.

minimum(tree(X, void, Y), X).
minimum(tree(U, Left, V), W) :- minimum(Left, W).
p(S,M) :- minimum(tree(a,S,S),M).

5 They are unconstrained, hence type(ry) are new type parameters in the type signa-
ture of p.



48 M. Bruynooghe, J. Gallagher, and W. Van Humbeeck

Let P consist of the first two clauses; the solved form of Sp is:

min; O tree(X,min;,Y) mins = X U=X W=2X
min; O void Left = min; V=Y

This gives a signature with two parameters, namely minimum(tr (X,Y),X)
with tr(X,Y) — void; tree(X,tr(X,Y),Y). The solved form of Sg is

tree (X!, min},minl) min} = X! vl = x! s = x!

void M=x! pr = min% p2 = x! x! D a

min% D
min% D)

This system implies the constraint Y' = min} while min; depends on Y in
Sp. Hence Y = min; has to be added to Sp. For min, this gives the constraints
min; O tree(X,min;,min;) and min; O void hence we obtain the signature
minimum(tr (X),X) with tr(X) — void; tree(X,tr(X),tr(X)).For p/2 the

signature is p(tr(t),t) witht — a.

6 Related Work

We can contrast this work to previous work on inferring types for logic programs
in which a regular approximation of the success set (minimal Herbrand model) of
a program is computed [16,25,5,11,6,22]. We derive a well-typing, which may or
may not be a safe approximation of the success set. As a result our approach is
not based directly on abstract interpretation, and the inference algorithm has a
different structure, based on solving constraints rather than computing a fixpoint.

Our procedure resembles in some ways the set constraint approximations of
logic programs developed by Heintze and Jaffar [9], as well as earlier work on deriv-
ing regular types from functional programs [18,12]. We also generate set constraints
and solve them, but again, our constraints do not represent an over-approximation
of the success set in contrast to the cited works. Because we aim at well-typing in-
stead of approximating the success set, our set constraints are much simpler than
those of Heintze and Jaffar. In particular there are no intersections in our set expres-
sions, and this allows an efficient solution procedure. Marlow and Wadler [15] de-
scribe the automatic derivation of types for Erlang using a similar approach, namely
the generation of set constraints capturing the well-typing requirements followed
by a constraint solving procedure. Their type system is somewhat more expressive
than ours, including a limited form of type complement, and the constraints gen-
erated require a more complex solution procedure. However their approach yields
truly polymorphic types such that the calls are subtypes of the type signature, and
thus their constraint solutions methods could be applicable in our future work in
extending Section 5. Christiansen [4] also describes a method of generating type
declarations that give a well-typing, using a constraint-solving approach, but his
method requires some given types.

Finally we note that unlike classical type inference for ML and other typed
languages, we assume no basic types. In part of [14], the authors describe (poly-
morphic) type reconstruction for logic programs: given a set of types and a type
for each functor, they derive types for the predicates and the variables of the



Inference of Well-Typings for Logic Programs with Application 49

program. It is noteworthy that they point out that it has been shown that the
problem is undecidable unless the type of body occurrences of a recursive poly-
morphic predicate is identical to the type of the predicate (we impose this too).
The main difference with our approach is that we do not provide any type defini-
tions in advance but construct new definitions during the analysis. We share the
latter property with the work in [25]; however, to our understanding, the authors
do not infer parametric types - type variables are merely names for types that
are defined by their own type rules - and their types are less precise than ours,
since they are success set approximations.

7 Conclusion

We have presented a method for automatically deriving polymorphic well-typings
for logic programs, along with its implementation and the results of some experi-
ments. Distinguishing features of our approach are: (1) No types are assumed, the
analysis constructs its own types; (2) recursive calls to a predicate are assumed
to have the same type as the original call to the predicate; (3) set constraints
impose only conditions for well-typing, not conditions for approximating the suc-
cess set; (4) the same function symbol can be used in different type rules, i.e.,
a function symbol can have several type signatures. The experiments show that
the inferred types are useful for termination analysis; indeed we may claim to
have solved the problem of type inference for deriving norms, since we could not
find any example where a user-declared type gave better termination conditions
than our automatically derived types.

Future work will focus on two aspects. Firstly, we will develop the approach to
polymorphism described in Section 5. Secondly we will investigate to what extent
the inferred types could be used for error detection. As the procedure derives a
well-typing for every program, it may seem that the possibilities are limited, but
there are clear cases when the call constraints for a predicate are not consistent with
any intended solution of the constraints derived from the predicate definition, and
in such cases an error is indicated. For example, any call to append in which the
first argument contains a function other than [] or [.].] is erroneous. The exact
conditions for such errors are the subject of future research.

Acknowledgements

We wish to thank Tom Schrijvers for finding errors in an earlier draft, and for
useful discussions. He also verified that the generated types were accepted by
the Mercury type checker.

References
1. M. Bruynooghe, M. Codish, J. P. Gallagher, S. Genaim, and W. Vanhoof. Termi-

nation analysis of logic programs through combination of type-based norms. Draft,
2004.



50

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Bruynooghe, J. Gallagher, and W. Van Humbeeck

M. Bruynooghe, M. Codish, S. Genaim, and W. Vanhoof. Reuse of results in
termination analysis of typed logic programs. In Static Analysis, SAS 2002, volume
2477 of LNCS, pages 477-492, 2002.

M. Bruynooghe, J. Gallagher, and W. Van Humbeeck. Inference of well-typings
for logic programs with application to termination analysis. Technical Report CW
409, Dept. Comp. Sc., Katholieke Universiteit Leuven, 2005.

. H. Christiansen. Deriving declarations from programs (extended abstract). In

CPP’97, Workshop on Constraint Programming for Reasoning about Programming,
Leeds, 1997.

. T. Frihwirth, E. Shapiro, M. Vardi, and E. Yardeni. Logic programs as types for

logic programs. In Logic in Computer Science, LICS’91, pages 300-309, 1991.

. J. P. Gallagher and D. de Waal. Fast and precise regular approximation of logic

programs. In Logic Programming, ICLP’94, pages 599-61, 1994.

. J. P. Gallagher and G. Puebla. Abstract interpretation over non-deterministic

finite tree automata for set-based analysis of logic programs. In Practical Aspects
of Declarative Languages, PADL 2002, volume 2257 of LNCS, pages 243-261, 2002.

. S. Genaim, M. Codish, J. P. Gallagher, and V. Lagoon. Combining norms to prove

termination. In A. Cortesi, editor, Verification, Model Checking, and Abstract
Interpretation, VMCAI 2002, volume 2294 of LNCS, pages 126-138, 2002.

. N. Heintze and J. Jaffar. A finite presentation theorem for approximating logic pro-

grams. In Principles of Programming Languages, POPL’90, pages 197-209, 1990.

P. M. Hill and R. W. Topor. A semantics for typed logic programs. In F. Pfenning,
editor, Types in Logic Programming, pages 1-62. MIT Press, 1992.

G. Janssens and M. Bruynooghe. Deriving descriptions of possible values of pro-
gram variables by means of abstract interpretation. Journal of Logic Programming,
13(2-3):205-258, 1992.

N. D. Jones and S. S. Muchnick. A flexible approach to interprocedural data flow
analysis and programs with recursive data structures. In Principles of Programming
Languages, POPL’82, pages 66—74, 1982.

V. Lagoon, F. Mesnard, and P. J. Stuckey. Termination analysis with types is
more accurate. In Logic Programming, ICLP 2003, volume 2916 of LNCS, pages
254-268, 2003.

T. L. Lakshman and U. S. Reddy. Typed Prolog: A semantic reconstruction of the
Mycroft-O’Keefe type system. In Logic Programming, ISLP 1991, pages 202-217,
1991.

S. Marlow and P. Wadler. A practical subtyping system for Erlang. In ICFP, pages
136-149, 1997.

P. Mishra. Towards a theory of types in Prolog. In Logic Programming, ISLP 1984,
pages 289-298, 1984.

A. Mycroft and R. A. O’Keefe. A polymorphic type system for Prolog. Artificial
Intelligence, 23(3):295-307, 1984.

J. C. Reynolds. Automatic construction of data set definitions. In Information
Processing 68, pages 456-461, 1996.

Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury,
an efficient purely declarative logic programming language. Journal of Logic Pro-
gramming, 29(1-3):17-64, 1996.

C. Taboch, S. Genaim, and M. Codish. TerminWeb: Semantic based termination
analyser for logic programs, 2002. http://www.cs.bgu.ac.il/ mcodish/TerminWeb.
R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms.
Journal of the ACM, 31(2):245-281, 1984.



22

23.

24.

25.

Inference of Well-Typings for Logic Programs with Application 51

. P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Type analysis of Prolog using
type graphs. Journal of Logic Programming, 22(3):179-210, 1994.

W. Vanhoof and M. Bruynooghe. When size does matter. In A. Pettorossi, editor,
Logic Based Program Synthesis and Transformation, LOPSTR 2001, volume 2372
of LNCS, pages 129-147, 2002.

C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic
programs. In Static Analysis, SAS 2002, pages 102-116, 2002.

J. Zobel. Derivation of polymorphic types for Prolog programs. In Logic Program-
ming, ICLP 1987, pages 817-838, 1987.



Memory Space Conscious Loop Iteration Duplication
for Reliable Execution

G. Chen', M. Kandemir!, and M. Karakoy2

L CSE Department, Penn State University, University Park, PA, USA
{guilchen, kandemir}@cse.psu.edu
2180 Queen’s Gate, Imperial College, London, SW7 2AZ, UK
mk22@doc.ic.ac.uk

Abstract. Soft errors, a form of transient errors that cause bit flips in memory
and other hardware components, are a growing concern for embedded systems
as technology scales down. While hardware-based approaches to detect/correct
soft errors are important, software-based techniques can be much more flexible.
One simple software-based strategy would be full duplication of computations
and data, and comparing the results of the corresponding original and duplicate
computations. However, while the performance overhead of this strategy can be
hidden during execution if there are idle hardware resources, the memory demand
increase due to data duplication can be dramatic, particularly for array-based ap-
plications that process large amounts of data.

Focusing on array-based embedded computing, this paper presents a mem-
ory space conscious loop iteration duplication approach that can reduce mem-
ory requirements of full duplication (of array data), without decreasing the level
of reliability the latter provides. Our “in-place duplication” approach reuses the
memory locations from the same array to store the duplicates of the elements of
a given array. Consequently, the memory overhead brought by the duplicates can
be reduced. Further, we extend this approach to incorporate “global duplication”,
which reuses memory locations from other arrays to store duplicates of the ele-
ments of a given array. This paper also discusses how our approach operates un-
der a memory size constraint. The experimental results from our implementation
show that the proposed approach is successful in reducing memory requirements
of the full duplication scheme for twelve array-based applications.

1 Introduction

Soft errors, a certain type of transient errors, generally result from random electric dis-
charges caused by background radiation, including alpha particles, cosmic rays, and
nearby human sources [18,25]. The impact of a soft error on a computer system is a
bit flip in memory components and computational logic. With the scaling of technology
down into the deep-submicron range, digital circuits are even more susceptible to ran-
dom failure than previous generations. If not addressed properly, soft errors can lead to
dramatic problems in embedded applications from a variety of domains. For example,
in safety-critical applications, unpredictable reliability can result in significant cost in
terms of human and equipment loss. Similarly, in commercial consumer applications
where high-volume, low-margin production is the norm, high levels of product failures

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 52-69, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



Memory Space Conscious Loop Iteration Duplication for Reliable Execution 53

may necessitate the costly management of warranty support or expensive field mainte-
nance, eventually affecting brand reputation.

Recent research has focused on the soft error problem from both architecture and
software perspectives. We will discuss the related efforts in Section 6. One of the tech-
niques that have been proposed is based on executing duplicates of instructions and
comparing the results of the primary copy and duplicate to check correctness. It must
be observed, however, that embedded environments typically operate under multiple
constraints such as power consumption, memory size, performance and mean time to
failure, and maintaining a required level of reliability against soft errors should be care-
fully balanced with other constraints. More specifically, one needs to consider the extra
memory consumption, execution cycles, and power consumption due to duplicated in-
structions and data. In particular, limiting extra memory space demand of an application
due to enhanced reliability is extremely important in many embedded environments. In
embedded environments that execute a single application, the memory demand of the
application directly determines the size of the memory to be employed, which means
that an increase in memory demands can increase the overall cost of the embedded sys-
tem and its area (form factor). Also, in multi-programmed embedded environments, in-
creasing memory consumption of an application can reduce the number of applications
that can execute simultaneously, thereby impacting overall performance of the system.
Therefore, when increasing the number of instructions and size of data for reliability
reasons, one must be careful in limiting the required extra memory space.

Motivated by this observation, this paper presents a memory space conscious loop
iteration duplication scheme for reliability. The idea is to execute a copy (duplicate) of
an original loop iteration (along with the original) and compare their results for cor-
rectness. In storing the results of the duplicates, we try to reuse some of the memory
locations that originally store the data manipulated by the program. In other words, we
recycle the memory locations as much as possible to reduce the extra memory demand
due to duplicate executions. This is expected to bring two benefits. First, memory space
consumption is reduced, which is very important for memory-constrained systems. Sec-
ond, performance can be improved due to improved data cache behavior. Targeting
array-intensive embedded applications, this paper makes the following contributions:

e We present a compiler-based approach to memory conscious loop iteration duplica-
tion. Our “in-place duplication” approach reuses memory locations from the same
array to store the duplicates of its elements. Specifically, it reuses the locations of
dead array elements to store the duplicates of the actively-used array elements. As
a result, the memory overhead brought by duplicates is reduced.

e We discuss a “global duplication” scheme, which allows us reuse memory locations
from other arrays to store the duplicates of the elements of a given array.

e We present experimental evidence demonstrating the effectiveness of the proposed
approaches. Both in-place duplication and global duplication are automated within
an optimizing compiler. We test our approaches using twelve array-based applica-
tions and show that in-place duplication can reduce the extra memory consumption
of a duplication based scheme that does not consider memory space consumption
by about 33.2%, and that the global duplication scheme brings up this figure to
42.1%.



54 G. Chen, M. Kandemir, and M. Karakoy

e We demonstrate how our approach can be made to work when a limited extra mem-
ory consumption is permissible. In this scenario, our approach tries to reuse as many
memory locations as possible under the specified memory constraint.

It must be emphasized that array-based codes are very important for embedded sys-
tems. This is because many embedded image and video processing programs/applicat-
ions are array intensive [4], and they are usually in the form of loop nests operating on
arrays of signal data.

There are several reasons why our approach is better than a hardware-based scheme,
e.g., a combination of redundant instruction execution and ECC memory (i.e., memory
protected by error correction code). First, if some applications (or some portions of an
application) require greater reliability than others, software will be able to selectively
apply duplication, instead of incurring the fixed ECC overhead on all of the memory
accesses. Second, if an application needs a high level of reliability on existing hardware
without ECC, a software technique would be needed. Third, our scheme can use what-
ever memory is available to increase reliability, i.e., we are able to decrease failure rate
under a given memory space constraint.

The rest of this paper is structured as follows. In Section 1, we describe the repre-
sentation used for loop iterations and array data. Section 3 discusses our assumptions,
and presents our approach to in-place duplication. In the same section, we discuss our
approach to duplication under a memory constraint as well. Section 4 discusses ex-
tensions to our base approach when some of our assumptions are relaxed. Section 5
gives our experimental results that
show memory savings when using
our approaches. In Section 6, we de-
scribe related work. Finally, in Sec-

Table 1. Notations

. . n Number of enclosing loops for an array reference.
tion 7’ we draw conclusions. w Number of arrays inga lofp nest. g
A Iteration space.
. I =[i1 2 -~ in]T. An iteration point.
2 Representation for Loop 1* =I+[0 0---0 1]T.
Iteratlons, Data Space, )j(k injar.r{l;leans I is lexically less than or equal to J.
and Array Accesses M;, Number of read references to X
Dy Number of dimensions of X.
Ni.i Size of the ¢th dimension of Xy
Table 1 presents the notation used N =[Nk1 Nez2 -+ Nip,]". Sizeof Xj.

. . . x Index of an array element.
in this paper. The domain of our Fra(I)  lthreference to Xy, Fio (I) = Fioy - I+ Fror.

approach is the set of sequential R Set of all read references in the loop body.
array—intensive embedded programs Gr(R)  Right hand side of the kth statement.

o di,1 Dependence distance from X (Fp,0(I)) to
consisting of nested loops. We as- X1 (Fra(D); that is, Xp(Fro(I) =
sume that the loop bounds and Koo (Frea (I + dra)) )

. X R dilman maxi << My dp,;; that is, the maximum reuse
the array indices (subscrlpt func- distance (in terms of lexicographical order) from
tions) are affine functions of enclos- X (Fr0() o X (F 1 (I)). ) )
X o K K Ly Iteration offset for duplicates. The duplicate of
ing loop indices and loop-invariant X1, (Fr,0(I)) is stored in Xp, (Fp,0(I + L))
constants. We handle other con- P = [Pr1 Pr2 oo Prpy )" Space offset for

h ffi duplicates. The duplicate of X} (x) is stored in
structs such as non-atfine array ac- Xu(x + Pp).

cesses and conditional statements  [px,i|  Absolute value of py ;.
. INC),  Array size expansion of Xj,.
conservatively.



Memory Space Conscious Loop Iteration Duplication for Reliable Execution 55

for 1 = 0,N-1
for j = 1,N-1
A(i,j) = 2*A(i,3j-1) + 1;

Fig. 1. An example nested loop

In a given loop nest with n loops, iterators surrounding any statement can be rep-
resented as an n-entry vector I = [i; iy - in]T. The iteration space Z consists of
all the iterations of a loop nest. We use I* as a shorthand for I +[0 0 --- 0 1]7.
The index domain of an m-dimensional array X, is a rectilinear polyhedron, in which
each element can be represented as an m-entry vector xx = [a; ag --- am]T. We
use Fy,1(I) to represent the access function of the /th reference to array Xy. Fy (1)
can also be defined in a matrix/vector form as: F, ;(I) = Fy; - I + fi,1, where Fy; is
an m x n matrix and fg; is an m-entry vector. As an example, for the two references
shown in Fig. 1, we have:

£ = o1 | [1]+ 0] ma mam =53] 7]+ ]3]

A data reuse is said to exist from an array reference F}, ;, to an array reference Fj, ,
ifi 3 €Z,I,€T: I, <X Iz and Fyy, (I1) = Fi,1, (I2). In this case, Iz — I; is defined
as the reuse distance between F}, ;, and F}, ;,. For example, in Fig. 1, data reuse exists
from Fy, o to Fr1 since Fy o(I) = Fr1(IT), and the reuse distance between them is
o 1)T.

3 Array Duplication

A simple approach to enhance reliability is to create a duplicated copy for each array,
duplicate the execution of each iteration, and compare the result of the primary with that
of the duplicate. We refer to this approach as full duplication in this paper. An impor-
tant problem with this approach is that it doubles the memory space consumption (as
each array is duplicated). Our objective is to improve the reliability of the computation
in the loop, and keep the incurred memory cost at minimum. We achieve this by not
duplicating the array fully, but reusing some memory locations (that are used to store
other elements) for duplicates.

3.1 Assumptions

Our algorithm works on a per-loop basis. We assume that all the loops are normalized,
i.e., the loop index variable of each loop nest increases by 1 at each step. Loop normal-
ization [1] is a standard code modification technique that can be used to ensure this. In
this section, we consider “in-place duplication”, which means reusing array elements
(i.e., their memory locations) for storing the duplicates of the elements of the same ar-
ray. That is, for an array element, its duplicate can be stored only within the same array.
In Section 4.2 we present the algorithm that allows “global duplication”, i.e., reusing
array locations for storing the duplicates of the elements from other arrays. Our algo-
rithm operates on one array at a time. For an array X, to be considered as a candidate
by our algorithm, the following assumptions must be satisfied:



56 G. Chen, M. Kandemir, and M. Karakoy

e Assumption 1: For every pair of array references to X}, the reuse distance be-
tween them is a constant vector. Note that if two array references do not have any
data reuse between them, they are also assumed to have a constant reuse distance
vector. Most existing compiler optimizations for array-based codes operate under
this assumption.

e Assumption 2: If an array element of X}, is written in the loop nest, all the reads to
this array element retrieve the value stored by some write reference in the loop nest
(that is, none of the reads to this element retrieves a value stored before the loop
nest).

e Assumption 3: There is only one write reference to X}, in the loop body.

Whether an array satisfies Assumption 1 and Assumption 2 can be checked using
data reuse analysis [23] and value dependence test [11]. Checking Assumption 3 is
straightforward. In Section 4, we discuss the cases where we relax these assumptions.
In in-place duplication, if an array does not satisfy all of the above assumptions, we fall
back to the full duplication strategy for that array. For now, let us assume that all the
arrays in the loop satisfy these assumptions. Based on the assumptions above, a loop
body with w arrays can be represented as:

X1(FroI)) = Gi(R);
Xo(Fa0(I)) = G2(R);

Xu(Fuo(I)) = Gu(R).

R is the set of all read array references in the loop body, and G; (1 < i < w) represents
a function of these read references. In mathematical terms:

R={X1(F1(I)), X1(Fr2(I)), -, X1(F1,m, (I)),
XQ(]:?J(I))’X?(]:ZQ(I)): o '7X2(}—2,Mz(1)):

X (Faor (1), X (Fana (1)), X Faonr (D) }.

Fi,0 1s the write reference to array Xy, and M, is the number of read references to Xj.

Based on these assumptions, we can determine that there is a reuse from F o to
each read reference F3; , and the corresponding reuse distance is a constant vector,
which we denote using d,;. This means that the array element Xy (Fy.o(I)), which is
written at iteration I, will be used at iterations I +dp, 1, I +dg,2, ..., I +dg, n, . This
can be also expressed as:

FroI +dry) = Frol).

Let us assume that Fy;, . is the one with the maximum reuse distance (in terms of
lexicographical order) from Fy, o; that is, dg.i,,.. = maxi<i<as, (dk,). Therefore,
Xk (Fro(I)) written at iteration I is last-used at iteration I + dp by array refer-
ence Fp, |

max

max *

3.2 In-place Duplication

Approach and Algorithm. For the execution of a statement to be reliable, we need to
duplicate its input data, duplicate its execution, and compare the results of the original
and duplicated executions. For example, the reliable version of a statement “A (i) =
“A(i-1)+1;” would be:



Memory Space Conscious Loop Iteration Duplication for Reliable Execution 57

A(i) = A(i-1) + 1;

A’ (i) = A’ (i-1) + 1;

if A(i) != A’ (1)
error () ;

We assume that, A’ is a duplicate for array A in the above statement. In this section,
we discuss how we reduce the memory space overhead brought by duplicates without
compromising reliability.

A memory location can be in two different states: active or inactive. At a given
time, a memory location is “active” if the value stored in it will be used in the future.
On the other hand, a memory location is “inactive” if there is not any future read op-
eration on it, or its value is updated before any read operation on it takes place. As an
example, Fig. 2 gives the states of three variables, a, b and ¢, at different points of time
during execution. At any given time, we need to provide a duplicate for an active array
element, so that any soft error that occurs in its location can be detected by comparing
this array element and its duplicate. It is to be noted that, we can modify the value in
an inactive location without affecting the correctness of the program. Therefore, the
inactive memory locations are good candidates for storing the duplicates of the active
memory locations. For example, in Fig. 2, we can use variable c to store the duplicate of
a, because variable c is inactive from ¢1 to t2 and from ¢4 to ¢g, during which a is active,
and needs to be duplicated if it is to be protected against soft errors. In this section, we
focus on “in-place duplication”, which means reusing inactive array elements (i.e., their
locations) for storing the duplicates of the elements of the same array.

Let us consider an array Xj. Fig. 3 illustrates a scenario for selecting the loca-
tion to store the duplicate for an element updated at loop iteration I. At iteration I,
Xk (Fr,0(I)) is updated, and the same array element is last-used at iteration J. Conse-
quently, the array element X, (Fj o(I)) is active between iterations I and J, and we
need to keep a duplicate for it during this period. To save memory space, we want to find
an element in X}, which is inactive during this period. Recall that Assumption 2 pre-
sented in Section 3.1 says that all the read references to an array element are executed
after the corresponding write reference (if such a write reference exists). Therefore, if
an element is written in some loop iteration, it is inactive before that iteration. Con-
sequently, if an array element is written after iteration J, the last iteration at which

“ Memory L,
emory ~ _
K ax Ve
P P OO D U WAag)| ERSEI e @O e g e
b ............. ’) ................... - [)k
X(F (1)) proeeese P G WG W RIS S
PoR TTT YIS PUOUN PUVOU TR Ye PN [ S—e P Ti
. M ime
T <
b Ity 05 Il i me I ST
® write = active ® write — active
O read e inactive O read e inactive
Fig. 2. States of memory locations during Fig. 3. Determining a memory location to store

execution the duplicate for element X (Fi,0(I))



58 G. Chen, M. Kandemir, and M. Karakoy

Xi(Fro(I)) is used, this element can be used to store the duplicate of X (Fy o(I)),
since it is inactive between I and J. Our approach uses the array element written at
iteration J + Vi, which is Fy, o(J + Vi), to store the duplicate of the array element
written at iteration I. Here, Vj, is a constant vector and [0 0 --- 0 0] < Vg so
that iteration J + Vj is executed after iteration J. A possible choice for Vi will be
discussed shortly.

Based on the discussion in Section 3.1, we know that J = I 4 dj
to represent the distance between I and J + V. Hence, we have:

We use Ly

maz*

Liy=J+Vi—1I=dk,imnme: + V-

Thus, the duplicate of Xy (Fpo(I)) is stored in Xy (Fg,o0(I + Lg)). Consequently,
the memory space distance between these two elements, denoted as P, can be calcu-
lated as:
P, = FroI+ Li) — Fro(d)

= (Fro- I+ Lg)+ fro) = (Fro- I+ fro)

=Fro- I+ L) —Fro-1

= Fho- L.
Note that Py, is a constant vector since both Fy, o and Ly, are constant vectors. Conse-
quently, for an arbitrary array element Xy (), its duplicate can reside in Xy (x + Px),
and this process can be carried out for every array used in the loop nest.

It should be observed that if @ is near the array boundary, x + Pj, may exceed
the original array boundary. In this case, we need to expand array X}, so that « + P
remains within the boundary. Assuming that P, = [pr1  Pr2 - - pk,Dk]T and that
the original size of the 7th dimension of X}, is Ny ;, the ¢th dimension of X}, needs
to be expanded by |pg ;| units (i.e., array elements) to Ny ; + |pk,:| (We use |py ;| to
denote the absolute value of py, ;). Therefore, the total memory expansion for array Xy,
denoted as I NCY},, can be calculated as:

Dy,

Dy,
INC} :H(Nk,i+ |pk,i]) _HNk,i (D
=1

=1

Note that we expect I NC}, to be much smaller than HiDz"'l N}, i, the total size of the
array. Let us now look at the problem of how to select a suitable V}. Since our objective
is to minimize the memory consumption due to duplication, we want to select a Vi, so
that I N C'y, can be minimized. Although an optimum V4, can be calculated by exhaustive
enumeration or other sophisticated methods, we use a simple heuristic here that sets Vj,
to [0 0 --- 0 1]T. The rationale behind this choice is that by minimizing V}, we can
minimize Pj, and, thus, we can minimize I NC}. More specifically, in this case, we
obtain:
Lic =ditpan +10 00 1" =dipen”

A potential problem is that py, ; could be negative for some ¢, which means that z; +py, ;
can be a negative number, where x; is the array index of the original array reference for
the ith dimension. Such a case can arise if the array is accessed from upper to lower
index along the ith dimension. If this is the case, we use “(z; + pg; + Nk,;) mod Ny ;”
as the array index for this dimension. That is, we use the additional (upper) elements
for placeholders of the duplicates of the lower elements.

Our algorithm for in-place duplication is given in Fig. 4. Assume that there are K
arrays in the loop body, the average number of references to each array is M, the average



Memory Space Conscious Loop Iteration Duplication for Reliable Execution 59

Algorithm I: Algorithm II:
foreach array X, do

foreach array X, do
calculate INCl;

check the following three assumptions:

there is only one write reference to X ; endfor

each read reference has a data reuse from the write sort the arrays as Xy , Xkg - - -5 Xy, »
reference; sothat INCy; < INChy < - < INChy,;

the reuse distances are constant vectors; h=1;

Mem =0;
while h < w do
if(Mem+INCkh) < U do
Mem +=INCkh;

if all assumptions are satisfied
Ak lmae = Max1<i< My, Ak,
Li = di s +10 0---0 1]7
Py, = Fy,0 - Li;

foreach dimension ¢ of array X, do ht+; )
Ni,i +=|pk,il: else goto LoopExit;
endfor endif
foreach reference X, (Fr,;(I)) do endwhile
its duplicate is stored in LoopExit:
X (Fre,i(I) + Pr); h=h-1,
endfor forz=1, hdo
else use full duplication for Xp; duplicate X, ;
endif endfor
endfor

Fig. 4. Algorithm I: The algorithm for in-place ~ Fig.5. Algorithm II: The algorithm for
duplication selecting the arrays to duplicate under memory
constraint (U)

int A(N),A’ (N); int A(N+2);
for 1=0,N-2 { for 1=0,N-2 {
int A(N); A(i+1)=A(1)+a; A(i+1)=A(1)+a;
for i=0,N-2 A’ (i+1)=A" (i)+a; A(i+3)=A(i+2)+a;
A(i+1)=A(i)+a; if A(i+l)1=A’ (i+1) if A(i+1)!1=A(i+3)
(a) Original program , srror(); , error();
(b) Full duplication (c) In-place duplication

Fig. 6. Example application of in-place duplication

number of dimensions of each array is D, and the number of enclosing loops is n. Apart
from checking our three assumptions, for each array Xy, the time to calculate dj,; and
dic,l,e. 18 O(MD). It takes O(nD) time to calculate Py. Therefore, the complexity
of our algorithm, without taking into account the complexity of checking assumptions,
is O((M + n)DK). The time for checking our three assumptions is determined by the
algorithm used for value dependence testing.

Example. We now discuss an example to illustrate our in-place duplication algorithm.
Fig. 6 gives the example for our algorithm written in a pseudo-language syntax. In this
figure, a and N are constants. In Fig. 6, we have:

FLo:[l]; ]:1,0(1-):7;4»1; F1,1:[1}; ]:1,1(1-):7;.

It is easy to determine that array A satisfies the three assumptions in Algorithm I, and
we have dq 1 = [1]. Therefore, we can obtain dy ;,,,,._ as:

d1,lmas = d1,1 = [1].
Based on this, we can calculate L and P; as follows:

Li=dipe, +[1]=[2] and Py=Fo Li=2.



60 G. Chen, M. Kandemir, and M. Karakoy

Thus, we determine that we need to expand the original memory space allocated for
array A by 2 elements. As a result, the duplicate of A (i+1) isin A(i+1+2), which
is A(i+3), and the duplicate of A (1) is in A (i+2). Using full duplication shown in
Fig. 6(b), the total size of memory is increased by 100% over the original case with
no duplication. In comparison, using our in-place duplication version in Fig. 6(c), the
percentage memory increase over the original case is 2 /N, which is less than 2% when
N > 100.

3.3 Duplication Under Memory Constraint

Approach and Algorithm. There exist cases where one may want to limit the memory
consumption brought by duplication to a certain value. In this part, we discuss how our
approach can be made to work under such a memory size constraint.

We assume that all the array elements are of equal importance (as far as improving
reliability against soft errors is concerned), and our objective is to have duplicates for
as many array elements as possible. Let us assume that we cannot reserve more than
U units (array elements) of memory space to store duplicates. From Algorithm I and
Equation (1), we can calculate the memory expansion for arrays that can make use of
in-place duplication. On the other hand, for an array that needs to be fully duplicated,
the incurred extra memory expansion is equal to its original size. In either case, we
are able to determine I NCY; for each array Xj. Next, we sort our arrays according to
non-decreasing I N C}, values, that is:

Xy Xbgy «ooy Xky, Where INCp, <INCh, <--- < INCky.

After that, we determine a maximum A such that » < w and Zle INC, < U.
That is, we choose the candidate arrays for duplication in the increasing order of I NCy,
until all the arrays are duplicated or duplicating more arrays would exceed the allowable
memory size constraint. Here, h is the number of arrays that we choose during this
process. Fig. 5 (on page 59) gives the algorithm (named Algorithm II) that selects the
arrays to duplicate. After the selection is performed, we use the algorithm in Fig. 4 to
duplicate the selected arrays.

Example. An example of duplication under memory constraint is shown in Fig. 7.
By checking array A and array B, in Fig. 7(a) against our assumptions, we can deter-
mine that A can use in-place duplication and B needs to be fully duplicated. If there is
no memory constraint, the original program could be transformed to the one given in

int A(102),B(100),B’ (100);

for i=0,98 int A(102),B(100);
A(i+1)=A(i)+a; for 1=0,98
int A(100),B(100); A(i+3)=A(i+2)+a; A(i+l)=A(i)+a;
for i=0,98 if A(i+1)!1=A(i+3) A(1+3)=A(i+2)+a;
A(i+1l)=A(1i)+a; error(); if A(i+1) !=A(1+3)
B(i+1)=B(i+1)+B(i); B(i+1)=B(i+1)+B(1i); error () ;
. B’ (i+1)=B’ (i+1)+B’ (i); B(i+1)=B(i+1)+B(1);
(a) Original program : X A N . .
if B(i+1) =B’ (i+1); (c) With an allowable increase

error () ; .
. . of 10 array locations
(b) Without memory constraint

Fig. 7. Example for duplication under memory constraint



Memory Space Conscious Loop Iteration Duplication for Reliable Execution 61

Fig. 7(b). Now let us assume that we impose a memory constraint such that we cannot
use more than 10 extra array locations for storing the duplicates. We use X to represent
array A and X to represent array B. To determine the memory expansion due to array
A, we proceed as follows:

Fro=[1]; Fro) =i+ 1 Fia=[1]; Fra(I) =i di,a = [1]; ditppas = d1,1 = [1];
Li= dlslmam -+ [1} = [2]; P, = Fl,O L1 = [2}; INC, = (100+ 2) — 100 = 2.

On the other hand, B needs to be fully duplicated. Thus, we have INC5 = 100. Since
INC, < INCsy, we first consider duplicating A, which is possible since INC; <
10. However, we cannot add B to the list of arrays to be duplicated since INC; +
INC5 > 10. To sum up, A is duplicated, whereas B is not duplicated. Fig. 7(c) gives
the transformed code.

4 Extensions

Recall that, in Section 3.1, we listed three assumptions so that our in-place duplication
could be used. In this section, we discuss the needed extensions to our base approach if
some of these assumptions are to be relaxed. Note that Assumption 1 cannot be relaxed,
since our approach would not work on an array that does not satisfy this assumption
(i.e., if this assumption fails, we cannot put an upper bound on the extra memory space
required). On the other hand, our approach can be extended to work on arrays that do
not satisfy Assumption 2 or Assumption 3 (instead of just using full duplication for
them).

4.1 Relaxing Assumption 3

Assumption 3 presented in Section 3.1 requires that there is only one write reference to
the array being considered. Let us now consider the case where there are two write ref-
erences, Fj o and Fy 1, for the array X, being considered, and X, satisfies Assumption
1 and Assumption 2. In this case, there are two possible scenarios for these two write
references: either there is a data reuse between them, or there is no data reuse between
them.

If there is a data reuse between these two write references, our algorithm can deal
with this case with little modification. Without loss of generality, we assume that there is
a data reuse from Fj, o to Fy, 1, and the reuse distance vector is dg, 1. That is, Fj, 1 (I +
di1) = FroI) (dga = [0 0 --- 0]7). This scenario is illustrated in Fig. 8.
Comparing Fig. 2 and Fig. 8, we see that one can use the same strategy in determining
the location to store the duplicate for X (Fy o(I)). In fact, we can treat Fy, 1 the same
way as we treat read references. This is because we are certain that X (Fg o(J 1)) is
not touched in the original loop until iteration J T executes.

On the other hand, if there is no data reuse between these two write references, one
can treat them as two different arrays. In this case, the references to X, can be divided
into two groups, based on to which write reference they have data reuse:

1 1 1 .
j:k,Ov fk,la -"7‘7'—]6,]\{%’

2 2 2
fk,O’ fk‘,l? ey ]:ICJWE.



62 G. Chen, M. Kandemir, and M. Karakoy

Memory Memory Duplicated Original
References References

X (T (7)) X, (Ee(T)
Xk({Fk,u(i)) Xk(q:k,o(i)) G e UG 00 RPN
+ = Time = = Time
1 J Jt I J Jt
® write — active ® write — active
O read e inactive O read e inactive
Fig. 8. Determining the memory location to Fig. 9. Determining the memory location
store the duplicate for Xy (Fx,0(I)) when to store the duplicate for X (Fy,0(I)) in
there are two write references to X another array X},
AN (T) BIN)L BTN int A(N+2),B(N+2);
S . for i=0,N-2 {
A(i+1l)=A(1i)+a; . .
A’ (i+1)=A’ (1) +a; Alirl)=a(1)+a;
if A(i+1) 1=A’ (i+1) A
int A(N),B(N); error () ; t err;;()f 1
for i=0,N-2 B(i+1)=A(i+1)+B(1i); N N N
A(i+1)=A(i)+a; B’ (i+1)=A’ (i+1)+B’ (i) ; Eiigiiitg;igtiz)
B(i+1)=A(i+1)+B(i); if B(i+1)!=B’ (i+1) Lf B(irl)ioB(ie3)
A(i)=B(i+1)/2; error() ; e e *
o A(i)=B(i+1)/2; Srror )i
(a) Original program NS AN A(i)=B(i+l)/2;
A’ (i)=B’ (i+1)/2; X .
if A(i)1=A’ (1) Al1+2)=B(1+3)/2;
error(); if A(i)!'=A(1i+2)
) ! error () ;
(b) Full duplication (c) In-place duplication

Fig. 10. Example for multiple write references to the same array

Notice that there is a data reuse from .7-',;0 to ]:1:1 for ¢ = 1,2. The array elements
accessed by these two groups do not overlap (since, otherwise, .7-',6170 and .7-',30 would
have data reuse); therefore, choosing an array element within one group as the loca-
tion of a duplicate does not affect any access in the other group. This essentially means
that we can treat the two groups as two different arrays, and select the locations for
duplicates independently. The only modification to Algorithm I would be combining
the array expansion results from these two groups together. For example, if our ap-
proach requires expanding the ¢th dimension of X}, by |p,1”\ for the first group, and
by |pil\ for the second group, the final result is that the ¢th dimension is expanded by
max(|pllc,i‘7 ‘pi,zD

If there are more than two write references to array Xy, in the loop, we can deal with
them in a similar fashion. Specifically, we first divide the references into groups such
that the references (in the same group) have data reuses between them, and the refer-
ences in different groups are independent from each other. Then, we process each group
separately as if it is a different array. Specifically, for each group X!, we determine the
write reference that have data reuse to all other references in its group and the reuse
distances are non-negative. We represent such write reference as F, 12,0- This can also be
expressed as V0 < | < M} : F (I +dj ;) = Fjo(I)and dgy = [00 --- 0]".
After this, we can process this group using Algorithm I. Fig. 10 gives an example of



Memory Space Conscious Loop Iteration Duplication for Reliable Execution 63

how in-place duplication works when there are two write references in the same loop
to the same array. There are two different arrays accessed in the code. Fig. 10(b) gives
the full duplication version. Assume that X represents A and X5 represents B. Array
B satisfies all the assumptions, and we can apply in-place duplication to it using Algo-
rithm I. On the other hand, Array A satisfies Assumption 1 and Assumption 2, but does
not satisfy Assumption 3 since there are two write references to it (A (i+1) and A (1)).
Consequently, we need to use the strategy discussed above for in-place duplication for
array A.

For the two write references to array A, namely, A (i+1) and A (1), we can deter-
mine that A (1) has data reuse with A (1+1) based on data reuse analysis. Therefore,
we represent A (1+1) as X (F1,0(I)). Now, we can apply Algorithm I to A:

Fio=[1]; FiolI)=i+1; Fii=[1]; Fin(I) =4 Fi2=[1]; Fi2(I)=i+1;
Fis=1[1]; Fi3(I) =4;d1,1 =[1]; d1,2=10]; d1,3=1[1];
A1 lae = max(di,1,diz, dis) =dia = [1].

Based on this, we can calculate L1 and P; as follows:
L1 = dlalmaw + [1] = [2] and P1 = Fl,O . L1 = [2]

Therefore, we find that the duplicate of A (1+1) is stored in A (1+3), and the duplicate
of A (i) isstoredin A (i+2). Fig. 10(c) gives the transformed code when both A and
B are duplicated using in-place duplication.

4.2 Relaxing Assumption 2: Global Duplication

If an array X}, does not satisfy Assumption 2, this means that there exist some array
elements that are used before they are written in the loop. Such locations need to be
considered active from the beginning of the loop, and we cannot use them as duplicates
for other array elements. Therefore, we are not able to use in-place duplication for such
an array. However, as long as X}, satisfies Assumption 1, it is still possible to avoid
full duplication using a different approach, which we discuss in this subsection. This
approach reuses the locations in some other array (X7,) to store the duplicates for X,
and is referred to as “global duplication”.

For an array X}, to be used to store the duplicates for X}, it needs to satisfy the
following two conditions:

1. X} should have the same number of dimensions as X.
2. X}, should satisfy all the three assumptions listed in Section 3.1.

Note that such an array X}, itself can benefit from in-place duplication, and in our
approach, we always apply in-place duplication first. Therefore, when we try to use
the locations in X, to store duplicates of the elements of X}, we need to take X}’s
in-place duplication into account as well. Fig. 9 illustrates an example scenario. After
X},’s in-place duplication, the references to X}, are doubled due to references to dupli-
cates. We use 7' to denote both the original references and the references created by
duplication. We have:

Funa(I) + Prn = FP9 ), for duplicated references;
Fri(I) = Fri¥m, (I), for original references;
MI® = 2M,.



64 G. Chen, M. Kandemir, and M. Karakoy

int A(N+2),B(N),B’ (N); int A(N+4),B(N);
for i=0,N-2 { for i=0,N-2 {
A(i+l)=A(i)+ A(i+1)=A(i)+a;
. A(i+3) A(1+2) A(1+3)=A(1+2) +a;
EEE ?ig)ﬁ}fém’ if A(i+1) ! —A(1+3) if A(i+1)!=A(i+3)
A(i+1;:A(i)+a (.error() ?rror();
B(1+1)=B(i+1)+B(i); B(i+l)= B(1+l)+B(1);. B(i+1)=B(i+1)+B(i)
’ B’ (i+1)=B’ (i+1)+B’ (i) ; A(i+5)=A(i+5)+A(1i+4);
(a) Original program if B(i+1)!=B’ (i+1) if B(i+1)!=A(i+5)
error () ; error () ;
} }
(b) In-place duplication (c) Global duplication

Fig. 11. Example application of global duplication

For simplicity, we assume that all references to X, have data reuses with each other.
(if this assumption is not satisfied, we use the strategy discussed in Section 4.1 by
dividing references into groups). In this case, we can find a reference, denoted as F o,
from which all other X}, references have data reuses. We follow the approach described
in Algorithm I to calculate dy, .., .. and L. We know at this point that the array element
Xk (Fr,0(I)) will not be used from iteration I + L onwards. Therefore, we can use the
X, array element Xy, (F7 G (I + Ly)), which is written at iteration I + Ly, for the first
time in the loop, to store the duplicate for X (Fr,0(I)). To calculate the location of the
duplicate for X,(Fy,;(I)), we first represent it as Xy, (Fy 0(I — dg,;)). Therefore, the
duplicate of Xy, (Fy ;(I)) is stored in Xp,( ”ew(I di,i + L)).

In order to determine how much X}, needs to be expanded, we calculate Py, i.e.,
the difference between F7'G" (I + Lg) and F3G° (I):

P, = ]_—}7;7%11;(1_’_ Lk) — .'F;?’%w(I) = F;Z%w - L.

Assuming that Py = [pr.1 pr2 - Pk.p,|" and the original size of the ith dimension
of Xy, is Ny ;, the ith dimension of X}, needs to be expanded by |py, ;| units to Ny ; +

Fig. 11 gives an example application of global duplication. In this example, we use
in-place duplication for array A. Without the use of global duplication, array B needs to
be fully duplicated as shown in Fig. 11(b). In the case of global duplication, array B uses
the available space in array A to store its duplicates, and Fig. 11(c) gives the transformed
code. If N = 100, by using in-place duplication, we can reduce the extra memory space
from 100% (in the full duplication case) to 51%. By using global duplication, on the
other hand, this number is further reduced to 2%.

5 Experimental Evaluation

5.1 Setup

In this section, we present an experimental evaluation of the approach discussed in
this paper. To evaluate the effectiveness of our approach, we implemented it within an
optimizing compiler [22] and performed experiments with several array based bench-
marks. The average increase due to our approach in compilation times of the original



Memory Space Conscious Loop Iteration Duplication for Reliable Execution 65

Table 2. Benchmarks used in this study

SpecFP2000 Embedded Applications

Benchmark Brief Description Input Benchmark Brief Description Input

171.swim  Shallow Water Modeling Ref. Input  atr Network Address Translation  1.47MB
172.grid Multi-Grid Solver Ref. Input  bss Signal Deconvolution 3.07MB
177.mesa 3D Graphic Library Ref. Input  encr Digital Signature for Security 1.88MB
179.art Image Recognition/Neural Networks Ref. Input ~ img-seg6 ~ Embedded Image Segregation 2.61MB
183.equake Seismic Wave Propagation Simulation Ref. Input  usonic Feature-Based Area Estimation 4.36MB
188.ammp Computational Chemistry Ref. Input ~ wood04 Color-Based Surface Inspection 5.28MB

programs was about 220%. Table 2 lists the benchmarks used in this study. Our bench-
marks are divided into two groups. The first group contains the C benchmarks from
the SpecFP2000 suite [17] (plus two FORTRAN benchmarks, of which we were able
to generate the C versions by hand), whereas the second group are representative ap-
plications from the domain of embedded computing. We collected the applications in
the second group from different sources. For each group of benchmarks in Table 2, the
second column gives a brief description of each benchmark and the last column shows
the size of the total data manipulated by each benchmark.

5.2 Results

Hin-place M global

Fig. 12 shows the effective-
ness of in-place and global
duplication in reducing the
memory requirements due
to enhanced reliability. Each
bar in this figure represents
the extra memory demand of
the corresponding approach
(in-place or global), as a
fraction of the extra mem-

90%

n
@
S
B3

70% A
60%
50% -
40%
30% A
20% 1

Normalized Memory Consumptiol

10% 4

0% -

€ & £ & 2 L P g & Lo F
ory demand of a scheme that & R S & S S
X RS & & & &

duplicates all the array data
in the application (i.e., full
duplication). As can be seen
from this bar-chart, our ap-
proaches save significant memory space with respect to the full duplication of all ar-
ray data. The average savings brought by the in-place duplication scheme are 30.2%
and 36.4% for the SpecFP2000 benchmarks and the embedded applications, respec-
tively. The corresponding savings with the global duplication scheme are 39.3% and
44.2%. We see that, except for two benchmarks (177.mesa and atr), the global duplica-
tion scheme brings savings over the in-place duplication scheme, as the former has the
flexibility of using other arrays for creating duplicates of the elements of a given array.

Note that, in the results presented above, all array elements have been duplicated
(some recycling the memory locations of the elements that passed their last uses). Our
next set of experiments measure the success of the in-place duplication approach that

Fig. 12. Memory requirements of our duplication schemes



66 G. Chen, M. Kandemir, and M. Karakoy

operates with memory constraints (see Section 3.3). The results are given in Fig. 13 with
different memory constraints. Specifically, each point on the x-axis gives the maximum
allowable increase in the size of the
data manipulated by the original pro-
grams. The y-axis, on the other hand,
gives the percentage of array ele-
ments duplicated by our approach.
We see from these results that, our ap-
proach is successful in utilizing avail-
able extra memory space for duplica-
tion. In fact, even with an extra 5%
memory space, it is able to dupli- 20%
cate about 16% of the array elements

on the average. When we increase 5% | 0% 20%  40%  60% 0% | 100%
the extra available memory space re- Allowable Memory Increase

served for duplicates to 40%, the av- Fig. 13. Duplication under memory constraints
erage percentage of duplication be-

comes 76%.

Although our focus in this paper is on memory space savings and reliability, it is
also important to consider the impact of our approach on execution cycles. To determine
the execution cycles taken by our approach, we simulated the benchmark codes using
SimpleScalar [15]. The simulated architecture is a two-issue embedded processors with
16KB instruction and data caches. The access latencies for both the caches are 1 cycle,
and a miss penalty of 100 cycles is assumed. The graph in Fig. 14 gives execution cycles
for our two schemes as a fraction of the execution cycles taken by the full duplication
strategy. Note that the full duplication scheme almost doubles the execution cycles of
the original codes (i.e., those without any protection). Two observations can be made
from this graph. First, both the schemes perform better than the full duplication based
approach in terms of execu-
tion cycles. The main reason
for this is that the reduction
in data space requirements re-
duces capacity misses and this
in turn reduces execution cy-
cles. Second, the difference
between our two schemes is
less than one would expect,
given the fact that global
can reuse (and save) more 5% |
memory space than in-place. S L FES T & &
The reason for the small dif- < ‘ ©

ference between the two is
the increased number of con- Fig. 14. Performance of our duplication schemes

100%

80%

——171.swim
—=—172.mgrid
-+—177.mesa | |

179.art
—— 183.equake
—e—188.ammp
——atr
——bss

encr
-+--img-seg-6 | —

usonic
—+—wood04

60%

40%

Percentage Duplication

0%

Bin-place H global

100%

90% -

Normalized Execution Cycles

80% -

flict misses with the global



Memory Space Conscious Loop Iteration Duplication for Reliable Execution 67

scheme, due to the additional irregularity created by reusing different locations in the
same loop iteration.

6 Related Work

6.1 Memory Reuse

There exist several prior studies that reduce the memory footprint of array-based pro-
grams. Wolfe [24] presented a technique called array contraction to optimize programs
for a vector architecture. Lefebvre and Feautrier [8] proposed a method for reducing
the memory overhead brought by full data expansion in automatic parallelization of
loop-based static control programs. Song et al [16] proposed an algorithm that com-
bines loop shifting, loop fusion, and array contraction to reduce memory usage and
improve data locality. Wilde and Rajopadhye [21] studied memory reuse using a poly-
hedral model that performs static lifetime computations of variables. Strout et al [19]
presented a schedule-independent storage mapping technique that reduces data space
consumption but introduces no dependences other than those implied by flow depen-
dences. Unnikrishnan et al [20] used a loop-based program transformation technique
to reduce lifetimes of array elements. Their objective is to reduce the cases where the
lifetimes of array elements overlap so that the storage requirement can be reduced. The
common point between our approach and these prior studies is that all of them exploit
variable lifetime information extracted by the compiler. The main difference is that we
use this information for reducing the additional memory space demand due to enhanced
reliability against soft errors, rather than reducing the original memory demand of the
application. Also, most of these prior studies optimize for a single array at a time and
operate under some additional constraints such as maintaining a certain degree of par-
allelism. In comparison, our global duplication scheme can reuse the space available in
other arrays for storing the duplicates of the elements of a given array.

6.2 Software Approach to Transient/Permanent Errors

Software techniques for fault detection and recovery have been studied by prior re-
search. Huang and Abraham [7] proposed Algorithm-Based Fault Tolerance (ABFT) to
ensure the reliability of matrix operations. Roy-Chowdhury [13] extended the ABFT
framework to a parallel processing environment. Oh and McCluskey [10] proposed Se-
lective Procedure Call Duplication (SPCD) to improve system reliability. SPCD ana-
lyzes the procedure-call behavior of the program, and determines whether to duplicate
the statements of a procedure or duplicate the procedure call. Rebaudengo et al [12]
and Nicolescu et al [9] proposed systematic approaches for introducing redundancy into
programs to detect errors in both data and code. Their approach demonstrated good er-
ror detection capabilities, but it also introduced considerable memory overheads due to
full duplication for all variables. Our approach, in contrast, tries to minimize the mem-
ory overhead and retains the same degree of reliability that would be provided by full
duplication. Audet et al [2] presented an approach for reducing a program’s sensitivity
to transient errors by modifying the program structure, without introducing redundancy



68 G. Chen, M. Kandemir, and M. Karakoy

into the program. Although this approach introduces almost no extra memory overhead,
it cannot provide the same degree of reliability that would be provided by full duplica-
tion. Benso et al [3] presented a similar work that improves the reliability of a C code by
code reordering. They do not consider memory optimization through array reuse. Shir-
vani et al [14] used software-implemented error detection and correction (EDAC) code
to provide protection against transient errors. Several prior studies targeted at specific
platforms. Gong et al [5,6] proposed a compiler-assisted approach to fault detection in
regular loops for distributed-memory systems. Their approach focuses on performance
issues, and does not consider memory consumption. In comparison, our objective in
this work is to reduce memory overheads.

7 Concluding Remarks

Many embedded systems operate under multiple constraints such as limited memory
size, limited battery power, real-time performance, reliability, and security.
Consequently, in optimizing for one constraint, one should be very careful in controlling
the impact of doing so on other constraints. Motivated by this observation, this paper
presents a memory space conscious compiler-based approach that targets improving re-
liability of array-based programs against soft errors, a form of transient errors. The idea
is to reuse the memory locations of inactive array elements (i.e., the elements that have
reached their last uses) as placeholders for the duplicates of the actively used array
elements. We present two specific algorithms based on this idea, and test their effec-
tiveness using a set of twelve array-based applications. Our experimental evaluation
demonstrates that our approach is successful in reducing the extra memory demand due
to improved reliability.

References

1. R. Allen and K. Kennedy. Automatic translation of FORTRAN programs to vector form.
ACM Transactions on Programming Languages and Systems, 9(4):491-542, October 1987.

2. D. Audet, S. Masson, and Y. Savaria. Reducing fault sensitivity of microprocessor-based
systems by modifying workload structure. In Proc. IEEE International Symposium in Defect
and Fault Tolerant in VLSI Systems, 1998.

3. A. Benso, S. Chiusano, P. Prinetto, and L. Tagliaferri. A C/C++ source-to-source compiler
for dependable applications. In Proc. International Conference on Dependable Systems and
Networks, pp. 71-78, June 2000.

4. F. Catthoor, K. Danckaert, C. Kulkarni, E. Brockmeyer, P. G. Kjeldsberg, T. V. Achteren, and
T. Omnes. Data Access and Storage Management for Embedded Programmable Processors.
Kluwer Academic Publishers, 2002.

5. C. Gong, R. Melhem and R. Gupta. Compiler assisted fault detection for distributed memory
systems. In Proc. 1994 Scalable High Performance Computing Conference, Knoxville, TN,
1994.

6. C. Gong, R. Melhem, and R. Gupta. Loop transformations for fault detection in regular
loops on massively parallel systems. IEEE Transaction on Parallel and Distributed Systems,
7(12):1238-1249, December 1996.

7. K. H. Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix operations. I[EEE
Transactions on Computers, vol. C-33, pp. 518-528, June 1984.



10.

11.

12.

13.

14.

15.
16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

Memory Space Conscious Loop Iteration Duplication for Reliable Execution 69

. V. Lefebvre and P. Feautrier. Automatic storage management for parallel programs. Research

Report PRiSM 97/8, France, 1997.

. B. Nicolescu and Raoul Velazco. Detecting soft errors by a purely software approach:

method, tools and experimental results. In Proc. Design, Automation and Test in Europe
Conference and Exhibition, Munich, Germany, March 2003.

N. Oh and E. J. McCluskey. Error detection by selective procedure call duplication for low
energy consumption. /[EEE Transactions on Reliability, 51(4):392-402, December 2002.

W. Pugh, D. Wonnacott. An exact method for analysis of value-based array data depen-
dences. In Proc. the 6th International Workshop on Languages and Compilers for Parallel
Computing, 1993.

M. Rebaudengo, M. Sonza Reorda, M. Violante, P. Cheynet, B. Nicolescu, and R. Velazco.
System safety through automatic high-level code transformations: an experimental evalua-
tion. In Proc. IEEE Design Automation and Testing in Europe, Munich, Germany, March
13-16, 2001.

Amber Roy-Chowdhury. Manual and compiler assisted methods for generating error detect-
ing parallel programs. Ph.D thesis, Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, 1996.

P. P. Shirvani, N. Saxena, and E. J. McCluskey. Software-implemented EDAC protection
against SEUs. IEEE Transaction on Reliability, 49(3):273-284, September 2000.
http://www.simplescalar.com.

Y. Song, R. Xu, C. Wang, and Z. Li. Data locality enhancement by memory reduction. In
Proc. the 15th ACM International Conference on Supercomputing, June 2001.
http://www.spec.org/osg/cpu2000/CFP2000/.

G. R. Srinivasan. Modeling the cosmic-ray-induced soft-error rate in integrated circuits: an
overview. IBM Journal of Research and Development, 40(1):77-89, January 1996.

M. Strout, L. Carter, J. Ferrante, and B. Simon. Schedule-independent storage mapping in
loops. In Proc. ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, October 1998.

P. Unnikrishnan, G. Chen, M. Kandemir, M. Karakoy, and I. Kolcu. Loop transformations
for reducing data space requirements of resource-constrained applications. In Proc. Interna-
tional Static Analysis Symposium, June 11-13, 2003.

D. Wilde and S. Rajopadhye. Memory reuse analysis in the polyhedral model. Parallel Pro-
cessing Letters, 1997.

R. Wilson et al. SUIF: An infrastructure for research on parallelizing and optimizing com-
pilers. SIGPLAN Notices, 29(12):31-37, December 1994.

M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 30-44, June 1991.
M. J. Wolfe. High Performance Compilers for Parallel Computing, Addison-Wesley Pub-
lishing Company, 1996.

J. F. Zeigler. Terrestrial cosmic rays. IBM Journal of Research and Development, 40(1):19—
39, January 1996.



Memory Usage Verification for OO Programs

Wei-Ngan Chin'-2, Huu Hai Nguyen', Shengchao Qin?, and Martin Rinard*

1 Computer Science Programme, Singapore-MIT Alliance
2 Department of Computer Science, National University of Singapore
3 Department of Computer Science, University of Durham
4 Laboratory for Computer Science, Massachusetts Institute of Technology
{chinwn, nguyenh?2 }@comp .nus.edu.sg
shengchao.gin@durham.ac.uk, rinard@lcs.mit.edu

Abstract. We present a new type system for an object-oriented (OO) language
that characterizes the sizes of data structures and the amount of heap memory
required to successfully execute methods that operate on these data structures.
Key components of this type system include type assertions that use symbolic
Presburger arithmetic expressions to capture data structure sizes, the effect of
methods on the data structures that they manipulate, and the amount of memory
that methods allocate and deallocate. For each method, we conservatively capture
the amount of memory required to execute the method as a function of the sizes
of the method’s inputs. The safety guarantee is that the method will never attempt
to use more memory than its type expressions specify. We have implemented a
type checker to verify memory usages of OO programs. Our experience is that
the type system can precisely and effectively capture memory bounds for a wide
range of programs.

1 Introduction

Memory management is a key concern for many applications. Over the years researchers
have developed a range of memory management approaches; examples include explicit
allocation and deallocation, copying garbage collection, and region-based memory al-
location. However, an important aspect that has been largely ignored in past work is
the safe estimation of memory space required for program execution. Overallocation of
memory may cause inefficiency, while underallocation may cause software failure. In
this paper, we attempt to make memory usage more predictable by static verification on
the memory usage of each program.

We present a new type system, based on dependent type[21], that characterizes the
amount of memory required to execute each program component. The key components
of this type system include:

— Data Structure Sizes and Size Constraints: The type of each data structure in-
cludes index parameters to characterize its size properties, which are expressed in
terms of the sizes of data structures that it contains. In many cases the sizes of these
data structures are correlated; our approach uses size constraints expressed using
symbolic Presburger arithmetic terms to precisely capture these correlations.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 70-86, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



Memory Usage Verification for OO Programs 71

— Heap Recovery: Our type system captures the distinction between shared and un-
aliased objects and supports explicit deallocation of unaliased objects.

— Preconditions and Postconditions: Each method comes with a precondition that
captures both the expected sizes of the data structures on which it operates and any
correlations between these sizes. The method’s postcondition expresses the new
size and correlations of these data structures after the method executes as a function
of the original sizes when the method was invoked.

— Heap Usage Effects: Each method comes with two memory effects. These effects
use symbolic values (present in method precondition) to capture (i) memory re-
quirement which specify the maximum heap space that the method may consume,
(ii) memory release which specify the minimum heap space that the method will
recover. Heap effects are expressed at the granularity of classes and can capture the
net change in the number of instances of each class.

Our paper makes several new technical contributions. Firstly, we design a formal
verification system in the form of a type system, that can formally and statically capture
memory usage for the object-oriented (OO) paradigm. We believe that ours is the first
such formal type system for OO paradigm. Secondly, we advocate for explicit heap re-
covery to provide more timely reclamation of dead objects in support of tighter bounds
on memory usage. We show how such recovery commands may be automatically in-
serted. Thirdly, we have proven the soundness of our type checking rules. Each well-
typed program is guaranteed to meet its memory usage specification, and will never
fail due to insufficient memory whenever its memory precondition is met. Lastly, we
have implemented a type checker (with an inference mechanism) and have shown that
it is fairly precise and can handle a reasonably large class of programs. Runtime stack
space to hold methods’ parameters and local variables is another aspect of memory
needed. For simplicity, we omit its consideration in this paper.

2  Overview

Memory usage occurs primarily in the heap to hold dynamically created objects. In our
model, heap space is consumed via the new operation for newly created objects, while
unused objects may be recovered via an explicit deallocation primitive, called dispose.
Memory usage (based on consumption and recovery) should be calculated over the
entire computation of each program. This calculation is done in a safe manner to help
identify the high watermark on memory space needed. We achieve this through the use
of a conservative upper bound on memory consumed, and a conservative lower bound
on memory recovered for each expression (and method).

To safely predict the memory usage of each program, we propose a size-polymorphic
type system for object-oriented programs with support for interprocedural size analysis.
In this type system, size properties of both user-defined types and primitive types are
captured. In the case of primitive integer type int(v), the size variable v captures its in-
teger value, while for boolean type bool(b), the size variable b is either 0 or 1 denoting
false or true, respectively. (Note that size variables capture some integer-based prop-
erties of the data structure. For simple types, the values are directly captured.) For user-
defined class types, we use c¢(ni, ..., n,) where ¢ ; ¢; with size variables n1,...,n, to



72 W.-N. Chin et al.

denote size properties that are defined in size relation ¢, and invariant constraint ¢;. As
an example, consider a user-defined stack class, that is implemented with a linked list,
and a binary tree class as shown below.

class List(n) where n=m-+1; n>0 { Object()@S val; List(m)@U next;--- }

class Stack(n) where n=m ; n>0{ List(m)@Uhead; - - }

class BTree(s, d) where s=1+s1+saAd=1+max(d1, d2) ; s>0Nd>0 {
Object()@S val; BTree(s1,d;)@U left; BTree(ss, d2)@U right;--- }

List(n) denotes a linked-list data structure of size n, and similarly for Stack(n). The
size relations n=m+1 and n=m define some size properties of the objects in terms of
the sizes of their components, while the constraint n>0 signifies an invariant associated
with the class type. Class BTree(s, d) represents a binary tree with size variables s and
d denoting the total number of nodes and the depth of the tree, respectively. Due to
the need to track the states of mutable objects, our type system requires the support of
alias controls of the form A=U|S|R|L. We use U and S to mark each reference that
is (definitely) unaliased and (possibly) shared, respectively. We use R to mark read-
only fields which must never be updated after object initialization. We use L to mark
unique references that are temporarily borrowed by a parameter for the duration of
its method’s execution. Our alias annotation mechanism are adapted from [5, 8, 1] and
reported in [9]. Briefly, they allow us to track unique objects from mutable fields, as
well as shareable objects from read-only fields.

To specify memory usage, we decorate each method with the following declaration:

t mn(t1vi, . .., tnUn) where @pr; Gpo; €c; € {€}

where ¢,, and ¢,, denote the precondition and postcondition of the method, expressed
in terms of constraints/formulae on the size variables of the method’s parameters and
result. Precondition ¢,, denotes an applicability condition of the method in terms of
the sizes of its parameters. Postcondition ¢,, can provide a precise size relation for the
parameters and result of the declared method. The memory effect is captured by e. and
e-. Note that e¢. denotes memory requirement, i.e., the maximum memory space that
may be consumed, while ¢, denotes net release, i.e., the minimum memory space that
will be recovered at the end of method invocation. Memory effects (consumption and
recovery) are expressed using a bag notation of the form {(c;, «;) }i~,, where ¢; denotes
a class type, while «; denotes its symbolic count.

class Stack(n) where n=m ; n>0 { List(m)@U head;
L | void()@S push(Object()@S o) where true;n’'=n+1; {(List, 1)}; {}

{ List()@U tmp=this.head; thlS head=new List(o, tmp)}
L | void()@s pop() where n>0; n'=n—1; {}; {(List, 1)}

{List()@QU t1 = this.head; List()@U t2 = tl.next; t1.dispose(); this.head = t2}
L | bool({b)@S isEmpty() where n>0; n'=n A (n=0Ab=1V n>0Ab=0); {}; {}

{List()@U t = this.head; bool()@S v = isNull(t); this.head = t;v}
L | void()@S emptyStack() where n>0Ad=n; n'=0; {}; {(List,d)}

{ bool()@S v = this.isEmpty(); if v then () else {this.pop(); this.emptyStack()}}
L | void()@S push3pop2(Object()@S o) where true;n'=n+1;{(List, 2)}; {(List, 1)}

{ this.push(o); this.push(o); this.pop(); this.push(o); this.pop()}}

Fig. 1. Methods for the Stack Class



Memory Usage Verification for OO Programs 73

Examples of method declarations for the Stack class are given in Fig 1. The nota-
tion (A |) prior to each method captures the alias annotation of the current this param-
eter. Note our use of the primed notation, advocated in [13, 17], to capture imperative
changes on size properties. For the push method, n’=n-+1 captures the fact that the size
of the stack object has increased by 1; similarly, the postcondition for the pop method,
n'=n—1, denotes that the size of the stack is decreased by 1 after the operation. The
memory requirement for the push method, e,={(List, 1)}, captures the fact that one
List node will be consumed. For the pop method, ¢,={(List, 1)} indicates that one
List node will be recovered.

For the isEmpty method,
et n'=n captures the fact that
Mem.{ } Release the size of the receiver ob-

| | | | | | ject (this) is not changed by

ime  the method. Furthermore, its

output of type bool(b)@S is
related to the object’s size
through a disjunctive con-
straint n=0Ab=1Vn>0Ab=0.
Primitive types are annotated with alias S because their values are immutable and can
be freely shared and yet remain trackable. The emptyStack method releases all List
nodes of the Stack object. For push3pop2 method, the memory consumed (or required)
from the heap is {(List, 2)}, while the net release is {(List, 1)}, as illustrated in Fig. 2.

Size variables and their constraints are specified at method boundary, and need not
be specified for local variables. Hence, we may use bool()@s instead of bool(v)@s for
the type of a local variable.

Req.

push push pop push pop

Fig. 2. push3pop2: Heap Consumption and Recovery

3 Language and Annotations

We focus on a core object-oriented language, called MEMJ, with size, alias, and mem-
ory annotations in Fig 3. MEMJ is designed to be an intermediate language for Java
with either supplied or inferred annotations. A suffix notation y* denotes a list of zero
or more distinct syntactic terms that are suitably separated. For example, (¢ v)* denotes
(t1 v1,...,tn va) Where n>0. Local variable declarations are supported by block struc-
ture of the form: (¢ v = e1;e2) with e> denoting the result. We assume a call-by-value
semantics for MEMJ, where values (primitives or references) are passed as arguments
to parameters of methods. For simplicity, we do not allow the parameters to be updated
(or re-assigned) with different values. There is no loss of generality, as we can always
copy such parameters to local variables for updating.

The MEMJ language is deliberately kept simple to facilitate the formulation of static
and dynamic semantics. Typical language constructs, such as multi-declaration block,
sequence, calls with complex arguments, efc. can be automatically translated to con-
structs in MEMJ. Also, loops can be viewed as syntactic abbreviations for tail-recursive
methods, and are supported by our analysis. Several other language features, includ-
ing downcast and a field-binding construct are also supported in our implementation.
For simplicity, we omit them in this paper, as they play supporting roles and are not



74 W.-N. Chin et al.

P ::= def* meth”
def ::= class c1(n;.,) [ extends ca(n;.q) [where ¢ ; ¢ {fd* (A | meth)™ }
meth ::= t mn((t v)™) where @p; Ppo; €c; €r {€}
fd:=1t f t:=T1(n")eA A:=U|L|S|R
Tu=c | pr wi=wv | v.f pru=int | bool | void
ex=(c)null | k | w | w=e| tv=ei;es | newc(v”)
| v.mn(v™) | mn(v*) | if v then e; else ex | v.dispose()
e={(c,)"} (Memory Space Abstraction)
pe F (Presburger Size Constraint)
s= b d1AG2 | p1 V2| nh|In-d|Vn-¢
b € BExp (Boolean Expression)
n= true | false |ai =2 | 1 <z | a1 <an
a € AExp (Arithmetic Expression)
s=k | n | B s o | antas | —af max(on,ae) | min(an,oe)
where k™ € Z is an integer constant; n € SV is a size variable

f € Fdis a field name; v € Var is an object variable

Fig. 3. Syntax for the MEMJ Language

core to the main ideas proposed here. The interested reader may refer to our companion
technical report[10] for more information.

To support sized typing, our programs are augmented with size variables and con-
straints. For size constraints, we restrict to Presburger form, as decidable (and practical)
constraint solvers exist, e.g. [19]. We are primarily interested in tracking size properties
of objects.We therefore restrict the relation ¢ in each class declaration of ¢i (n1, .., np)
which extends cz(ni, .., ng) to the form A7_ . | ni=a; whereby V(a;) N {n1,..,np} = 0.
Note that V(«;) returns the set of size variables that appeared in «;. This restricts size
properties to depend solely on the components of their objects.

Note that each class declaration has a set of instance methods whose main purpose
is to manipulate objects of the declared class. For convenience, we also provide a set
of static methods with the same syntax as instance methods, except for its access to the
this object. One important feature of MEMJ is that memory recovery is done safely
(without creating dangling references) through a v.dispose() primitive.

4 Heap Usage Specification

To allow memory usage to be precisely specified, we propose a bag abstraction of
the form {(c;, a;)}i=; where ¢; denotes its classification, while «; is its cardinality. In
this paper, we shall use ¢; € CN where CN denotes all class types. For instance, 71 =
{(c1,2), (¢c2,4), (c3,x + 3)} denotes a bag with ¢; occurring twice, ¢, four times and c3
x + 3 times. We provide the following two basic operations for bag abstraction to cap-
ture both the domain and the count of its element, as follows:



Memory Usage Verification for OO Programs 75

if (,n)eT

n?
dom(Y) =ar {c | (¢c,n) €T} YO =t { perwise

We define union, difference, exclusion over bags as:

11T =df {(C, 11 (C)+TQ(C)) | c e dOm(T1) U dom(Tg)}
T1 — TQ =df {(C, T1 (C)*TQ(C)) | [AS dOm(T1) U dom(Tg)}
T\X =4 {(c,T(c)) | c€dom(T)— X}

To check for adequacy of memory, we provide a bag comparator operation under a
size constraint A, as follows:

AR 37 =4 (A= (Vee Z-11(c) > T2(c))) where Z = dom(Y1) U dom(Ys)

The bag abstraction notation for memory is quite general and can be made more
precise by refining its operations. For example, some class types are of the same size
and could replace each other to increase memory reuse. To achieve this we can use a
bag abstraction that is grouped by size(c;) instead of class type c;.

4.1 Heap Consumption

Heap space is consumed when objects are created by the new primitive, and also by
method calls, except that the latter is aggregated to include recovery prior to consump-
tion. Our aggregation (of recovery prior to consumption) is designed to identify a high
watermark of maximum memory needed for safe program execution. For each expres-
sion, we predict a conservative upper bound on the memory that the expression may
consume, and also a conservative lower bound on the memory that the expression will
release. If the expression releases some memory before consumption, we will use the
released memory to obtain a lower memory requirement. Such aggregated calculations
on both consumption and recovery can help capture both a net change in the level of
memory, as well as the high watermark of memory needed for safe execution.

For example, consider a recursive function which does p pops from one stack object,
followed by the same number of pushes on another stack.

void()@S moverec(Stack(a)@L s, Stack(b)@L t, int(p)@S i)
where a>p>0; a'=a—pAb'=b+p; {};{}
{if i<1 then ()
else {Object()@S o = s.top(); s.pop(); moverec(s, t,i—1); t.push(o)} }

Due to aggregation (involving recovery before consumption), the heap space that
may be consumed is zero. For each recursive call, the space for a List node is released
by s.pop() before it is reused by t.push(o). Aggregated over the recursive calls, we will
have p number of List nodes that have been released before the same number of nodes
are consumed. Hence, no new heap space is needed. Such aggregation is sensitive to
the order of the operations.

Consider now a different function which performs p pushes on t, followed by the
same number of pops from s.

void()@S moverec2(Stack(a)@L s, Stack(b)@L t, int(p)@S i)
where a>p>0; a'=a—pAb'=b+p; {(List,p)};{(List,p)}
{if i<1 then ()
else {Object()@S o = s.top(); t.push(o); moverec2(s,t,i—1); s.pop()} }



76 W.-N. Chin et al.

Though the net change in memory usage is also zero, the memory effect for this
function is different as we require p number of List nodes to be consumed on entry,
before the same number of List nodes are recovered. This new memory effect has the
potential to push up the high watermark of memory needed by p List nodes.

4.2 Heap Recovery

Explicit heap space recovery via dispose has several advantages. It facilitates the timely
recovery of dead objects, which allows memory usage to be predicted more accurately
(with tighter bounds). It also permits the use of more efficient custom allocators[4],
where desired. Moreover, we shall provide an automatic technique to insert dispose
primitives with the help of alias annotation. With such a technique, we only need to
ensure that objects that are being disposed are non-null. This non-nullness property can
be captured by a non-nullness analyser, such as [12]. This property is required as we
always recover memory space for each dispose primitive.

Memory recovery via dispose should occur when unique references that are still
alive (not in dead-set) are being discarded. This could occur at four places' : (i) end
of local block, (ii) end of method block, (iii) prior to assignment operation, and (iv)
at conditional expression. We would like to recover the memory space for each non-
null reference that is about to become dead. For example, consider the pop method’s
definition:

L | void()@S pop() where --- { List()@U t1 = this.head; head = tl.next}

The object pointed to by head is about to become dead prior to the operation,
head = t1l.next. To recover this dead object, we insert a dispose command to obtain
head = (tl.next <;head.dispose()) where e1<;e2=(t v = e1;e2;v). Consider the defi-
nition of the destroy method which calls emptyStack with an L-mode parameter.

void()@S destroy(Stack(n)@U s) where - -- {emptyStack(s)}

A unique s object is about to become dead at the end of the destroy method. To
recover this space, we can insert s.dispose() prior to the method’s exit.

Let us formalise an automatic technique for the explicit recovery of dead objects
that are known at compile-time. Given an expression e, we utilize the alias annotation
to obtain a new expression e; where suitable explicit heap dispose operations have been
safely inserted. This is achieved by a translation below with I" to denote a type environ-
ment mapping program variables to their annotated types, and ©(0,) to denote the set
of dead references (of the form v or v. f) before (after) the evaluation of expression e.

F;@l—e;ma Z:t,@1

Most rules are structure-preserving (or identity) rewritings, except for four rules given
in Fig 4. A sequence of disposals can be effected through dispose(D), with D containing
a set of variable/field references that are about to be dead at the end of expression e.

For the assignment rule [H:Ass1eN], we add w to the disposal set if it is unique and
is not yet in dead-set using D = {w | ann(t)=U}—©6;. The function isParam(w) returns

! Note that unique reference cannot escape through e; in eq;e2 as we require e; to be of the
void type.



Memory Usage Verification for OO Programs 77

[H:ASSIGN] [m:1F]
—isParam(w) I'(w)=t I'(v) = bool(b)es
D = {w|ann(t) =U} — O, I':OkFe —pgé;ut,0; i=12
F;@"@‘—>H€1 : t1,@1 t:msst(t1,t2) O3 =61 UE,
Fit <t D;, = O3—-6; i:1,2
ex = (e1 A D=0 1> e1<;dispose(D))  E; = (& < D;=0 1> é;<;dispose(D)) i = 1,2
IOFw=e<—py ;0 F if v then e; else ez —y
w = ez :: void@S, O1\w if v then F; else s :: t,03
[H:METH] [H:LOCAL]
F1:F+{1)1 ::t1,..,vp::tp} F;9F81‘—>H63::t1,@1
I';0Fe—pye = t,0 Ft <:t
Ft<:to ann(to) #L ann(t) & {L,R}
Viel..p-(ann(ti):L)ﬁ(Vf-vi.fg@) F+{'U :Z t}; O1Fex —peq: ta, O
D={w]|(w:t) € I,ann(t)=U}—O D= {v|ann(t) =T} — Oy
ez = (e1 A D=0 > e1<; dispose(D)) es = (ea << D=0 > es<; dispose(D))
r |—meﬂ, to mn((tl 1}7;)1‘;1,4;){6} F; O+ (t v =e€ ;62) —H
—p to mn((tl 1}7;)1‘;1,4;) {62} (t vV = €3, 65) o tg, @2\1}

Fig. 4. Automatic Insertion of dispose operation

true if w is a parameter variable, otherwise it returns false (for fields and local vari-
ables). The function ann extracts the alias of an annotated type, ann(r{v*)@A) = A. A
51, lf b;

conditional is expressed as &1 <1 b > & =g { £, otherwise
2, .

Furthermore, we have:
O\v =g¢r O — {v,v.f*} O\v.f =4 © — {v.f}

For the method declaration rule [a:meTH], we add to the disposal set those parame-
ters which are unique but not yet dead using {w | (w :: t) € I'1,ann(t) = U} — 6. For the
local declaration rule [a:LocaL], we add v to the disposal set if it is unique but not yet
dead using {v | ann(t) = U} — O,. For the [u:1F] rule, the uniqueness that are consumed
in one branch may have their heap spaces recovered in the other branch. This is cap-
tured by D; = ©35—6; ,i = 1, 2. Notice that mss#(¢1, t2) returns the minimal supertype of
both ¢1 and t», as follows:

T1 <:T To<:!:T VT3-(7'1,T2 <: T3=>T <Z7'3)
A1<aA A2<sA VAsz-(A1,A2<,A3=A<,A3)
msst(T1@A1, T2@A2) =4 T@A
Note that 1 <: 72 denotes the subtype relation for underlying types (without anno-

tations). Alias subtyping rules (shown below) allow unique references to be passed to
shared and lent-once locations (in addition to other unique locations), but not vice-versa.

A<.A U<aL U<.S

In the rest of this paper, we shall present a new static type system for verifying
memory heap usage, followed by a set of safety theorems on the type rules.



78 W.-N. Chin et al.

5 Rules for Memory Checking

We present type judgements for expressions, method declarations, class declarations
and programs to check for adequacy of memory, using relations of the form:

ATRest, A1 I e meth Feclass def FP

Note that I" is the type environment as explained earlier; A(A;) denotes the size
constraint, which holds for the size variables associated with I" (I" and ¢) for expression
e before (after) its evaluation; ¢ is an annotated type. Also, 7°(71) is used to denote the
available memory space in terms of bag abstraction before (after) the evaluation.

We present a few key syntax-directed type rules in Fig 5, with the rest of the rules in
the technical report. Before that, let us describe some notations used by the type rules.

[assiGN] . . [NEwl » ,
A TRe 1, A7 T'Rw it oY fciLft(c(n )= (Etl fl) =1 @)
r* = fresh() t; = prime(I'(v;))
Fiai<it,p X=V(t1)UV(t) A=3X-(Aioypd) Ft <:[R S]fz‘,pi i€l.p
I A7 FHw=e:void()@S, Ay, 1y p=[n"—r Ul pi
[DISPOSE] AFY 3 {(e, 1)} X =", V(t)
I'(v) =c(n")eu 11 =T {(c,1)} A1 = ANEX p¢) 1 =T—{(c,1)}
I'; A; T B v.dispose() : void()@S, A, Yy I3 A7 Fnewc(vi.p) 2 ¢{r™)@U, A1, 1y
[1F] [OVERRIDE]
I'(v) = bool(b)es methy, = t mn((¢; vi)i:1..p) where
DiAANY =1, Fep i ty, AL,y Dpris Ppoy,s €kms €kn {-}H k=12
T;ANY =0, Fegitta, Ao, 1o Dpri=>Pprg Ppog=>Dpoy
(t, T3, Ag) = unify(t1, t2, T1,T2, A1, AQ) ¢p,-1 = 61m262m ¢pr1 [ EQngqn
I'; A;T - if vthene; elsees it t, Az, 13 F OverridesOK (meth , meths)
[1Mi]

F (A mn((L; 9:)i:1..p) Where @pr; dpo; €c; €r{e})Ec(n™)
t =fresh(t) to=c(n™@A I'(v;))=t; i€0.p +t; <ty p;i i€l.p
pp=Ur pi A1 FT3e p=rename(i, t)UppUprime(pp)
Arzy(ry 3V(ee)UV(er)-p pr - A1 = Ao 3Y - p(GprAdpo)
N =T—-ede, X =U_ V(i) Y =XUprime(X) L=V ,V(t:)
I AT Fogmn(vr.p) = t, A, T

[METH]
=T U{vst1, .0 0t} A=noaX(D)AgpAinv(I)  Abe. 20
N AecbFent, Ay, ¢ AAMEYY D6 Ale, 30 Ft<:i,p
(s sNi) = Vseu(ts),i€lp Y=UL,Ni (3 prime(Y)-A1)=p(¢po)
T e £ mn((£; v:)i:1..p) where @pr; dpo; €c; € {€}

Fig. 5. Some Type Rules for Memory Checking



Memory Usage Verification for OO Programs 79

5.1 Notations

We use function V to return size variables of a formula, e.g. V(z'=z+1Ay=2)={z',y, 2}.
We extend it to annotated type, type environment, and memory specification, e.g.,
V(r(n*yeA)={n"}, V({(c, 4xd+8)})={d}. The function prime takes a set of size vari-

ables and returns their primed version, e.g. prime({s1,. .., sn})={sl,..., s, }. Note that
prime operation is idempotent, namely (v')’=v". We extend this to (annotated) type, type
environment,and even substitution. For example, prime(7(n1,...,ng)) = 7(nl, ..., ny),

and prime([z—a, y—b]) = [z'—d’,y'—b']. Often, we need to express a no-change con-
dition on a set of size variables. We define a naX operation as follows which returns a
formula for which the original and primed variables are made equal.

noX ({}) =4 true noX ({xYUX) =g (z'=x)AnoX (X)

We extend this function to annotated types (and type environments), as follows:
noX (t) =4 noX (V(t)). Also, we use n* = fresh() to generate new size variables n*. We
extend it to annotated type, so that = fresh(t) will return a new type ¢ with the same
underlying type as ¢ but with fresh size variables instead. Function rename(t1, t2) returns
an equality substitution, e.g. rename(Int(r), Int(s’))=[r—s’]. The operator U combines
two domain disjoint substitutions into one.

The function fdList is used to retrieve a full list of fields for a given class, together
with its size relation. The function inv is used to retrieve the size invariant that is asso-
ciated with each type. This function shall also be extended to type environment and list
of types. The function V.. classifies size variables from each field into three groups :
(i) immutable, (ii) mutable but unique, (iii) otherwise (non-trackable).

To effect a change ¢ to an existing poststate A, we provide an operator, oy, with
Y = {s"} to denote the set of size variables that is to be updated, as follows:

Aoy ¢ =g 37110 - p2(A) A p1(¢)
where Y = {s1,...,8n}; {r1,...,mn} =fresh() ; p1 = [si — mili=1 ; p2 = [si — ri]imy

5.2 Assignment

The [Ass1GN] rule captures imperative updates (to object fields and variables) by mod-
ifying the current size constraint to a new updated state with changes to the imperative
size variables from the LHS. From the rule, note that I" - w :: ¢, ¢, Y is to identify Y as a
set of imperative size variables and also to gather a constraint ¢ for this set. The subtype
relation - ¢1 <: t, p will return a substitution that maps the size variables of supertype
to that of the subtype. This mapping ignores all non-trackable size variables that may
be globally aliased, but immutable and unique mutable size variables are captured.

5.3 Memory Operations

The heap space is directly changed by the new and dispose primitives. Their corre-
sponding type rules, [NEW] and [DISPOSE], would ensure that sufficient memory is
available for consumption by new and will credit back space relinquished by dispose.
The memory effect is accumulated according to the flow of computation. Consider:



80 W.-N. Chin et al.

AFY3{(List, 1)} A1:Ao{$}m’:m+1
I'; A; 7+ x = new List(o, x) :: void()@S, A,V —{(List, 1)}
=(r—{(List,1)})w{(List, 1)}
I'; Ay; T—{(List, 1)} F y.dispose() :: void()@S, A, 11
I'; A; T+ x = new List(o, x); y.dispose() :: void()@S, A1,T

The new operation consumes a List node, while the dispose operation releases
back a List node. The net effect is that available memory 7 is unchanged. However,
due to the order of the two operations, we require A-7"J{(List, 1)} which affects the
maximum memory required.

Another rule which has a direct effect on memory is the method invocation rule
[1v1]. Sufficient memory must be available for consumption prior to each call (as spec-
ified by A; F TJe.), with the net memory release added back in the end (as specified
by 71 = T —edve,.). Each method precondition must be met by the pre-state of its caller.
This is checked by A=y IV(e.)UV(er)-p ¢pr Which uses a relation ~> x, defined as:

Ar>x ¢ =4 (A= pp), where p = [s1+— 81,..,80 — sh] A V(@) NX = {s1,.., 80}

Note that V, returns size variables in unprimed form, e.g. V,(z'=z+1Ay=2)
={z,y,2}.
5.4 Conditional

Our type rule for conditional [1F] is able to track both the size-constraints and mem-
ory usages in a path-sensitive manner. Path-sensitivity is encoded by adding b'=1 and
b'=0 to the pre-states of the two branches, respectively. We achieve path-sensitivity for
memory usage specification by integrating it with relational size constraints derived.
Take note that the unify operation merges the post-state constraints and memory us-
ages from the two branches via a disjunction, a formal definition and an example can
be found in our report [10]. Path-sensitivity makes our analysis more accurate and is
critical for analysing the memory requirement of recursive methods.

5.5 Method Declaration

Each method declaration is checked to see if its definition is consistent with the mem-
ory usage specification given in its declaration header by the [METH] rule. The initial
memory is e.. The final available memory of the method body e is 7% which must not
be less than the declared net memory release (as specified by ¢,,AA1 11 Jer).

Function subtyping for the OO paradigm is used to support method overriding. This
is captured by the [OVERRIDE] rule in Fig 5. Each method which overrides another
is expected to be contravariant on its precondition (and memory consumption) and
covariant on its postcondition (and memory releases).

6 Soundness of Type System

We have proposed a small-step operational semantics (denoted by < transitions) instru-
mented with alias and size notations[10], and have also formalised two safety theorems



Memory Usage Verification for OO Programs 81

for our type rules. The first theorem states that each well-typed expression preserves
its type under reduction with a runtime environment I7 and a store w that are consistent
with the compile-time counterparts, I" (type environment) and X (store typing). Also,
final size constraint is consistent with the value obtained on termination.

Theorem 1 (Preservation).

(a) (Expression)If [;X;4;0;TFe:t,Ar,601,T1 I'; 2 A;,0;7 E (I, w,0)
<H7w70> [e} — (U1,W1,O’1> [61}
then there exist Xo, O X, I'n, Aw, On, and T, such that

I' — diff(e,e1) = I'n — diff(e1, ) ;X0 A0;O0; 0 e i t, A,01, 11
I'n; Yoy Aa; GO0 Yo E (I, w1, 01) .

(b) (Value)If I';X;A;0;7F (A,8) =t,A,01;1 ;2 A0,0;7 E (Il,w,0)
then the following hold:

6 =6 I'+{z:thX; A0, E (I +{x— (A,0)},w,0)
where x = fresh() , Az = [v — V'] ey Ar.

Proof: By induction over the depth of type derivation for expression e. Details are given
in the technical report [10]. O

The second safety theorem on progress captures the fact that well-typed programs
cannot go wrong. Specifically, this theorem guarantees that no memory adequacy errors
are ever encountered for well-typed MEMJ programs, as follows:

Theorem 2 (Progress). If I'; ; A; ©; e :: t, Ay, 01,11 and I'; X,40;0;7 | (I, w,0),
then either e is a value, or (II,w, o) [e] — Err-Null, or there exist II,,w1,01,e1 such
that (II,w, o) le] — (II1,w1,01) [e1].

Proof: By induction over the depth of type derivation for expression e. Details are given
in the technical report [10]. O

7 Implementation

We have constructed a type checker for MEMJ, and have also built a preprocessor to
allow a more expressive language to be accepted. The entire prototype was built using
a Haskell compiler[18] where we have added a library (based on [19]) for Presburger
arithmetic constraint-solving.

The main objective of our initial experiments is to show that our memory usage
specification mechanism is expressive and that such an advanced form of type checking
is viable. We converted to MEMIJ a set of programs from the Java version of the Olden
benchmark suite [7] and another set of smaller programs from the ReglJava bench-
mark[11], before subjecting them to memory adequacy checking. Our initial experi-
mental results are encouraging; however this is a proof-of-concept implementation and
there is scope for optimization and more exhaustive experimentation.



82 W.-N. Chin et al.

Figure 6 summarises the statis-

P Size (li Checki i .) Verified . .
rograms  Size (lines) ecking (in sec.) Verifie tics obtained for cach program

Source Ann. Alias Memory Methods

bisort 340 7 001 256 6/6 that we have verified via our type
em3d 462 19 0.05 1.14 20/20 checker. Column 3 illustrates the
health 562 22 0.05 6.37 15/15 size and memory annotation over-

mst 473 31 0.02 1.26 22/22 heads which must be made in
power 765 24 0.06 4.28 19/19 the header declarations of each

treeadd 195 6 0.02 0.32 4/4 class and method. Columns 4 and
tsp 545 10 0.02 354 919 5 highlight the CPU times used
perimeter 745 12 0.02 21.81 8/8 (in seconds) for alias and mem-

n-body 1128 31 0.60 1.25 22/22
Voronoi 1000 45 0.03 3.51 39/40
stack 122 12 0.01 0.08 10/10

ory checking, respectively. Our ex-
periments were done under Red-
hat Linux 9.0 platform on Pen-

sieve 88 7 0.01 0.09 6/6 . . .
m-sort 183 13 0.01 0.36 12/12 tium 2.4 GHz with 768MB.ma1n
life 164 9 0.02 2.95 717 memory. Except for the perimeter
Mandelbrot 194 11 0.01  1.72 10/10  program (which has more condi-
Reynolds3 98 6 001 0.18 4/4 tionals from using a quadtree data
structure), all programs take under
Fig. 6. Type Checking Experimental Results 10 seconds to verify, despite them

being medium-sized programs and
the high complexity of Presburger solving. We attribute this to the fact that memory
declarations are verified in a summary-based fashion for each method definition.The
last column highlights the number of methods that have been successfully verified as
using memory spaces that are bounded by symbolic Presburger formulae.All methods’
heap usage could be statically bounded, except® for a method in Voronoi that has an
allocation inside a loop, with a complex termination condition.

Program Input Size Prediction (a) Actual (b) Allocation (c) Reuse (b/c) Accuracy (b/a)

sieve 10000 10000 9999 10000  0.9999 0.9999
m-sort 10000 20000 20000 287232 0.0696 1.0000
life 1000 2 2 1000 0.0020 1.0000
Mandelbrot 100 4 4 83692  0.00005 1.0000
Reynolds 10000 20014 20014 40000  0.5004 1.0000

Fig.7. Experimental Results on Memory Prediction and Recovery

We have also conducted a set of experimental results to evaluate on the effective-
ness of memory inference, in conjunction with our explicit memory recovery scheme.
We modified IBM’s Jikes RVM[2, 16] to provide support for explicit dispose operation
and instrumented its memory system to capture total allocation (c) and actual high wa-
termark (b). We then compare it against the predicted memory requirement (a) from our
memory inference. We count the number of objects created and reused. As can be seen
in Fig 7, our memory inference is accurate for the RegJava benchmark. Except for sieve,

2 For Olden programs which built tree-like data structure, we make a minor change to take total
nodes rather than heights as parameters. This avoids exponential formulae.



Memory Usage Verification for OO Programs 83

most of the programs have high degree of memory reuse which were facilitated by our
use of the dispose operation for memory recovery.

8 Related Work

Past research on memory models for object-oriented paradigm have focused largely on
efficiencyand safety. We are unaware of any prior type-based work on analysing heap
memory usage by OO programs for the purpose of checking for memory adequacy. The
closest related work on memory adequacy are based on first-order functional paradigm,
where data structures are mostly immutable and thus easier to handle.

Hughes and Pareto [15] proposed a type and effect system on space usage estimation
for a first-order functional language, extended with region language constructs of Tofte
and Talpin’s[20].The use of region model facilitates recovery of heap space. However,
as each region is only deleted when all its objects become dead, more memory than
necessary may be used, as reported by [4].

Hofmann and Jost [14] proposed a solution to obtain linear bounds on the heap
space usage of first-order functional programs. A key feature of their solution is the use
of linear typing which allows the space of each last-use data constructor (or record) to
be directly recycled by a matching allocation. With this approach, memory recovery can
be supported within each function, but not across functions in general. Moreover, their
model does not track the symbolic sizes of data structures. Nevertheless,one significant
advance of their work is an inference mechanism through linear programming (LP)
technique.The main advantage of LP technique is that no fix-point analysis is required,
but it restricts the memory effects to a linear form without disjunction.

Apart from the above memory analysis work on high level languages, Aspinall and
Compagnoni [3] presented a first-order linearly typed assembly language to allow safe
reuse of heap space.Their system is a target for the compilation of a functional pro-
gramming language with a similar type systems (e.g. Hofmann’s LFPL). More recently,
Cachera et. al. [6] proposed a constraint-based memory analysis for Java Bytecode-like
languages. For a given program their loop-detecting algorithm can detect methods and
instructions that execute an unbounded number of times, thus can be used to check
whether the memory usage is bounded or not. However, their analysis cannot check
whether a given amount of memory is adequate or not, while our system does.

9 Concluding Remarks

We have proposed a memory usage type system for a non-trivial object-oriented core
language. We have designed a flexible specification mechanism to allow memory needs
of user programs to be declared abstractly, and then verifies if memory adequacy prop-
erty holds for the given definitions. Our approach requires heap space to be explicitly
deallocated, which can be handled automatically. We have also built a prototype type
checker to confirm the viability and practicality of our approach. We envision our frame-
work to be useful for embedded system, where memory is considered to be a critical
resource. We also envision the synergy of predicable memory bounds with region-based



84 W.-N. Chin et al.

memory management systems. In particular, bounded memory regions can result in bet-
ter performance. Synergistically, region-based system can provide timely recovery for
shared objects that are dead, providing us with tighter memory bounds.

Acknowledgement. The authors would like to acknowledge the invaluable help of
Florin Craciun with the evaluation of a set of the benchmark programs.

References

1. J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotation for Program Understanding.
In ACM OOPSLA, Seattle, Washington, November 2002.

2. B. Alpern, D. Attanasio, J. J. Barton, A. Cocchi, S. F. Hummel, D. Lieber, M. Mergen,
T. Ngo, J. Shepherd, and S. Smith. Implementing Jalapeno in Java. In ACM OOPSLA,
Denver, Colorado, November 1999.

3. D. Aspinall and A. Compagnoni. Heap bounded assembly language. Journal of Automated
Reasoning, 31:261-302, 2003.

4. E. D. Berger, B. G. Zorn, and K. S. Mckinley. Reconsidering Custom Memory Allocation.
In ACM OOPSLA, November 2002.

5. J.Boyland, J. Noble, and W. Retert. Capabilities for Sharing: A Generalization of Uniqueness
and Read-Only. In ECOOP, Budapest, Hungary, June 2001.

6. D. Cachera, T. Jensen, D. Pichardie, and G. Schneider. Certified Memory Usage Analysis.
In 13th International Symposium of Formal Methods Europe (FM’05), July 2005.

7. M. C. Carlisle and A. Rogers. Software caching and computation migration in Olden. In 4tk
Principles and Practice of Parallel Programming, Santa Barbara, California, May 1993.

8. E. C. Chan, J. Boyland, and W. L. Scherlis. Promises: Limited Specifications for Analysis
and Manipulation. In Proceedings of the International Conference on Software Engineering,
pages 167-176, Kyoto, Japan, April 1998.

9. W.N. Chin, S.C. Khoo, S.C. Qin, C. Popeea, and H.H. Nguyen. Verifying Safety Policies
with Size Properties and Alias Controls. In 27th International Conference on Software En-
gineering (ICSE0S5), St. Louis, Missouri, May 2005.

10. W.N. Chin, H.H. Nguyen, S.C. Qin, and M. Rinard. Predictable Memory Usage for Object-
Oriented Programs. Technical report, SoC, Natl Univ. of Singapore, November 2004. avail.
at http://www.dur.ac.uk/shengchao.qin/papers/mem;j.ps.gz.

11. M. V. Christiansen and P. Velschow. Region-Based Memory Management in Java. Master’s
Thesis, Department of Computer Science (DIKU), University of Copenhagen, 1998.

12. M. Fahndrich and R. Leino. Declaring and checking non-null types in an object-oriented
language. In ACM OOPSLA, Anaheim, CA, October 2003.

13. C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.

14. M. Hofmann and S. Jost. Static prediction of heap space usage for first order functional
programs. In ACM POPL, New Orleans, Louisiana, January 2003.

15. J. Hughes and L. Pareto. Recursion and Dynamic Data-Structures in Bounded Space: To-
wards Embedded ML Programming. In Proceedings of the International Conference on
Functional Programming (ICFP ’99), September 1999.

16. IBM. Jikes™ Research Virtual Machine (RVM). http://www-124.ibm.com/developerworks/
oss/jikesrvm/.

17. L. Lamport. The temporal logic of actions. ACM Trans. on Programming Languages and
Systems, 16(3):872-923, May 1994.

18. S Peyton-Jones and et al. Glasgow Haskell Compiler. http://www.haskell.org/ghc.



Memory Usage Verification for OO Programs 85

19. W. Pugh. The Omega Test: A fast practical integer programming algorithm for dependence
analysis. Communications of the ACM, 8:102—-114, 1992.

20. M. Tofte and J. Talpin. Region-based memory management. Information and Computation,
132(2), 1997.

21. H. Xi and F. Pfenning. Eliminating array bound checking through dependent types. In ACM
PLDI. ACM Press, June 1998.

A Alias Checking

We introduce four alias control mechanisms U | S |R | L adopted from [5, 8, 1]. These
alias mechanisms shall be used to support precise size tracking in the presence of mu-
table objects, and also for the automatic recovery of dead unique objects. For size-
tracking, we introduce R-mode fields to allow size-immutable properties to be accu-
rately tracked for all objects. For example, an alternative class declaration for the list
data type is given below, where its next field is marked as read-only (or immutable).
Note that the val field remains mutable.

class RList(n) where n=m+1; n>0{ Object()@S val; RList(m)@R next; --- }

The size property of such an RList type can be analysed at compile-time, while
allowing its objects to be freely shared. However, this comes at the cost of losing both
mutability and uniqueness.

We make use of L-mode parameters, with the limited unique (or lent-once) property
[8], to capture unique references that are temporarily lent out to method calls. They
allow the preservation of uniqueness together with precise size-tracking across methods.
Consider the following method with two List parameters.

void()@S join(List(m)@L x, List(n)@U y) where n > 0;m'=n+m;- -

{ if isNull(x.next) then x.next = y else join(x.next,y) }

The first parameter is annotated as lent-once and can thus be tracked for size proper-
ties without loss of uniqueness. However, the second parameter is marked unique as its
reference escapes the method body (into the tail of the List from the first parameter). In
other words, the parameter y can have its uniqueness consumed but not x, as reflected
in the body of the above method declaration. Given two unique lists, a and b, the call
join(a,b) would consume the uniqueness of b but not that of a. Our lent-once policy is
more restrictive than normal lending [1] as we require each lent-once parameter to be
unaliased within the scope of its method. For example, join(a, a) is allowed by the type
rules of [1], but disallowed by our lent-once’s policy.

In our alias type system, uniqueness may be transferredfrom one location (variable,
field or parameter) to another location. Consider a type environment {x::0bject()@U,
y::0bject()@U, z::0bject()@S} where variables x and y are unique, while z is shared. In
the following code, {x = y;z = x}, the uniqueness of y is first transferred to location x,
followed by the consumption of uniqueness of x that is lost to the shared variable z. In
our type judgement, we track variables/fields that have become dead using:

Ieke:t,6;



86 W.-N. Chin et al.

Here, each dead-set ©(6,) captures the set of references with consumed uniqueness
before(after) the evaluation of expression e. I" is a type enviroment which maps vari-
ables to their annotated types. Other type judgements for methods, classes and programs
have the following forms.

I Fen meth Far def  bpdef,, , methii g

The full set of alias checking rules are givenin our technical report [10]).



Abstraction Refinement for Termination

Byron Cook!, Andreas Podelski?, and Andrey Rybalchenko?

! Microsoft Research, Cambridge
2 Max-Planck-Institut fiir Informatik, Saarbriicken

Abstract. Abstraction can often lead to spurious counter-
examples. Counterexample-guided abstraction refinement is a method
of strengthening abstractions based on the analysis of these spurious
counterexamples. For invariance properties, a counterexample is a finite
trace that violates the invariant; it is spurious if it is possible in the ab-
straction but not in the original system. When proving termination or
other liveness properties of infinite-state systems, a useful notion of spu-
rious counterexamples has remained an open problem. For this reason,
no counterexample-guided abstraction refinement algorithm was known
for termination. In this paper, we address this problem and present the
first known automatic counterexample-guided abstraction refinement al-
gorithm for termination proofs. We exploit recent results on transition in-
variants and transition predicate abstraction. We identify two reasons for
spuriousness: abstractions that are too coarse, and candidate transition
invariants that are too strong. Our counterexample-guided abstraction
refinement algorithm successively weakens candidate transition invari-
ants and refines the abstraction.

1 Introduction

The correctness argument for a program can sometimes be based on a small
fraction of the original program code. However, it is often hard to extract this
core automatically if the program is large and complex.

Automated abstraction refinement [6,19] is designed to solve precisely this
problem. It automatically extracts just the information that is needed to prove
the correctness property. Such algorithms are known for safety and invariance
properties [2,5,6,13,14,15,16,17,19]. However, no such algorithm is known for
termination proofs of infinite-state systems.

Abstraction refinement is based on the notion of spurious counterexamples.
For invariance properties, a counterexample is a finite trace that violates the
invariant. The counterexample is spurious if the trace is possible in the abstract
system, but infeasible in the concrete system. The proof of the infeasibility of
the trace provides guidance for adding more precision to the abstraction (and
thus refining it).

For termination and liveness properties of infinite-state programs, a useful
notion of spurious counterexamples has been an open problem. In this paper,
we address this problem and present the first known counterexample-guided
abstraction refinement algorithm for termination.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 87-101, 2005.
© Springer-Verlag Berlin Heidelberg 2005



88 B. Cook, A. Podelski, and A. Rybalchenko

We follow a recent approach to temporal verification of infinite-state sys-
tems that is based on transition invariants [21] and transition predicate abstrac-
tion [22]. This approach is a promising starting point for the development of our
refinement method because of its connection with abstraction methods [11]. Let
T be the transition relation of the infinite-state system. Transition invariant is
the least fixed point of an operator F (defined as F(Q) = Q o T'), or rather its
abstraction wrt. a set of transition predicates. The least fixed point construc-
tion is in analogy with abstract proofs for invariance properties, but the analogy
stops here. Let us explain this point in detail.

Let I be an invariant and F' be an operator such that

F(X)={s'|se X and (s,5') €T} .

To prove that the invariant I holds we can search for an abstraction F' If

based on a set of predicates P such that the least fixed point of F’ ;f is contained
in I:

3P, Ifp(FE)CT.

The termination property does not come with an a priori fixed transition
invariant. Any transition invariant is sufficient. Again, let F be F(Q) = Qo T.
In addition to finding an abstraction .7-"# of F, we need to find a transition
invariant R such that the least fixed point of .7-';& is contained in R:

IR IP. Ifp(FE)CR. (1)

The existence of the transition invariant R implies termination if R satisfies an
additional property that we will explain later.

Thus, an automated termination checker that implements counterexample-
guided abstraction refinement must not only construct an appropriate set of
transition predicates P, but also an assertion R that is an appropriate transition
invariant. When the inclusion (1) does not hold, we do not know whether the
left side is too big or the right side is not big enough. Thus, our refinement
algorithm analyzes the reason why h‘p(]:;iE ) is not included in R. Then, it chooses
accordingly one of two possible actions. Either it decides that the abstraction is
too coarse and it refines the abstraction by adding more transition predicates to
P and thus makes pr(fﬁ ) smaller, or it decides that the candidate transition
invariant R is too strong and weakens it.

This leads to a notion of counterexample that reflects both aspects of spuri-
ousness: A counterexample is spurious if either the abstraction is too coarse or
the candidate transition invariant is too strong. It is this new notion of spurious
counterexamples that leads to the first known counterexample-guided abstrac-
tion refinement for the automation of termination proofs.

2 Related Work

Our work builds upon and benefits from the previous research on abstrac-
tion refinement (e.g. [2,5,6,13,14,15,16,17,19]) and automatic termination proofs



Abstraction Refinement for Termination 89

(e.g [4,8,10,12,20]) for infinite-state systems. A short way to distinguish our work
from the existing literature in those two research areas is that we are the first to
discover a method of abstraction refinement for termination analysis of infinite-
state systems.

For the comparison with existing abstraction refinement tools: none of those
tools can automatically prove termination, except for in trivial cases. This limi-
tation is inherent to predicate abstraction (see [22] for an explanation).

The approach in [1] is to encode ranking functions into fairness assumptions
for a finite model obtained by predicate abstraction; in contrast with our work,
the actual termination arguments are ranking functions (which are found man-
ually or by the above-mentioned tools without abstraction refinement).

The work in [22] presents an algorithm that, for a given set of transition
predicates, constructs an abstraction of a program for the verification of liveness
properties. This work does not, however, provide any guidance on how to refine
the abstraction if it fails to prove the property.

Other proof methods for liveness properties have been proposed that are
limited to only finite-state systems. For example the work in [3] exploits the fact
that a non-terminating finite-state system must visit the same state infinitely
many times.

3 Preliminaries

Programs. Following [18], we abstract away from the syntax of a concrete pro-
gramming language such as C and represent a program P by a set of transitions.
Each transition 7 (to be thought of as the label of a program statement) refers
to a transition constraint p,, which is an assertion over the program variables
and their primed versions.

We use V and V' to represent the set of variables of the program and the set
of their primed versions, respectively. The intended semantics of V' is to refer
to the values of the variables V' after executing a transition. The set V' includes
the variable pc (the program counter) which ranges over the program locations.

Each transition 7 refers to a pair (¢, ¢') of pre and post locations, respectively.
These locations appear in the transition constraint p, in the form of the con-
juncts pc = £ and pc’ = #'. The program has an initial location ¢° and an initial
condition ©, which is an assertion over program variables. The initial location
(0 appears in © as the conjunct of the form pc = £°.

We assume that the program P is fixed from now on.

Program Semantics. A program state s is a valuation of the program vari-
ables, including the program counter pc.

We identify an assertion over program variables with the set of states that it
denotes. For example, @ is the the set of initial states. We also identify an asser-
tion over primed and unprimed program variables with the set of pairs of states
that it denotes. For example, p; is the transition relation of the transition 7.

A computation sg, s1, Sa, . .. is a possibly infinite sequence of states that starts
in an initial state (sgp € @) and that is consecutive, i.e., each pair of successive



90 B. Cook, A. Podelski, and A. Rybalchenko

states belongs to the transition relation of some transition. Formally, for each
i > 0 there exists a transition 7 such that (s;, $i+1) € pr.

Paths and Cyclic Paths. A path 7 = 71 ...7, is a (finite) sequence of tran-
sitions with consecutive locations (the post location of 7; is the pre location of
Tit+1)- A cyclic path m =71 ... 7, is a special case of a path with the same start
and end location (the pre location of its first transition 7y is equal to the post
location of its last transition 7,,).!

We define the composition of relations p; o p2 as usual:

prope = {(s,8) | (s,8") € p1and (s",s) € pa} .

It can be implemented by logical operations over transition constraints.

A path 7 denotes a transition relation p, that is naturally obtained by com-
posing the transition relations of the transitions along the path. Formally, for a
path # =71y ...7, we have:

Pr = P © "0 Pr, -

Termination. A program is terminating if it does not admit any infinite com-
putation. A binary relation R is well-founded if there exists no infinite se-
quence Sg, S1, 82, ... that is consecutive wrt. R (formally, for each i > 0 we
have (s, si+1) € R).

The following fact is a consequence of Theorem 1 in [21] (by the fact that the
transition relation of each path 7 with different start and end locations ¢ and ¢
is contained in the well-founded relation R,y = pc={ A pc’ ={').

Theorem 1 (Termination Condition [21]). The program is terminating if
there exists a finite set of well-founded relations R = {Ri,..., Ry} such that
the transition relation pr of each cyclic path m = 7y ... 7T, is included in one of
the relations from R.

The termination condition in the theorem above is formally:

for each cyclicpathm=7...7: pr CRyor ... orpr CR,, . (2)

Transition Predicates. We use transition predicate abstraction [22] in order to
obtain a termination condition that is stronger than (2), and that can be checked
effectively. A transition predicate p is an assertion over program variables and
their primed version, i.e., p is a binary relation over states. In contrast, a (plain)
predicate is an assertion over program variables, i.e., a set of states. We use P
to refer to a finite set of transition predicates. Transition predicate abstraction
is similar to predicate abstraction if one replaces the set of program variables V'
by the set VU V",

! Note that a cyclic path with end location ¢ may have numerous other steps that
pass through £.



Abstraction Refinement for Termination 91

An abstraction function ap maps a binary relation p over states to a superset
expressed by a conjunction of transition predicates. We assume that one can
automatically construct the abstraction function ap for a given finite set of
transition predicates P. A possible definition is the abstraction of a relation p
by the conjunction of all transition predicates p € P weaker than p (and test
the ‘weaker-than’ relation p |= p with a theorem prover).

For our formal treatment in Theorem 3, we will use one basic fact about
the abstraction function ap: the abstraction of a relation p is the relation itself
(i.e. there is no loss of precision during abstraction) if p can be expressed by a
conjunction of transition predicates (see Theorem 13 in [9]). Formally,

ap(p)=p ifp=prA...Ap, forpi,...,pp €P. (3)

Abstraction of Paths. We can construct an abstraction ap () for each path
T =Ty ...Tp according to the following inductive definition.
ap(m...7n) = ap(prop) wherep=ap(ra...T)
ap(m) = ap(pr,)
The abstraction of the path 7 is always a superset of the transition relation of m,
formally
pe C ap(r) .

We obtain a termination condition that is effective in the sense that one can
compute an abstraction ap(m) of each possible (cyclic) path .

Theorem 2 (Termination Condition with Abstraction [22]). The pro-
gram is terminating if there exists a finite set of well-founded relations R =
{R1,...,Rm} such that the abstraction ap(m) of the transition relation of each
cyclic path m =1y ... 7T, is included in one of the relations from R.

This ‘effective’ termination condition is formally:
for each cyclic pathm =71 ...7,: ap(m) CRyor ... orap(m) C Ry, . (4)

For notational convenience, we overload the symbol ap. We will use ap not only
as a function on relations p, but also as a function ap over paths . We need to
distinguish the two functions. The abstraction of the transition relation p, is in
general a subset of the abstraction of the path 7, formally,

ap(pr) C ap(m) .
For example, given the transition relations

pry, = o =22,

pry = ' =z +1,

and a singleton set of transition predicates

P={2 <z},



92 B. Cook, A. Podelski, and A. Rybalchenko

we have
0473(,07-17-2) = 0473(,07-1 Op7'2)
=ap(r'=x-1)
=a <z,
whereas

ap(nima) = ap(pr, o ap(m2))
= ap(pr, o true)
= ap(true)

= true .

Thus, we have ap(pr,r,) S ap(T172).

=

4 Refinement for Termination

The termination condition (4) suggests that, given a set of well-founded rela-
tions R = {Ry,..., R}, the problem of refinement is to find the ‘right’ set of
transition predicates P. The set P is ‘right’ if the induced abstraction ap is
sufficiently precise to infer an inclusion of the form ap(mw) C R; for every cyclic
path 7, see (4).

Our algorithm must, however, also find the ‘right’ set of well-founded rela-
tions R = {Ry,..., Rm}. The set R is ‘right’ if the inclusion p, C R; holds ‘in
the concrete’ for every path 7, see (2).

Counterexamples. Distinction between the two cases above complicates the
notion of a spurious counterexample. Namely, if the abstract check (4) does not
succeed for a cyclic path 7, then this may be spurious for one of two reasons:
either the set of transition predicates P was not yet ‘right’ or the set of well-
founded relations R was not yet ‘right’.

Definition 1 (Spurious Counterexample). Given a set of transition pred-
icates P and a set of well-founded relations R = {R1,...,Rn}, a cyclic path
T =T1...Tp @8 a counterexample wrt. P and R if its abstraction ap(w) is not
contained in any relation in R. Formally,

ap(m) L R; foreachje{l,...,m} .

The counterexample 7 is spurious if either its relation pr is contained in some
relation R; of R or its relation pr is well-founded. Formally,

pr CR; forsomeje{l,....,m} or pp well-founded.

The Algorithm. Figure 1 shows our counterexample-guided abstraction refine-
ment for termination. For each new set of well-founded relations R and for each
new set of transition predicates P, the algorithm checks whether there exists a
counterexample wrt. R and P. It does so by going through all cyclic paths 7 until
no more new abstract values ap(m) can be computed. Although the number of
cyclic paths is infinite, the search converges because the range of the abstraction



Abstraction Refinement for Termination 93

1 input

2 Program P

3  begin

4 R:=10 (x set of well-founded relations x)
5 P:=0 (* set of transition predicates *)
6 repeat

7 if exists T =71...7, s.t. ap(w) € R for any R € R then

8 if exists R € R such that pr C R then

9 (* refinement step )

10 Prpath := U;eq.., Preds(pr, 0---0pr,)

11 Pioop = Preds(R) U |, ,, Preds(pr, 0---0pr, o R)
12 P := P U Ppath U Ploop

13 else

14 if 7 is well-founded by the ranking relation R then
15 (* weakening step x)

16 R := RU{R}

17 else

18 return “Counterexample cyclic path 71 ...7,”

19 else

20 return “Program P terminates”

21 end.

Fig. 1. Counterexample-guided abstraction refinement for termination. In line 7, we
investigate abstractions ap () of cyclic paths by exploring the paths in a breadth-
first way. The exploration converges since the range of the abstraction function ap is
finite. In line 10, Preds(T") symbolically evaluates T" and then extracts the set of atomic
formulas from the reduced expression.

function ap is finite (and determined by the number of transition predicates
in P).

If the algorithm finds no counterexample, it has succeeded in proving the
termination property and it stops. If the algorithm finds a counterexample 7,
there are three possibilities.

1. The counterexample 7 is spurious because the set of transition predicates
was not yet ‘right’. Formally, the inclusion between p, and some R € R does
not hold in the abstract, i.e. ap(m) € R, but it does hold in the concrete,
i.e. pr C R. The refinement step adds a set of transition predicates Ppath
from the transition relation of every suffix of the path # = 7 ... 7, to the
set P. These predicates will eliminate this particular counterexample in the
next iteration of the algorithm. The set of predicates Pioop guarantees that
the refinement will not get ‘stuck in a loop’ discovering an infinite sequence
of counterexamples 7, 77, ..., 7, .... We will provide a formal statement
describing the progress of refinement in Theorem 3.

2. The counterexample 7 is spurious because the set of well-founded relations
R was not yet ‘right’. This means that for any R € R the inclusion p, C R
does not hold neither in the abstract nor in the concrete, but the transi-



94 B. Cook, A. Podelski, and A. Rybalchenko

tion relation p, of the cyclic path 7 is well-founded. This means that the
candidate set R is not yet ‘right’. In that case a well-founded relation R
containing p, is added to R. In the next iteration of the algorithm, the same
counterexample 7 may be found again, but then we will be in Case 1.

3. The counterexample 7 is not spurious: the transition relation p, of the cyclic
path 7 is not well-founded. In that case, the algorithm has failed to prove the
termination property and it stops. In this case 7 may be a feasible infinite
trace.

Well-Foundedness and Ranking Relations. A ranking function for a (ter-
minating) program is defined by an expression rank over the program variables.
Its value for each reachable program state is a non-negative integer that decreases
during each computation step.

We write rank(V') for the expression in the program variables and rank(V")
for the expression in the primed version of the program variables. A ranking
function defined by the expression rank induces a well-founded relation (a ranking
relation) R in the following way:

R = rank(V) > 0Arank(V’') <rank(V)—1.

We note the following observation.

Remark 1. A ranking relation R is transitive. Formally,
RoRCR.

A cyclic path # = 71 ...7, defines a program fragment of a very specific
form: it consists of one program location ¢ and one transition from ¢ to ¢ with
the transition relation p,. There exist several automatic methods and tools for
the computation of ranking functions for such programs, e.g. [4,7,20,24]. These
tools can be used for implementing line 14 of the algorithm.

Progress of Refinement. A newly detected spurious counterexample gives rise
to a new refinement step and a new iteration of the algorithm. The refinement
algorithm makes progress if for each newly detected spurious counterexample
7 the cyclic path 7 is no longer a counterexample after the next iteration or
the next two iterations of the algorithm. Our algorithm enjoys the property of
eliminating the infinite set of spurious counterexamples 7, 77, . . . in a single step.
We formalize this property in Theorem 3.

Theorem 3 (Progress of Refinement). If m is a spurious counterexample
wrt. the sets R and P, then none of the cyclic paths w1, ma, ... obtained by con-
catenating m with itself repeatedly (m = w, mo = 7w, etc.) is a counterexample
wrt. the sets R’ and P’ obtained by refinement in one or possibly two more
iterations of the algorithm in Figure 1.

Proof. Given a spurious counterexample m = 71 ...7,, there are two cases that
we need to consider. In the first case, the relation p, is included in some R € R



Abstraction Refinement for Termination 95

(at line 8 on Figure 1). Hence, the refinement step (at lines 10, 11, and 12)
updates the abstraction function. Now we consider the next iteration of the
algorithm. Let P’ be the current set of transition predicates, which define the
abstraction function.

We prove that ap/(77) C R by induction over j.2 For the base case j = 1, we
prove ap:(m) C R. By Theorem 13 in [9], an abstraction function is precise for
some input if the input is expressible by the predicates defining the abstraction.
Hence, for each i € {1,...,n} we have ap/ (7 ...7,) = pr, 0--- 0 pr.. Thus, we
have ap/ (1) C R.

For the induction step, we assume ap/(77) C R for some j > 1. By Theo-
rem 13 in [9], we have ap/(7i...7,m) C pyy0---0p, oR foreachi € {1,...,n}.
Hence, we have ap (/) = p, o R. Since p C R and by the assumption that R
is a transitive relation, we have ap(7m/*1) C Ro R C R.

If pr is not contained in any R € R, then after the weakening step at line 16
using a ranking relation R we have pr C R, and the above case applies. O

5 Example

In this section we execute the algorithm contained in Figure 1 on a sample
program fragment. Refer to left-hand side of Figure 2 for the example program.
We represent the program as a control-flow graph on the right-hand side, where
each node is the start of a basic-block, and each transition (labeled 71, 71, and
73) is decorated with a relation that represents the conditions and assignments
of the basic block. We have the following transition relations p,:

P, = 3'3Z()/\l‘/:x—i-l/\y/:1/\p(::£0/\p(:/:£17
pr, = y>ax AN =x-2Ay =yApc="LiApc =/,
prs = y<aAa' =xAy =y+1Apc=~LApd =1 .

To simplify the presentation, we assume an implicit treatment of the program
counter. This means that we do not show any predicates involving pc in the
exposition below.

We summarize the intermediate steps of our example execution in Table 1,
and give a detailed explanation below. Line numbers refer to the algorithm shown
on Figure 1.

Step I/Line 4 and 5: We start with the empty set of well-founded relations
R = () and the empty set of transition predicates P = (.

Step II/Lines 7, 8, 10, 11, and 12: We start enumerating cyclic paths and
computing their abstractions. Because R is empty, we find that for the cyclic
path m = 7172 the abstract relation ap(7) does not entail any relations in R.
This means that 7 is a counterexample. We do not know yet whether it is
spurious. We therefore move to line 8. For the same reason there does not

2 Note that we abstract wrt. a refined set of transition predicates P’.



96 B. Cook, A. Podelski, and A. Rybalchenko

Fragment of program text Control-flow graph representation
T1
£o: while z > 0 begin zz0
rzi=x+1 r=z+1
Y = 1 y/ =1
{1 : while y < x begin 73
ST e W) v
end g
Ti=x—2 y=y+l
end 2
y>x
=x—-2
y =y

Fig. 2. Example program fragment with nested loops

Table 1. The states of the algorithm in Figure 1 while analyzing the example in
Figure 2

Step Pathw VRER Action
I - - Initialization with R =0 and P =0
11 T1T2 pr € R Weakening with
R, = false
Il 72 ap(r) £ R Refinement by
Preds(pr,) = {y > z,2" =2 — 2,y' = y},
Preds(pr, © pry) — 0,
Preds(...R1) = 0.
v T3 pr € R Weakening with
Ro=z—y>0A2' -y <z—y-—1
A% T3 ap(m) € R Refinement by
Preds(pr,) = {y < z,2’ =2,y =y + 1},
Preds(Re) ={z—y > 0,2 — ¢y <z —y—1},
Preds(pry 0o Ro) ={y <z —-1,2' —¢y' <z —y—2}.
VI ToT1 pr € R Weakening with
Rz=xz>2A2' <z-1
VII m7n1 ap(r) € R Refinement by
Preds(pr,) = {z > 0,2" =z + 1,y = 1},
Preds(pr, 0 pry) = {y > z,2 > 2,2 =2 — 1,y = 1},
Preds(R2) = {z > 2,2’ <z — 1},
Preds(pr, o R2) = {z > 1,2’ <z},
Preds(pr, © pry 0 R2) = {y > z,z > 3,2’ <z — 3}.
VIII 711372 pr LR Weakening with
Ri=x>0nz' <z-1



Abstraction Refinement for Termination 97

exist a relation R in R such that p, C R. We therefore move to line 14. The
composition p,, o p-, equals

priopr=T32".2>0N2" =z +1Ay" =1A
y' >a' N =2" —2ny =4
=z>0Al>a+1Ad =z2—1AyY =1
=xz>0A1>z+1
=x>0AN0>2x
= false .

Since false is well-founded, the counterexample 7 is spurious because the can-
didate set R is too strong. The ranking relation that provides the evidence of
pr’s well-foundedness is the empty relation. Hence, we go to line 16, and add
the empty relation 1 = 0 to R.

Step III/Lines 7, 8, 10, 11, and 12: We observe that the cyclic path = =
T172 is still a spurious counterexample, since

ap(m) = ap(pr © ap(n2))
=ap(pr ocap(ly>azNa’ =2 -2y =y))
= ap(pr, otrue)
= ap(true)

= true ,

and because true does not entail R;. We go to line 8. Recall that pr, o pr, =
false. Because false C R;, we detect that the counterexample 7 is spurious due
to imprecise abstraction. Hence, we go to line 10, and we collect the sets of
predicates Preds(p;,) and Preds(p,, o pr,), see Table 1. The later set is empty,
since pr, o pr, = false. The set of predicates collected at line 11 is empty because
Ry is empty. Therefore, we finish this step with the following set of transition
predicates:

P={y>xa' =x-2,y =y}.

Step IV /Lines 7, 8, 14, and 16: We note that 772 is no longer a counterex-
ample, because ap(1172) C Ry1. We find that for the cyclic path © = 73 the ab-
stract relation ap () does not entail any relations in R. This means that 7 is a
counterexample. We do not know yet whether it is spurious. We therefore move
to line 8. There does not exist a relation R in R such that p, C R. We therefore
move to line 14. Recall that p,, = y <z Az’ =2 Ay =y+ 1. Using the
techniques described in [20], we prove that p,, is well-founded. We also compute
a witness of pr,’s well-foundedness. The witness is a ranking relation Rs such
that pr, C Ro. We have

Ry, = z2—y>0Aad —¢y/ <z—y—1.

Hence, 7 is a spurious counterexample. We weaken R by adding R., at line 16.



98 B. Cook, A. Podelski, and A. Rybalchenko

Step V/Lines 7, 8, 10, 11, and 12: For 7 = 73 we have ap(m) = true.
Therefore ap(m) does not entail Ry. We know that pr C R (see Step IV).
This means that 73 is still a (spurious) counterexample wrt. the current ab-
straction. We refine the abstraction. The condition at line 8 succeeds, and we
move to line 10. We collect the predicates from Preds(p,,). At line 11, we collect
the predicates from Preds(R2), and Preds(p,, o R2). After executing line 11, we
have

’P:{y>l’7l’/:$72,y/:y,y§$7$/:l'7y/:y+1,
¥y <z-y-ly<z-1l,2 -y <z-y-—2}.

Step VI/Lines 7, 8, 14, and 16: We observe that 73 is no longer a coun-
terexample, since ap(73) C Ry. We consider the abstraction of the cyclic path
m = To71. We have that ap(7) does not entail neither Ry nor Ry. The relation
pr such that

pr = y>xAz>2A =z—1Ay =1

is well-founded, but is not contained in any R € R. Hence, w is a spurious
counterexample. Therefore we execute lines 14, and 16 of the algorithm, which
weaken R. A witness to the well-foundedness of p, is a ranking relation R3 such
that

Ry = z>2A 2 ' <zx—1.

After executing line 16, we have R = {Ry, R, R3}.

Step VII/Lines 7, 8, 10, 11, and 12: Although p,, o p;, € Rs we have
ap(me071) € Rs. This means that the abstraction is too coarse. Therefore, we ex-
ecute lines 10, 11, and 12. At line 10, we collect the sets of predicates Preds(p,)
and Preds(pr, o pr,). At line 11, we collect the sets Preds(Rj3), Preds(p,, o R3),
and Preds(p,, o pr, © R3).

Step VIII/Lines 7, 8, 14, and 16: We observe that 7271 is no longer a (spu-
rious) counterexample. We discover that the relation p, corresponding to the
cyclic path m=71737 is well-founded, but is not contained in any relation R€R:

PriOPrsOpr, = z=0A2' =x—1AYy =2.

This means that we found another spurious counterexample. Therefore we exe-
cute lines 8, 14 and 16. The ranking relation R4 such that

Ry = 2>0N2' <2—1

is a witness to the well-foundedness of p,, o pr, o pr,. After executing line 14,
we have R = {Ry1, Ra, R3, R4}.

Final Result: For the abstraction ap(7) of every cyclic path 7 there exists a
relation R in R = {Ry, Rg, R3, R4} such that ap(m) entails R. Therefore, the



Abstraction Refinement for Termination 99

algorithm terminates with R = {Ri, Ra, R3, R4} and the set of predicates P
where

Ry = false,

R = z—y>0nAad -y <z—-y-—-1,
Ry = z>2Aa' <z-1,

Ry = z>0Nad' <z-1,

and
P={{xz>0z>1,x>2x>3,
ygxay§x713y>xa
¥=z+1l,7=zx,7 =v—-1,2 =z -2,
<z <zx—1l,2<x-3
-y <r-y-la' -y <zr-y-2
Y =y+1ly =yy =1}.

6 Conclusion

Counterexample-guided abstraction refinement allows us to automatically ex-
tract just the information that is needed to prove the property. The crux of
our abstraction refinement procedure for termination is the notion of a coun-
terexample, and the different possible root causes when counterexamples are
spurious.

We presented the first known counterexample-guided abstraction refinement
algorithm for the proof of termination. We exploit recent results on transition
invariants and transition predicate abstraction. Our counterexample-guided ab-
straction refinement algorithm successively weakens candidate transition invari-
ants and successively refines abstractions.

Future work. We are working on an implementation of this algorithm in SLAM.
Possible extensions of the algorithm presented here concern a wider class of
properties (liveness with fairness assumptions) and a wider class of programs
(concurrent and recursive programs); here the techniques described in [22] and
in [23] can be useful.

Acknowledgment. We thank Tom Ball, Aaron Bradley, and Lenore Zuck for
discussions.

References

1. I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate abstraction. In
VMCAI’2005: Verification, Model Checking, and Abstract Interpretation, volume
3385 of LNCS, pages 164—-180. Springer, 2005.

2. T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM and Static Driver Verifier:
Technology transfer of formal methods inside Microsoft. In IFM’2004: Fourth
International Conference on Integrated Formal Methods, volume 2999 of LNCS,
pages 1-20. Springer, 2004.



100

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

B. Cook, A. Podelski, and A. Rybalchenko

A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking.
In FMICS’02: Formal Methods for Industrial Critical Systems, volume 66(2) of
ENTCS, 2002.

. A. Bradley, Z. Manna, and H. Sipma. Termination of polynomial programs. In

VMCAI’2005: Verification, Model Checking, and Abstract Interpretation, volume
3385 of LNCS. Springer, 2005.

. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of

software components in C. In ICSE’2003: Int. Conf. on Software Engineering,
pages 385—-395, 2003.

. E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, December

1999.

. M. Colén and H. Sipma. Synthesis of linear ranking functions. In TACAS’2001:

Tools and Algorithms for the Construction and Analysis of Systems, volume 2031
of LNCS, pages 67-81. Springer, 2001.

. M. Colén and H. Sipma. Practical methods for proving program termination. In

CAV’2002: Computer Aided Verification, volume 2404 of LNCS, pages 442-454.
Springer, 2002.

. P. Cousot. Partial completeness of abstract fixpoint checking. In SARA’2000:

Abstraction, Reformulation, and Approximation, volume 1864 of LNCS, pages 1—
15. Springer, 2000.

P. Cousot. Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In VMCAI’2005: Verifica-
tion, Model Checking, and Abstract Interpretation, volume 3385 of LNCS, pages
1-24. Springer, 2005.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL’1977:
Principles of Programming Languages, pages 238-252. ACM Press, 1977.

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL’1978: Principles of Programming Languages,
pages 84-97. ACM Press, 1978.

S. Das and D. L. Dill. Successive approximation of abstract transition relations.
In LICS’2001: Logic in Computer Science, pages 51-60. IEEE, 2001.

J. Hatcliff and M. B. Dwyer. Using the Bandera tool set to model-check properties
of concurrent Java software. In CONCUR’2001: Concurrency Theory, volume 2154
of LNCS, pages 39-58. Springer, 2001.

T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In POPL’200/: Principles of Programming Languages, pages 232—244. ACM
Press, 2004.

F. Ivancic, H. Jain, A. Gupta, and M. K. Ganai. Localization and register sharing
for predicate abstraction. In TACAS’2005: Tools and Algorithms for Construction
and Analysis of Systems, LNCS. Springer, 2005. To appear.

Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verification by
abstraction. In TACAS’2001: Tools and Algorithms for the Construction and Anal-
ysis of Systems, volume 2031 of LNCS, pages 98—112. Springer, 2001.

Z. Manna and A. Pnueli. Temporal wverification of reactive systems: Safety.
Springer, 1995.

K. S. Namjoshi and R. P. Kurshan. Syntactic program transformations for au-
tomatic abstraction. In CAV’2000: Computer Aided Verification, volume 1855 of
LNCS, pages 139-153. Springer, 2000.



20

21.

22.

23.

24.

Abstraction Refinement for Termination 101

. A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear
ranking functions. In VMCAI’2004: Verification, Model Checking, and Abstract
Interpretation, volume 2937 of LNCS, pages 239-251. Springer, 2004.

A. Podelski and A. Rybalchenko. Transition invariants. In LICS’2004: Logic in
Computer Science, pages 32—41. IEEE, 2004.

A. Podelski and A. Rybalchenko. Transition predicate abstraction and fair ter-
mination. In POPL’2005: Principles of Programming Languages, pages 132—144.
ACM Press, 2005.

A. Podelski, I. Schaefer, and S. Wagner. Summaries for while programs with
recursion. In S. Sagiv, editor, ESOP’2005: European Symposium on Programming,
volume 3444 of LNCS, pages 94-107. Springer, 2005.

A. Tiwari. Termination of linear programs. In CAV’2004: Computer Aided Verifi-
cation, volume 3114 of LNCS, pages 70-82. Springer, 2004.



Data-Abstraction Refinement:
A Game Semantic Approach*

Aleksandar Dimovski!, Dan R. Ghica?, and Ranko Lazi¢!

! Department of Computer Science, Univ. of Warwick, Coventry, CV4 7AL, UK
2 School of Computer Science, Univ. of Birmingham, Birmingham, B15 2TT, UK

Abstract. This paper presents a semantic framework for data abstrac-
tion and refinement for verifying safety properties of open programs.
The presentation is focused on an Algol-like programming language that
incorporates data abstraction in its syntax. The fully abstract game se-
mantics of the language is used for model-checking safety properties, and
an interaction-sequence-based semantics is used for interpreting poten-
tially spurious counterexamples and computing refined abstractions for
the next iteration.

1 Introduction

Abstraction refinement has proved to be one of the most effective methods of au-
tomated verification of systems with very large state spaces, especially software
systems. Current state-of-the art tools implementing abstraction refinement al-
gorithms [5, 16] combine model checking and theorem proving: model checking is
used to verify whether an abstracted system satisfies a property, while theorem
proving is used to refine the abstraction using the counterexamples discovered
by model checking. Since abstractions are conservative over-approximations the
safety of any abstracted program implies the safety of the concrete program.
The converse is not true, and the refinement process may not terminate if the
concrete program has an infinite state space.

This paper introduces a purely semantic approach to (data) abstraction re-
finement, based on game semantics [2,17]. In order to keep the presentation
focussed, the main vehicle of our development is the language Abstracted Ide-
alized Algol (ATA), an expressive programming language combining imperative
features, locally-scoped variables and (call-by-name) procedures. The key feature
of this language is the use of abstraction schemes at the level of data-types, which
allows the writing of abstracted programs in a syntax similar to that of concrete
programs. In fact, a concrete program is a particular abstracted program, in
which all the abstractions are identities.

The following is a simple example illustrating this method. Consider the (con-
crete) program fragment below, which uses local variable z, non-local function f,

" This research is supported by the EPSRC (GR/S52759/01). The 3rd author is also
supported by a grant from the Intel Corporation, and affiliated to the Mathematical
Institute,Serbian Academy of Sciences and Arts, Belgrade.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 102-117, 2005.
© Springer-Verlag Berlin Heidelberg 2005



Data-Abstraction Refinement: A Game Semantic Approach 103

and a command abort which causes abnormal termination. Is this program safe
for all instantiations of f, or is it possible for its execution to terminate abnor-
mally? !

newintz :=0in f(z :=!z + 1,if !z = 5 then abort else skip)

The procedure-call mechanism is by-name, so every call to the first argument
increments z, and any call to the second uses the new value of z. So the program
is not safe if function f uses its first argument precisely 5 times, then its second
argument.

We approximate the set of integers by a finite set of partitioning intervals. Let
the initial abstraction have only one partition. We denote this in the program
by annotation (see Table 1):

newinty  :=0in f(z:=!2 47 1,if Iz = 5then abort else skip)

A counterexample execution trace exists, corresponding to the function evalu-
ating its second argument. During the execution of this argument, the value of
x is not 0 but, because of the abstraction, possibly any integer, chosen non-
deterministically. If the chosen value is 5 then abort occurs. Of course, this
counterexample is spurious because it is made possible only by the nondeter-
minism caused by over-abstraction. However, the counterexample informs the
refinement procedure that the abstraction of x needs to be improved. Iterations
like this one are performed until we obtain

newintg 5) 7 :=0in f (2 := !z 4o 5) 1, if Iz = 5 then abort else skip)

at which point a genuine counterexample is discovered, corresponding to the
behaviour resulting in abnormal termination.

In addition to giving a precise account of data abstraction-refinement, this
approach has several advantages compared to alternative approaches:

Modularity. To our knowledge, examples such as the one described before,
cannot be generally handled by known inter-procedural abstraction-refinement
techniques. [8] has cogently advocated a need for such techniques, and we believe
that we are meeting the challenge, although our approach is technically different.

Completeness and correctness. A concrete representation of a fully abstract
semantic model is guaranteed to be accurate and is set on a firm theoretical
foundation.

Compositionality. The semantic model is denotational, i.e. defined recursively
on the syntax, therefore the model of a larger program is constructed from the
models of its constituting sub-programs. This entails an ability to model program
fragments, containing non-locally defined procedures as in the example above.
This feature is the key to scalability, the modeling and verification of software
systems that are too large to be dealt with as a whole.

112 denotes dereferencing.



104 A. Dimovski, D.R. Ghica, and R. Lazi¢

Efficiency. As already emphasised in previous work on games-based model
checking [1], finite-state representations of strategies give models of programs
often several orders of magnitude smaller than state-exploration based models,
essentially due to the fact that the details of local-state manipulation are hidden
during composition.

2 Abstracted Idealized Algol

The data types of AIA are booleans and abstracted integers (7 ::= bool | int,).
We use 7 to denote computable binary predicates on Z. The abstractions w range
over computable equivalence relations (i.e. partitions) of the integers Z. To say
that m,n € Z are in the same class of 7, we write m ~, n.

The phrase types of ATA are base types of expressions, variables and com-
mands (o ::= exp7 | varT | com) and function types (0 ::= 0 | § — 0).

We say that a type is concrete if it contains no abstractions other than the
identity abstraction x = {{z} | i € Z}. For any type 0, we write 6 for the
concrete type obtained by replacing all abstractions with . For simplicity, we
write int, as simply int.

The syntax of the language consists of imperative features (local variables,
assignment, dereferencing, sequencing, branching, iteration, skip and abort) and
functional features (abstraction, application, recursion, arithmetic-logic
constants and operators). It is convenient to present the syntax of AIA in a
“functionalised” form [3], using function-constants rather than term combina-
tors, as in:

if Bthen M else N =if BM N

newr z:=Ein C = new E (A z : varr.C), ete.

Combinators can be reintroduced as syntactic sugar, to improve readability.
The base-type constants are:

true, false : expbool abort, skip : com n : expint,

The functional constants are:

new :expr; — (varra — com) — com, if :expbool — 01 — 09 — 0,
=% Gi=G3=5

asg :varT; — expTe — com, T = To while :expbool — com — com

der varr — expr rec:(0 — 6) — 0

seq :com — 0 — 0 Op :eXpT] — eXpTy — expT

where op stands for any arithmetic-logic operator whose concrete type is expr; —
expTa — expT. For example, for any abstractions m; and 7o, AIA contains an
equality operator = of type expint;, — expint;, — expbool.

For types of new, asg and if to be valid, it is required above that correspond-
ing subterms of types have equal concretisations, but their abstractions can be



Data-Abstraction Refinement: A Game Semantic Approach 105

Notation for sets of integers:
<n={n"|n"<n}, n={n}, >n={n"|n >n}
Notation for abstractions:
=17}, [n,m]={<n,n,n+1,...,m—1,m,>m}

Fig. 1. Some integer abstractions

different. For example, for any abstractions m; and 75, we can assign expressions
of type int,, to variables of type int;,. This flexibility, which is also present in
the rule for functional application below, enables abstractions within a term to
be changed independently of each other while preserving well-typed-ness.

't M : 6, where I' is a list of typed identifiers, indicates that term M with
free identifiers in I" has type 6. The typing rules are:

I't+k: 0 (k is a language constant of type 6) Iz:0F-xz:0

z:0-M:0 I'EM:0, — 0 I'EN:0y ~ g
TFAz:0.M:0—0 '-MN:0 1=

Whenever we write '+ M : 6, we are considering implicitly a particular deriva-
tion of that typing judgment from the rules above. Such a derivation contains
typing judgments for all sub-terms of M. When we need to be explicit about
which derivation was used, we shall annotate M with abstractions. For example,
with the notations in Fig. 1,

xT . varint[0’4] Fa:=z +[0’4]4,[0’1]4,[0’3] 1[0’1] . com

means that the operator + was used with type expintjg4 — expintg —
expint[g 3). Here the combinators := and ! are syntactic sugar for applications of
the functional constants asg and der.

We say that a term is concrete if it contains no abstractions other than the
identity abstraction k. For any term I' = M : 0, we write I'F M : 0 for the
concrete term obtained by replacing all abstractions with «.

The operational semantics is defined as a big-step reduction relation M, s =
K, where M is a program (all free identifiers are assignable variables), s is a state
(a function assigning data values to the variables), and K is a final configura-
tion. The final configuration can be either a pair V,s" with V a value (i.e. a
language constant or an abstraction Az : §.M) and s’ a state, or special error
configuration £.

The reduction rules are similar to those for TA, with two differences. First,
whenever an integer value n participates in an operation as belonging to a data
type int,, any other integer n’ can be used nondeterministically so long as n’ =, n.

Ny, 81 = nq, S N, 59 = mna,s . , ;.
n; Rg, Ny, 1 =1,2, n' =z opngny
Ni Ny, sy = n/,s

opint,,1 —intr, —int,

Assignment and dereferencing have similar nondeterministic rules.



106 A. Dimovski, D.R. Ghica, and R. Lazi¢

Second, the abort program with any state reduces to £, and a composite
program reduces to £ if a subprogram is reduced and results in £. For any
language operator op

M,s = €&
abort,s — & ,
opM M =&

2.1 Observational Safety

A program M is said to terminate in state s if there exists configuration K such
that K = £ or K = skip, s’ for some state s’ such that M,s = K. If K # &
we say M is safe. Term I' = M : 6 approrimates term I' = M’ : 6, denoted by
' ME M if for all contexts C[—], the termination of program C[M] implies
the termination of program C[M’]. If two terms approximate each other they are
considered equivalent, denoted by I' = M = M’.

A context is safe if it does not include occurrences of the abort command. A
term M is safe if for any safe context Csage[—| program Csase[M] is safe; otherwise
the term is unsafe.

3 Game Semantics of ATA

Game semantics emerged in the last decade as a potent framework for mod-
eling programming languages [2,17,3,18,11,15]. It is an alternative (to Scott-
Strachey) denotational semantics which interprets types as arenas (i.e. struc-
tured sets of atomic moves), computation as plays (i.e. structured sequences of
moves) and terms as strategies (i.e. structured sets of plays). Strategies compose,
much like CSP-style processes, which makes it possible to define denotational
models. For technical details, the reader is referred to loc. cit.

Except for the presence of abort, AIA is syntactic sugar on top of TA with
Erratic choice (EIA). We will use the may-termination model presented in [14,
Chap. 3]. For any integer abstraction m, let blurespint, : expint — expint denote
an EIA term which, given an integer n, returns a nondeterministically chosen
integer n' such that n' ~ n.2 For all other AIA types 6, we define EIA terms
blurg : 6 — 6 as follows:

blurexpbool = Az : expbool.z blurcom = Az : com.x
bluryarr = A : varT.mkvar (A y : expT.asg  (blurexpr ¥)) (blurexp-(derz))
blurggr = Af : 0 — 6. Xz : 0.blurg, (f (blurgz))

For any AIA type 6, its translation "6 into EIA is 0. The translation of any
ATA term into EIA is defined by:

2 Since abstractions are assumed computable, such terms are definable in EIA by iter-
atively testing all integers n’. However, in addition to the possibilities to choose any
n’ with n’ ~, n nondeterministically, there is the possibility of divergence. There-
fore, this approach works only for may-termination semantics, which is sufficient in
this paper.



Data-Abstraction Refinement: A Game Semantic Approach 107

"k : 07 = blurgk : 6 CTMN:00="M:0; — 0N : 6,7
Ty 07 = blurgz : 0 Az OM:0 -0 =\g:0."M:0"

The semantic model of AIA is therefore essentially that of EIA, which is pre-
sented in detail in [15]. Below, we give a sketch of the model.

An arena A is a triple (Ma, A ,,F4) where M4 is a set of moves, A, : Ma —
{0, P} x {Q, A} is a function determining for each m € M4 whether it is an
Opponent or a Proponent move, and a question or an answer. We write )\gp, )\gA
for the composite of A, with respectively the first and second projections. -4
is a binary relation on My, called enabling, satisfying: if m k4 n for no m then
As(n) = (0,Q), if m F4 n then )\gp(m) # )\gp(n), and if m F4 n then
)\gA(m) = Q. If m b4 n we say that m enables n. We shall write I4 for the set
of all moves of A which have no enabler; such moves are called initial. Note that
an initial move must be an Opponent question.

An arena is called flat if its questions are all initial (consequently the P-moves
can only be answers). Flat arenas interpret base types, and are determined by
their enabling relations:

com: run t done,abort
expT : g+ m,abort

vart . read F n,abort, write(n)F ok, abort.

The product (A x B) and arrow (A = B) arenas are defined by:
Maxp = Ma + Mp Masp = Ma+ Mp
Mxp = Padsl Al p = TG AT Al
Faxp=Fa+Ftp Fasp=FaUFpU (I X 14)

where \J9 (m) = 0 iff AQ¥(m) = P.

A justified sequence in arena A is a finite sequence of moves of A equipped
with pointers. The first move is initial and has no pointer, but each subsequent
move n must have a unique pointer to an earlier occurrence of a move m such that
m Fa n. We say that n is (explicitly) justified by m or, when n is an answer,
that n answers m. A legal play is a justified sequence with some additional
constraints. Alternation and well-threaded-ness are standard in game semantics,
to which we add the following;:

Definition 1 (Halting plays). No moves can follow abort.

This represents the abrupt termination caused by aborting. The set of all legal
plays in arena A is denoted by Pj4.

A strategy is a prefix-closed set of even length plays. Strategies compose in a
way which is reminiscent of parallel composition plus hiding in process calculi.
We call a play complete if either the opening question is answered or the special
move abort has been played.

Two strategies 0 : A = B’ and 7: B” = C can be composed by considering
their possible interactions in the shared arena B (the decorations are only used



108 A. Dimovski, D.R. Ghica, and R. Lazi¢

to distinguish the two occurrences of this type). Moves in B are subsequently
hidden yielding a sequence of moves in A and C.

Let u be a sequence of moves from arenas A, B’, B” and C with justification
pointers from all moves except those initial in C, such that pointers from moves
in C' cannot point to moves in A and vice versa. Define u [ B”, C' to be the
subsequence of u consisting of all moves from B” and C (pointers between A-
moves and B”-moves are ignored). u | A, B’ is defined analogously (pointers
between B’ and C' are then ignored).

Definition 2 (Interaction sequence). We say that justified sequence u is an
interaction sequence of A, B', B"” and C if:

1. any move from Ig» is followed by its copy in Ip/,
2. any answer to a move in Ig/ is followed by its copy in Ig»
8. ul A B €Pasp,ul A CcPpoc,ul B" Cc Ppisc.

The set of all such sequences is written as int(A, B, C). Composing the two
strategies ¢ and 7 yields the following set of interaction sequences:

ciT={uemt(A,B,C)|ul A,B' €0, u| B",Cer}

Suppose u € int(A, B, C). Define u [ A, C to be the subsequence of u con-
sisting of all moves from A and C, but where there was a pointer from a move
ma € M4 to an initial move m € I~ extend the pointer to the initial move in C
which was pointed to from its copy mp/. The strategy which is the composition
of o and 7 is then defined as o; T={u [ A,C |u € 0o § 1}

Strategies are used to give denotations to terms. Language constants, includ-
ing functional constants, are interpreted by strategies and terms are constructed
using strategy composition. Lambda abstraction and currying are isomorphisms
consisting only of re-tagging of move occurrences. We interpret abort using the
strategy [abort] = {e, run - abort}.

3.1 Full Abstraction

Using standard game-semantic techniques we can show that the above model is
fully abstract for AIA.

Theorem 1 (Full abstraction). For any terms I' = M, M’ : 0, I' - M & M’
WIrEM:0)C[IF M 0.

Proof (sketch). The proof follows the pattern of [14, Sec. 3.8]. In the presence
of abort it is no longer necessary to use quotienting on strategies, as they are
characterised by their full set of plays. The proof of this property is similar to
that of the Characterisation Theorem for IA [3, Thm. 25]. The basic idea is that
we can interrupt any play (not necessarily complete) by composing it with a
stateful strategy that plays abort at the right moment. O

Note that in the presence of abort it is no longer the case that strategies are
characterised by their set of complete plays, as it is the case for EIA. This is



Data-Abstraction Refinement: A Game Semantic Approach 109

consistent with the fact that terms such as ¢ : com F ¢; diverge and diverge
are no longer equivalent although they both have same set of complete plays
(empty). Command ¢ may cause abort, thus preventing divergence. This is a
common property of languages with control [18], and abort is such a feature.

Let us call a play safe if it does not terminate in abort, and a strategy if it
consists only of safe plays; otherwise, we will call plays and strategies unsafe.
From the full abstraction result it follows that:

Corollary 1 (Safety). I'+ M : 0 is safe iff [’ + M : 0] is safe.

This result ensures that model-checking a strategy for safety (i.e. the absence
of the abort move) is equivalent to proving the safety of a term.

3.2 Quotient Semantics

Given a base type expint, or varint; of ATA, we can quotient the arena and game
for expint or varint (respectively) in a standard way, by replacing any integer n
with its equivalence class {m | m =, n}. This extends compositionally to any
type 0 of AIA: we can quotient the arena and game for ] by the abstractions in
0. For any play t of the game for 6, let ¢ denote the image play of the quotient
game, obtained by replacing each integer in ¢ by its equivalence class in the
corresponding abstraction in 6.

It is straightforward to check that, for any term I"F M : 6 of AIA, and plays
t and t’ of the game for I' - 6, such that ¢t = ¢/, we have

te[lFM:0) < t' €[+ M:0]

Therefore, the quotient of the strategy [I" F M : 8] by the abstractions in I" and
0 loses no information.

Moreover, the quotient strategies can be defined compositionally, i.e. by re-
cursion on the typing rules of ATA. The most interesting case is functional ap-
plication I' - M N : 0, where '+ M : 60, — 0, I' = N : 05, and 6; = 65. Since
the abstractions in #; and 6 may be different, we need to allow a move which
contains an equivalence class ¢ to interact with any move obtained by replacing
¢ with some ¢’ such that ¢N ¢’ # (. Hence, even if the quotient strategies for M
and N are deterministic, the one for M N may be nondeterministic.

In the rest of the paper, [I" - M : 8] will denote the quotient strategy.

Ezample 1. Consider the quotient strategy
[z : varint 4 F 7 := 2 +[0,47—[0,1]—[0,3] 1[0,1] : com]

If the abstract value (i.e. equivalence class) 3 is read from the variable z, the
result of the addition is > 3, because it belongs to the abstraction [0, 3]. When >3
is assigned to z which is abstracted by [0, 4], it is nondeterministically converted
to either 4 or >4. Thus, the following are two possible complete plays:

runready; 3, write(4), ok, ok, runread, 3, write(>4), ok, ok



110 A. Dimovski, D.R. Ghica, and R. Lazi¢

3.3 Interaction Semantics

In standard semantics, which is presented above, to obtain the strategy [I" F
M N : 0], the strategies [I'+ M : 6, — 0] and [I" - N : 03] are composed, and
moves which interact are hidden. (Here 9~1 = 9~2)

Let {(—)) denote an alternative semantics, where moves which interact are not
hidden. We call this the interaction semantics, and its building blocks interaction
plays and interaction strategies.

For any term I' M : 6 of AIA, its interaction semantics can be easily
reconciled with its standard semantics, by performing all the hiding at once. In
the following, — | I, 6 indicates restriction to the arenas corresponding to base
types occurring in I" and 6.

Proposition 1. [I'F M : 0] =(I'- M :0) | I,0.

Standard plays are alternating sequences of Opponent and Player moves.
Interaction plays in addition contain internal moves, which do not interact in
subsequent compositions, but which record all intermediate steps taken during
the computation.

Consider composing (I" = M : 61 — 6)) and (I - N : 63)) to obtain
{(I'+= M N :6)). According to the definition of interaction sequences above, for
any moves r; and 12 whose types o1 and o9 (respectively) are corresponding base
types in 61 and 6, and which interact, they are both recorded in (I"+ M N : 6)).
Indeed, since we only have 51 = 0~2, ry and r, may be different. However, if o
and o9 are not types of integer expressions or integer variables, then o1 = o9
and m = m. In such cases, when presenting interaction plays and strategies, we
may record r; and rp only once, for readability.

Ezample 2. Consider the interaction strategy of the term in Example 1. Here is
one of its complete interaction plays, corresponding to the second standard play
in Example 1. Any internal move is tagged with the coordinates of the corre-
sponding sub-term. For instance, g»; is the question to the sub-term !z, which
is the 1st immediate sub-term of !z + 1, which in turn is the 2nd immediate
sub-term of z:=!z + 1. Observe also the double occurrences of integer internal
moves, in line with how interaction plays are composed. In this example, those
pairs are equal because, in any functional application, any two corresponding
abstractions are equal. An abstract value needs to be converted to another ab-
straction only within the strategy for asg, where a value with abstraction [0, 3]
is assigned to a variable with abstraction [0, 4].

TUN G2 Q2,1 q2,1,1 T€ady 3z 32,1,1 32,1,1 32,1 32,1 ¢2,2 12,2 122
(>3)2 (>3)2 write(>4); write(>4), ok, oky ok

The interaction semantics, rather than the standard semantics, will be used
for the purpose of abstraction refinement. The reason is that, given an unsafe
standard play of an abstracted term, it does not in general contain sufficient
information to decide that it can be produced by the concrete version of the



Data-Abstraction Refinement: A Game Semantic Approach 111

term (i.e. that it is not a spurious counterexample), or to choose one or more
abstractions to be refined for the next iteration.

In classical, stateful, abstraction-refinement an abstract counterexample to
a safety property is guaranteed to be genuine if the computation was determin-
istic (or, at least, the nondeterminism was not caused by over-abstraction). In
standard semantics, however, all internal steps within a computation are hidden.
This results in standard strategies of abstracted terms in general not containing
all information about sources of their nondeterminism.

Example 3. Consider the following abstracted term, with notation in Fig. 1:
F newintpy z := 0 ) inif (z # Ojo,07) abort skip : com

Its complete standard plays are runabort and run ok. In fact, its strategy is the
same as the strategy of the EIA term abort or skip. However, the counterexample
runabort is spurious, and the abstraction of z needs to be refined, but internal
moves which point to this abstraction as the source of nondeterminism have been
hidden.

4 Conservativity of Abstraction

As interaction plays contain internal moves, we can distinguish those whose
underlying computation did not pass through any nondeterministic branching
that is due to abstraction.

Definition 3. (a) Given integer abstractions m and ', and an abstract value
(i.e. equivalence class) ¢ of w, we say that converting ¢ to 7’ is deterministic
if there exists an abstract value ¢’ of ©' such that ¢ C ¢'.

(b) Given an abstracted operation op : expTy — expTa — expT and abstract values
c1 and ¢z of type 11 and 1o respectively, we say that the application of op to
¢1 and ¢y is deterministic if there exists an abstract value ¢ of type T such
that Vvi € ¢1,v2 € ca, opvy 12 € ¢.3

(c) An interaction play uw € (I' = M : 6)) is deterministic if each conversion of
an abstract integer value in u is deterministic, and each application of an
arithmetic-logic operator in u is deterministic.

For abstractions m and 7/, we say that 7’ refines = if, for any equivalence
class ¢’ of 7/, there exists an equivalence class ¢ of 7 such that ¢’ C ¢. When =’
refines 7, and ¢ is an equivalence class of 7, we say that 7’ splits c if ¢ is not an
equivalence class of 7. . B
__ We say that a term I = M’ : 0" refines a term I' = M : 0 if IV = T,
M'= M, 0 =0, and each abstraction in I'" = M’ : 6’ refines the corresponding
abstraction in I' = M : 6.

Theorem 2. Suppose I'"+ M’ : 0" refines ' - M : 6.

3 Here we regard the abstract values tt and ff as singleton sets {tt} and {ff}.



112 A. Dimovski, D.R. Ghica, and R. Lazi¢

(i) For any t € [I"F M’ : 0], we have t € [I"' = M : 0]. The same is true for
the ((—)) semantics.

(i) For any deterministic uw € (I' = M : 0)), there exists t € (I" = M’ : 0'))
such that u = t.*

Proof. By induction on the typing rules of AIA. O

The following consequence of Corollary 1, Proposition 1 and Theorem 2 will
justify the correctness of the abstraction refinement procedure.

Corollary 2. Suppose I'"+ M’ : 0" refines I' - M : 6.

(i) If [I'+ M : 0] is safe, then I'" = M’ : 6 is safe.
(i) If (I" = M : 0)) has a deterministic unsafe interaction play, then I+ M’ : ¢’
is unsafe.

5 Abstraction Refinement

In the rest of the paper, we work with the 2nd-order recursion-free fragment
of ATA. In particular, function types are restricted to 6§ == o | ¢ — 6. In-
stead of the functional constant new is more convenient to use the combinator
newr z := F in M which binds free occurrences of x in M. Without loss of gen-
erality, we consider only normal forms with respect to g-reduction.

An abstraction 7 is finitary if it has finitely many equivalence classes. A term
is finitely abstracted if it contains only finitary abstractions.

A set of abstractions is effective if their equivalence classes have finite rep-
resentations, and if conversions of abstract values between abstractions, and all
arithmetic-logic operators over abstract values, are computable.

Proposition 2. For any finitely abstracted term I' = M : 0 with abstractions
from an effective set, the set [I' = M : 0] is a regular language. Moreover, an
automaton which recognises it is effectively constructible. The same is true for
the ((—)) semantics.

Proof. Since the abstractions are finitary, I" = M : 6 can be seen as a term of
2nd-order recursion free EIA with finite data types and abort. We can extend
the construction in [10] to obtain effectively an automaton which recognises
[I" = M : 0]. Note that the construction in loc. cit. characterises strategies in
terms of their complete plays, i.e. those plays in which the initial question is
answered. However, in the presence of abort strategies are defined by their full
sets of plays is (Theorem 1), so to each finite state machine used in loc. cit. we
apply a suitable prefix closure operator, which preserves the finite-state property.

To obtain an automaton for (I" - M : 6)), interacting moves are tagged with
sub-term coordinates rather than hidden. O

4 This can be strengthened to apply to interaction plays which are deterministic with
respect to the abstractions in I = M’ : §’. The latter notion allows nondeterministic
conversions of, and operator applications to, abstract values which are not split by
the corresponding abstractions in I - M’ : §’.



Data-Abstraction Refinement: A Game Semantic Approach 113

>0 |

. .
~ \\
<1 » S A\
N N N \
\\ N ~

N N
N N
N N
>-1 N R N
N N
N .
N N

Fig. 2. A possible definition of C

Let A[I" = M : 6] and A(I" F M : 0)) denote the automata obtained as
in the proof of Proposition 2. Since there is no hiding in the construction of
A{I'F M : 9)), this automaton is deterministic.

Given a finite word « and a deterministic automaton A which accepts u, we
call u cycle-free if the accepting run visits any state of A at most once.

Apart from the identity abstraction s, for simplicity, from now on we work
only with the abstractions [| and [n,m], where n < 0 < m + 1 (see Fig. 1).
Observe that these abstractions are finitary and form an effective set.

Let < denote the following computable linear ordering between abstract
values:

Z<(<0)<(>=1)<(<=1)<=1=<0=<(>0)< -
(<—(”+1))<—(n—|—1)<n<(>n)<...

For two moves (possibly tagged with sub-term coordinates) r and r’ which are
equal except for containing different abstract integer values ¢ and ¢/, let r < 7’/
if c <c,and ' < rif ¢’ < c. Now, we extend this ordering to a computable
linear ordering on all moves (in an arbitrary but fixed way), and denote it by
<. Let < also denote the linear orderings on plays obtained by lifting the linear
ordering on moves lexicographically.

Let (n,c) C (n/, ¢') be any computable linear ordering between pairs of non-
negative integers and abstract integer values which is obtained by extending
the partial ordering defined by n < n’ and ¢ < ¢/, and which admits no infi-
nite strictly decreasing sequences, and no infinite strictly increasing sequences
bounded above (see Fig. 2). For any play u, let |u| denote its length, and max(u)
denote the <-maximal abstract integer value in « (or Z if there is no such value).
Let v C v’ mean (|u|,max(u)) C (Ju'|, max(u’)). Now, let < be the linear order-



114 A. Dimovski, D.R. Ghica, and R. Lazi¢

The procedure checks safety of a given concrete term I' = M : 6.

1 Let Ih F My : 6y be a finitely abstracted anti-refinement of I' - M : 0, i.e. be
obtained from I' = M : 0 by replacing « by finitary abstractions. Let i :=0.

2 If A[I; b M; : 0;] accepts only safe plays, terminate with answer SAFE.

3 Otherwise, if A{(I3 F M; : 0;)) accepts a deterministic unsafe interaction play,
terminate with answer UNSAFE.

4 Otherwise, let u be the <-minimal unsafe interaction play accepted by A{I; F
M; : 0;). Let I'iy1 b Miy1 : 041 be obtained by refining one or more ab-
stractions in I; = M; : 0; by finitary abstractions, provided that at least one
abstract value which occurs in u is split. Let i:=17 + 1, and repeat from 2.

Fig. 3. Abstraction refinement procedure

ing between plays such that v < «’ if and only if either v C o/, or |u| = |/,
max(u) = max(u') and u < u'.

Lemma 1. In the linear order of all plays with respect to <:

(i) there is no infinite strictly decreasing sequence;
(i) there is no infinite strictly increasing sequence which is bounded above.

Proof. This is due to the following two facts. Firstly, the C ordering between
pairs of nonnegative integers and abstract integer values has the properties (i)
and (ii). Secondly, for any such pair (n, ¢), there are only finitely many plays u
such that |u| = n and max(u) = c. ]

The abstraction refinement procedure (ARP) is given in Fig. 3. Note that, in
step 1, the initial abstractions can be chosen arbitrarily; and in step 4, arbitrary
abstractions can be refined in arbitrary ways, as long as that splits at least one
abstract value in u. These do not affect correctness and semi-termination, but
they allow experimentation with different heuristics in concrete implementations.

Theorem 3. ARP is well-defined and effective. If it terminates with SAFE
(UNSAFE, respectively), then I' = M : 0 is safe (unsafe, respectively).

Proof. For well-defined-ness, Lemma 1 (i) ensures that the <-minimal unsafe
interaction play u accepted by A{I; F M; : 0,)) always exists. Since the condition
in step 3 was not satisfied, u is not deterministic. Therefore, u cannot contain
only singleton abstract values, so there is at least one abstract value in v which
can be split.

Effectiveness follows from Proposition 2, by the fact that it suffices to consider
cycle-free plays in step 4, and from computability of <.

If ARP terminates with SAFE (UNSAFE, respectively), then I' - M : 0 is
safe (unsafe, respectively) by Corollary 2, since any abstraction is refined by the
identity abstraction k. O

Theorem 4. If '+ M : 0 is unsafe then ARP will terminate with UNSAFE.



Data-Abstraction Refinement: A Game Semantic Approach 115

Proof. By Corollary 1 and Proposition 1, there exists an unsafe t € (I = M : 9)).

For each i, let U; be the set of all unsafe u € (I = M; : 0,)), and let u! be
the <-minimal element of Uj.

It follows by Theorem 2 that, for any v € (41 F Miy1 : 0i41), u €
(I3 F M; : 6;). Also, we have u < u. Now, step 4 ensures that, for any i,
ul & (i1 b Mig1: 0i11)). '

Therefore, u(;r < u;( < u;r < ---. But, for each ¢, uj <t' < t. By Lemma 1
(ii), ARP must terminate for I" - M : 6! O

ARP may diverge for safe terms. This is generally the case with abstrac-
tion refinement methods since the underlying problem is undecidable. A simple
example is the term

e : expint F newint z := e inif (lz =z 4 1) abort skip : com

This term is safe, but any finitely abstracted anti-refinement of it is unsafe.

6 Conclusions and Related Work

In this paper, we extended the applicability of game-based software model check-
ing by a data-abstraction refinement procedure which applies to open program
fragments which can contain infinite integer types, and which is guaranteed to
discover an error if it exists. The procedure is made possible and it was jus-
tified by a firm theoretical framework. Some interesting topics for future work
are dealing with terms which contain recursion, and extending to a concurrent
programming language [12] or higher-order fragments [22].

The pioneering applications of game models to program analysis were by
Hankin and Malacaria [13,19-21], who also use nondeterminism as a form of ab-
straction. Their abstraction techniques apply to higher-order constructs rather
than just data, by forgetting certain information used in constructing the game
models (the justification pointers). It is an interesting question whether this style
of abstraction can be iteratively refined. The first applications of game-semantic
models to model checking were by Ghica and McCusker [10]. The latter line of re-
search was further pursued as part of the Algorithmic Game Semantics research
programme at the University of Oxford [1], and by Dimovski and Lazié [9].

On the topics of data abstraction [7] and abstraction refinement [6], there
is a literature too vast to mention. Good entry points, which also represented
essential motivation for our work, are the articles written on the SLAM model-
checker [4]. It is too early to compare our approach with traditional, stateful,
model-checkers. The first obstacle is the use of different target languages to
express programs, but we hope to move towards more realistic target languages
in the near future. The second obstacle stems from a difference of focus. Stateful
techniques are already very mature and can target realistic industrial software;
their overriding concern is efficiency. Our main concern, on the other hand, is
compositionality, which we believe can be achieved in a clean and theoretically
solid way by using a semantics-directed approach. In order to narrow the gap



116 A. Dimovski, D.R. Ghica, and R. Lazi¢

between the efficiency of stateful tools and game-based tools, many program
analysis techniques need to be re-cast using this new framework. Judging by the
positive initial results, we trust the effort is worthwhile. Compositionality is a
worthwhile long-term goal as compositional techniques are the best guarantee of
scalability to large systems.

Aside from compositionality, one important advantage of game-based models
is their small size, which is achieved by hiding all unobservable internal actions.
However, in order to identify and analyse counterexample traces it is necessary,
as we have pointed out in Sec. 3.3, to expose internal actions. In order to imple-
ment this abstraction refinement procedure reasonably, we must proceed by first
identifying counter-example standard plays, and then obtaining corresponding
interaction plays by “uncovering” the hidden moves. We are currently develop-
ing a model-checking tool based on representing strategies in the process algebra
CSP [23], which can be verified using the FDR model checker. We can exploit a
feature of FDR which allows identification of hidden events in counterexample
traces, in order to implement the “uncovering” operation necessary to compute
interaction plays efficiently.

References

1. S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-H. L. Ong. Applying game
semantics to compositional software modeling and verification. In Proceedings of
TACAS, LNCS 2988, (2004), 421-435.

2. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Infor-
mation and Computation, 163(2), (2000).

3. S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract
game semantics for Idealized Algol with active expressions. In P.W.O’Hearn and
R.D.Tennent, editors, Algol-like languages. (Birkhaiiser, 1997).

4. T. Ball, A. Podelski, and S. K. Rajamani. Relative completeness of abstraction
refinement for software model checking. In Proceedings of TACAS, LNCS 2280,
(2002), 158-172.

5. T. Ball and S. K. Rajamani. Debugging System Software via Static Analysis. n
Proceedings of POPL, ACM SIGPLAN Notices 37(1), (2002), 1-3.

6. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proceeding of CAV, LNCS 1855, (2000), 154-169.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of POPL, (1977), 238-252.

8. P. Cousot and R. Cousot. Modular static program analysis. In Proceedings of CC,
(2002).

9. A. Dimovski and R. Lazic. Csp representation of game semantics for second-order
idealized algol. In Proceedings of ICFEM, LNCS 3308, (2004), 146-161.

10. D. R. Ghica and G. McCusker. The Regular-Language Semantics of Second-order
Idealized Algol. Theoretical Computer Science 309 (1-3), (2003), 469-502.

11. D. R. Ghica and A. S. Murawski. Angelic semantics of fine-grained concurrency.
In Proceedings of FoSSaCS, LNCS 2987, (2004), 211-255.

12. D. R. Ghica, A. S. Murawski, and C.-H. L. Ong. Syntactic control of concurrency.
In Proceedings of ICALP, LNCS 3142, (2004).



13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23

Data-Abstraction Refinement: A Game Semantic Approach 117

C. Hankin and P. Malacaria. Program analysis games. ACM Comput. Surv.,
31(3es), (1999).

R. Harmer Games and Full Abstraction for Nondeterministic Languages. Ph. D.
Thesis Imperial College, 1999.

R. Harmer and G. McCusker. A fully abstract game semantics for finite nondeter-
minism. In Proceedings of LICSS, (1999).

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with
BLAST. In Proceedings of SPIN, (2003).

J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, and III.
Information and Computation 163, (2000), 285-400.

J. Laird. A fully abstract game semantics of local exceptions. In Proceedings of
LICS, (2001).

P. Malacaria and C. Hankin. Generalised flowcharts and games. In Proceedings of
ICALP, (1998).

P. Malacaria and C. Hankin. A new approach to control flow analysis. In Proceed-
ings of CC, (1998).

P. Malacaria and C. Hankin. Non-deterministic games and program analysis: An
application to security. In Proceedings of LICS, (1999).

A. Murawski and 1. Walukiewicz Third-Order Idealized Algol with Iteration Is
Decidable. In Proceedings of FoSSaCS, LNCS 3411, (2005), 202-218.

W. A. Roscoe. Theory and Practice of Concurrency. Prentice-Hall, 1998.



Locality-Based Abstractions

Javier Esparza', Pierre Ganty?'*, and Stefan Schwoon!
! Institut fiir Formale Methoden der Informatik, Universitit Stuttgart
{esparza, schwoosn}@informatik.uni-stuttgart.de
2 Département d’Informatique, Université Libre de Bruxelles
pgantyQ@ulb.ac.be

Abstract. We present locality-based abstractions, in which a set of
states of a distributed system is abstracted to the collection of views that
some observers have of the states. Special cases of locality-abstractions
have been used in different contexts (planning, analysis of concurrent pro-
grams, concurrency theory). In this paper we give a general definition in
the context of abstract interpretation, show that arbitrary locality-based
abstractions are hard to compute in general, and provide two solutions
to this problem. The solutions are evaluated in several case studies.

1 Introduction

Consider a system acting on a set X of program variables over some value set
V. An abstraction of the system, in the abstract-interpretation sense [1], delib-
erately loses information about the current values of the variables. Many ab-
stractions can be intuitively visualized by imagining an observer who has access
to the program code but is only allowed to retain limited knowledge about the
values of the variables. For instance, the observer may only be allowed to retain
the sign of a variable, its value modulo a number, or whether one value is larger
than another one. In this paper we consider locality-based abstractions, which
are best visualized by imagining a set of observers, each of which has a partial
view of the system. Each observer has access to all the information ‘within his
window’, but no information outside of it. For instance, in a system with three
variables there could be three observers, each of them with perfect information
about two of the variables, but no knowledge about the third. Given the set
{(1,1,0),(1,0,1),(0,1,1)} of valuations of the variables, the observer with ac-
cess to, say, the first two variables ‘sees’ {(1,1,u), (1,0,u),(0,1,u)}, where u
stands for absence of information. Notice that information is lost: Even if the
three observers exchange their informations, they cannot conclude that (1,1, 1)
does not belong to the set of valuations.

The idea of local observers is particularly appropriate for distributed systems
in which the value of a variable corresponds to the local state of a component
of the system. In this case, a partial view corresponds to having no information
from a number of components of the system. This is also the reason for the term
“locality-based” abstraction.

* The author wishes to thank the University of Stuttgart, where most of the work was

done, for hospitality and both FRIA and FNRS for financial support.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 118-134, 2005.
© Springer-Verlag Berlin Heidelberg 2005



Locality-Based Abstractions 119

Plan of the paper. In Sect. 3 we present a very general definition of locality-based
abstraction, and study, in Sect. 4, the problem of computing the abstract post#
operator (i.e., the abstract operator corresponding to the usual post operator
that computes the set of immediate successors on the concrete space). We observe
that, in general, computing post# involves solving an NP-complete problem, and
present two orthogonal solutions to this problem in Sect. 5 and 6, respectively.
Each of them leads to a polynomial-time algorithm. The first solution works
for a restricted class of systems and arbitrary abstractions, while the second
restricts the class of abstractions that are used but can be applied to arbitrary
systems. In Sect. 7 we present an abstraction-refinement scheme which allows to
progressively refine the precision of the abstractions while keeping good control
of the time required to compute the (post#)* operator, i.e., the operator yielding
the set of reachable abstract states. Section 8 reports on experimental results
obtained from an implementation of the approaches of Sect. 5 and 6.

Related work. Locality-based abstractions have been used before in the litera-
ture, but to the best of our knowledge not with the generality presented here.
A particular case of locality-based abstraction are the Cartesian abstractions of
[2], in which a set of tuples is approximated by the smallest Cartesian product
containing this set. It corresponds to the case in which we have an observer for
each variable (i.e., the observer can only see this variable, and nothing else). An-
other particular case that has been independently rediscovered several times is
the pairs abstraction, in which we have an observer for each (unordered) pair of
variables. In [3,4,5], this abstraction is used to overapproximate the pairs {l,1'}
of program points of a concurrent program such that during execution the con-
trol can simultaneously be at ,1’. In [6], it is used to overapproximate the pairs
of places of a Petri net that can be simultaneously marked, and the abstraction
is proved to be exact for the subclass of T-nets, also called marked graphs. In
Graphplan, an approach to the solution of propositional planning problems [7,8],
it is used to overapproximate the set of states reachable after at most n steps.

Prerequisites. The reader is expected to be familiar with the abstract interpre-
tation framework and with the manipulation of symbolic data structures based
on deterministic automata such as binary decision diagrams [9].

Full version. A version of the paper containing all proofs is available at
http://www.ulb.ac.be/di/ssd/cfv/publications.html.

2 Preliminaries

System model. We fix a finite set V' of values (in our examples we use V' = {0, 1}).
A state is a function s: X — V, where X = {x1,...,2,} is a set of state
variables. We also represent a state s by the tuple (s[1],..., s[n]), where s[i] is
an abbreviation for s(z;). The set of all states over the set X of variables is
denoted by ..

Let X’ be a disjoint copy of X. A transition t is a subset of . x ., which
we represent as a predicate t(X, X'), i.e., (s,s') € t if and only if ¢(s, s’) is true.



120 J. Esparza, P. Ganty, and S. Schwoon

A system is a pair Sys = (X,T) where X is a finite set of variables and T is
a finite set of transitions. We define the transition relation R C . x . as the
union of all the transitions of T

Given a set of states S, we define the successors of S, denoted by post[Sys](.S),
as the set of states s’ such that R(s, ") for some s € S, and the predecessors of S,
denoted by pre[Sys](S), as the set of states s’ such that R(s, s) for some s € S.
We also write post(S) or pre(S) if the system Sys is clear from the context. We
use the following notations: post®(S) = S, post'*1(S) = post(post’(S)) for every
i > 0, and post*(S) = [, ey post™(S). We use analogous notations for pre. A
state s is reachable from S if s € post*(S).

Partial states. Let VT = V U {u} where u, disjoint from V, is the undefined
value. It is convenient to define a partial order > on V', given by

v L (V' =uvoe=1).

A partial state is a function p: X — V1. The set of all partial states is
denoted by &. The support of a partial state p is the set of indices i € {1,...,n}
such that p[i] # u. We extend the partial order > to partial states:

prp L5 A (p() = v (@)
rzeX

and to sets of partial states:

pP>=p At VpePIp eP:p=yp .

Given a partial state p, we define its upward and downward closure as pT=
{p e Z|p =p}and pl={p € & | p = p'}, respectively. We extend these
two notions to sets of partial states in the natural way. We say that P is upward
or downward closed if PT= P or P|= P, respectively. We also say that P is a
uc-set or a dc-set.

Finally, we also define pff= pl N.¥, and extend the notation to sets of states.

3 Locality-Based Abstractions

Fix a system Sys and a set I of initial states of Sys. We say that a partial state
p is reachable from I if some state s = p is reachable from I. Observe that with
this definition p is reachable if and only if all partial states in the downward
closure p| are reachable. So the pieces of information we have about reachability
of partial states can be identified with downward closed subsets of &2.

Assume now that the only dc-sets we have access to are those included in
some dc-set D C 22, called in the rest of the paper a domain. If a state s is
reachable, then all the elements of s| ND are reachable by definition. However,
the contrary does not necessarily hold, since we may have s ¢ D. In our abstrac-
tions we overapproximate by declaring s reachable if all the elements of s| ND



Locality-Based Abstractions 121

are reachable, i.e., if all the information we have access to is compatible with s
being reachable.

Intuitively, we can look at D as the union of sets D1, ..., D,, where all the
partial states in D; have the same support, i.e., a partial state p € D; satisfies
pli] = u only if all partial states p’ € D; satisfy p’[i] = u. The sets D; correspond
to the pieces of information that the different observers have access to. Notice
that we can have a domain D; like, say D; = {(0,0,u),(1,0,u)}| in which the
observer is only allowed to see some local states of the first two components, but
not others, like (1,1, u).

Recall that the powerset lattice PL(A) associated to a set A is the com-
plete lattice having the powerset of A as carrier, and union and intersection
as least upper bound and greatest lower bound operations, respectively. In our
abstractions the concrete lattice is the powerset lattice PL(.¥) of the set of
states .7.

We fix a domain D C &, and define the downward powerset lattice DPL(D)
associated to D as the restriction of PL(D) to the de-sets included in D. That is,
the carrier of DPL(D) is the set of de-subsets of D (which, since D is downward
closed, contains D itself), and the least upper bound and greatest lower bound
operations are union and intersection. Notice that DPL(D) is well-defined be-
cause the union and intersection of a family of dc-sets is a dc-set. The abstract
lattice of a locality-based abstraction is DPL(D), and the concretization and
abstraction mappings are defined as follows:

a(S) s np for any S € PL(.)
yv(P) ¥ {se€.#|s| ND C P} for any P € DPL(D)
=S\ (D\P)t.

Ezample 1. Consider the set of values V' and the state variables X defined by
V = {0,1} and X = {x1, 22,23}, respectively. The domain of pairs over X is
given by

Dy = {(n,m,u), (n,u,m), (u,n,m) | n,m € {0,1}}|
For the set S = {(1,1,0),(1,0,0),(0,1,0)} we get
a(S) ={(1,1,u),(1,0,u),(0,1,u),(1,u,0), (0,u,0), (u,1,0), (u,0,0) }|

and (yoa)(S) =S, i.e., in this case no information is lost.
Consider now the domain

Dy, ={(n,u,u), (u,n,u), (u,u,n),(u,u,u) | ne{0,1}} .
In this case we get

(’y © a)(S) = 7({(17 u7 u>7 <07 u7 u>7 <u7 17 u>7 <u7 07 u>7 <u7 u70>7 <u7 u7 u>})
={0,1} x {0,1} x {0}



122 J. Esparza, P. Ganty, and S. Schwoon

and in general (o )(S) is the smallest cartesian product of subsets of V' con-
taining S, matching the cartesian abstractions of [2] 1.

Observe that for D = &2 we obtain

a(S) =5 for any S € PL(.)
v(P)=PnNY for any P € DPL(D)
and so (yo«a)(S) =S, i.e., no information is lost.

The concrete PL(.¥) and abstract DPL(D) domains and the abstraction
a: PL() — DPL(D) and concretization v: DPL(D) — PL(.#) maps form a

Galois connection, denoted by PL() = DPL(D), for every domain D.
8!

Proposition 1. For every domain D, PL(.¥) = DPL(D).
¥

3.1 The post¥ Operator

We define the function post™[Sys, D]: DPL(D) — DPL(D):

post™ [Sys, D] ef AP.(ac o post[Sys] o y)(P) .

We shorten post™[Sys, D] to post? if the system and the domain are clear from
the context. We have the following characterization of post?[Sys, D).

Proposition 2. Let Sys and D be a system and a domain, respectively. For
every P € DPL(D) and for every p € &

p € post™ (P) <= p e D A—(pre(pft) C (D\ P)f}) .
Proof (of Proposition 2).

p € post®(P) < p € (a0 post o)(P)
< peDApe (] opostory)(P) (Def. of )
< p € DA (phh N(post o) (P) # 0)
& p € DA (pre(ph) n(P) £0)
SpeDA(pre(ph) N (L \(D\P)) #0)  (Def. of 7)
& pe D A-(pre(ptt) € (D\ P)) 0

Using standard results of abstract interpretation we get for every set of states
S that (post™)* is a sound abstraction of post*, i.e.:

post™(S) C (v o (post™)* o a)(9) for every S € PL(.Y).

! Actually, the functions « and « of [2] are slightly different, but their composition is
the same as here.



Locality-Based Abstractions 123

4 The Complexity of Computing post#

In the rest of the paper we assume that sets of (partial) states are symbolically
represented as multi-valued decision diagrams (MDD) (see [10] for more details)
over the set of variables X with a fixed variable order. The cardinality of X will
be denoted | X|. Given a set P of partial states we denote the MDD representing
P by PM and the size of PM by |P™|. We also assume that each transition ¢ of
a system Sys = (X, T) is symbolically represented as a MDD #™ over variables
X, X’ with a fixed variable order whose projection onto X coincides with the
fixed order on X. The size of Sys is defined as Y, [t*] + | X| and denoted
by |Sys|.
We consider the following decision problem.

Definition 1. The problem POST? is defined as follows:

Instance: a system Sys = (X, T), an element p € D and two MDDs DM, PM,
where D is a non-empty domain and P € DPL(D).

Question: p € post™[Sys, D|(P) ?

We say that a class of systems C is polynomial if the restriction POSTé7£ of
POST# to instances in which the system Sys belongs to C can be solved in
polynomial time. Unfortunately, as we are going to show, unless P=NP holds,
even very simple classes of systems are not polynomial. Before proceeding, we
need a time complexity bound for some operation on MDD.

Proposition 3. Let p € & and S™ be a MDD for S C 2. We can decide in
O(|IX| + |SM|) time if there exists s € S such that p = s.

Proof (of Proposition 3). We use a simple marking algorithm. Initially we mark
the root node of SM. If a node m labelled by x; is marked, we mark all successors
n of m such that the edge e = (n,m) is labelled with a v; € VT satisfying
p(x;) = v;. The state s exists iff at the end of the algorithm the accepting node
is marked. O

The following proposition is proved by means of a simple reduction from the
3-colorability problem on graphs.

Proposition 4. The following problem is NP-complete:

Instance: a set X of variables, and two MDDs DM, PM where D is a non-
empty domain on X and P € DPL(D).

Question: v(P) #0 ?

In particular, if PANP then there is no polynomial time algorithm to compute
v(P)M.

We are now able to present the main result of this section. Fix V = {0,1}
and let {Sys, }n>1 be the family of systems given by Sys,, = (Xn, {tn}), X»n =
{z1,...zn} and t, = ¥ x .. Intuitively Sys,, is a system with n state variables
and a unique transition ¢, such that for any pairs of states s,s’ we find that
(s,8") € ty.



124 J. Esparza, P. Ganty, and S. Schwoon

Proposition 5. If the class C = {Sys, }n>1 of systems is polynomial, then
P=NP.

Proof. We reduce the problem of Prop. 4 to POSTC#. This shows that POSTZ;7£
is NP-complete and so if C is polynomial, then P=NP.

Given an instance X, DM, PM of the problem of Prop. 4, we build in poly-
nomial time the partial state ulX! (ul*! € D for any D # () and the MDD tlj\)’(ll
such that t x| = & x .. The operator post™ is given by (« o post o y) and so
we have y(P) # 0 iff ul*! € post#[Sys| x|, D](P). 0

This result shows that we do not have much hope of finding a broad, inter-
esting class of polynomial systems. In the next sections we present two possible
ways of dealing with this problem.

5 Partial Reachability

In this section we show that, if we change the concrete lattice in our abstrac-
tions by extending reachability also to partial states, then an interesting class
of systems becomes polynomial. From now on, we assume the following ordering
on X ={z1,...,z,} and its disjoint copy X": 21 < 2} < -+ <z, < al,.

We define the notion of kernel of a transition. Intuitively, the kernel of a
transition is the set of variables that are “involved” in it.
Definition 2. Let t(X, X’) be a transition and let Y C X be the smallest subset
of X such that

HX, X)) =tV Y') A /\ (x=21a)
zeX\Y
for some relation t. We call t the kernel of t, Y the kernel variables and |Y|
the kernel width. Given a partial state p € &2, we denote by p the partial state
given by
pli] = {p[z] if x; belongs to the kernel variables of t,

u otherwise,

3] pli] if x; does not belong to the kernel variables of t,
1l =
P u otherwise.

We identify a partial state p and the pair (p,p).
We need to extend the transitions to partial states.
Definition 3. Let Sys = (X,T') be a system and let t € T. The extended tran-
sition t € &2 x &2 is defined as follows:
def s N -
tpr,p2) <= Ip e P:H(Pr,p) AP = P2 AprL = P2 -

Given a system Sys = (X, T), we define the extended transition relation R of
Sys as the union of all its extended transitions.



Locality-Based Abstractions 125

The intuition behind this definition is as follows: If we know that p; is reach-
able (i.e., that some state s »= p; is reachable) and that (p1,p2) holds, then
we already have enough information to infer that ps is reachable. Let us see
why. We know the values of all the variables involved in ¢ (this is p1), and we
know that we can reach (p,p1) from (p1,51) (because £(p1,p)). Now, since we
can reach (p,p1) and we know that p > ps and p; = pa, we can infer that ps is
also reachable.

It is easy to show that the restriction of the extended reachability relation
to states coincides with the reachability relation.

Lemma 1. For anyt € T and any s1, $2 € &, we have t(s1, s2) iff t(s1, s2).

Proof (of Lemma 1). Since sq is a state, p = 33 holds if and only if p = 32, and
SO

t(Sl, 82) =4 (f(gl, §2)/\§1 = 52) =4 t(sl, 82) . O

In order to obtain a Galois connection, we extend the functions a,~ to
a: DPL(Z?) — DPL(D) and y: DPL(D) — DPL(Z?) in the obvious way:

VP € DPL(2): o(P) & PIND=PND (Pisa de-set)
VP € DPL(D): ~(P) < {p|pl ND C P}
= Z\(D\P).

Proposition 6. For every domain D, DPL(Z) = DPL(D).
8!

5.1 The post¥ Operator

We extend post and pre to post and pre on partial states by declaring p’ € post(p)
and p € pre(p’) iff R(p,p’). We have the following useful property:

Lemma 2. Fiz an arbitrary system, for every p € P, pre(pl) = pre(p)] and
post(pl) = post(p)T.

The set post™[Sys, D](P) is given by

{p2 € D [ 3p1: R(p1,p2) /\ﬂ<3p31 p3 € (D\ P)A(p1 tp:s))} .

Notice that, given MDDs DM, PM, RM and =M, the set post# [Sys, D](P)
can be computed symbolically using classical operations provided by any MDD
package.

The following result, which makes use of Lemmata 1 and 2, shows that the
post™ operator is a better approximation to post than post™, i.e., replacing post™
by post” leads to a loss of precision.

Proposition 7. Fiz a system and a domain D. For every P € DPL(D),
post™ (P) C post™ (P), but the converse does not hold.



126 J. Esparza, P. Ganty, and S. Schwoon

Proof. The first part is an easy consequence of the definitions, and can be found
in the full version of the paper. Here we provide a detailed example proving the
non inclusion of post™ (P) in post? (P).

Fix V ={0,1,2} and Sys = (X,T) with X = {x1,z2, x3, 24}, T = {1, 2, 3,
t4} and such that

H(X, X)) =t (YY) ANw3 = af t1 = {((0,0,0),(1,1,1)} Y = X \ {3}

(X, X) = 6(YV,Y') Ay = ta = {((0,0,0),(1,1,2))} Y = X \ {2}
ts(X, X') = £5(Y,Y") A (2 _ 2) t5 = {({0,0), (1, 1))} Y = {22, 23}
ta(X, X)) = t4(V, Y )Ny = ) te={((1,1,1),(2,2,2))} Y = X\ {24}

The domain D is the set of partial states p € {0,1,2,u}* such that for at
most 2 indices 4, j of {1,2,3,4}: p[i] # u and p[j] # u. The set of initial state I
is given by {(0,0,0,0)}. The set (post™ o «)(I]), denoted F, is given by

F = {<1’ 17 u7 u>7 <1’ u’ u’ 1>7 <u7 1’ u’ 1>7 <1’ u’ 07 u>7 <u7 13 07 u>7 <u7 u7 03 1>
(1,u,1,u),(1,u,u,2),(u,u,l1,2),(1,0,u,u), (u,0,1,u), (u,0,u,?2),
(u,1,1,u),(0,1,u,u), (u, 1,u,0), (0,u,1,u), (u,u,1,0),(0,u,u,0)}| .

It is routine to check that (post? o a)(I) and (post? o a)(I]) coincide. Observe
that (1,1,1,u) € v(F') but

{(1,1,1,0),(1,1,1,1), (1,1, 1,2} n~(F) =0 .

Now consider the second iteration. In this case we find that (2,2,u,u) €
post™ (F) but (2,2,u,u) ¢ post™ (F) which proves our claim. O

The loss of precision of post™ is compensated by its better properties. We
have the following characterization of post™[Sys, D](P).

Proposition 8. Let Sys and D be a system and a domain, respectively. For
every P € DPL(D), for every p € &

p € post™ (P) <= p € D A=(pre(p) = (D\ P)) .
Proof (of Proposition 8).

p € post” (P) < p € (oo post o v)(P)

< peDApE (postoy)(P) (Def. of )
& p € D A(pre(p) Ny(P) #0)
& peDA(pre(p) N (Z\ (D

\ P)T) #0) (Def. of 7)
)

& peDA-(pre(p) € (D\P)T
& peDN=(pre(p) = (D\ P)) O



Locality-Based Abstractions 127

This proposition shows the difference between computing post# and post#:
In the first case we have to deal with (D \ P)f, which can have a much more
complex symbolic representation than (D\ P). In the case of post# we only need
to deal with the set (D \ P) itself.

5.2 The Complexity of Computing post#

Given a system Sys, we define the problem POST# as POST#, just replacing
post™ by post™. As seen in Prop. 8, we can decide POST# by checking whether
pre(p) = (D \ P) holds. Consider the class of systems satisfying the following
two conditions for every partial state p,

(a) |pre(p)| is bounded by a polynomial in | X|, and
(b) pre(p)™ can be computed in polynomial time in | X|.

By Prop. 3, for p’ € pre(p), we can decide {p'} = (D\P) in time O(|DM|-| PM|+
|X|) and thus, given pre(p)™, DM, and PM, we can decide pre(p) = (D \ P)
in polynomial time. Since |pre(p)™| is polynomial in |X| and |X| is O(|Sys|),
we can decide POST# in polynomial time. It follows that these systems are
polynomial for POST#.

We now show that an interesting class of systems satisfies (a) and (b). Intu-
itively, we look at a system on a set X as a set having | X| components. Each
variable describes the local state of the corresponding component.

Definition 4. A system Sys = (X,T) is k-bounded if the width of the kernel
of all transitions of T is bounded by k.

Loosely speaking, a system is k-bounded if its transitions involve at most
k components. Many systems are k-bounded. For instance, consider systems
communicating by point to point channels. If we describe the local state of a
component/channel by one variable, then usually we have k = 2, because a
transition depends on the current state of the receiving/sending component and
on the state of the channel. Another example are token ring protocols, where
each component communicates only with its left and right neighbours. These
systems are at most 3-bounded.

Observe that each k-bounded system is equivalent to another one satisfying
|T| < |X|*: if there is fi(Yi,Yi’),fj(Yj,Yj’) such that ¢ # j but ¥; =Y}, then we
can replace t; and #; by (£; v 1;)(Vi, Y7).

Proposition 9. Let p be a partial state of a k-bounded system. The set pre(p)
contains at most |X|F - |VF|F elements, and pre(p)™ can be computed in time
polynomial in | X|.

Corollary 1. For a fixed k > 0, the class of k-bounded systems is polynomial.



128 J. Esparza, P. Ganty, and S. Schwoon

6 Neighbourhood Domains

The polynomiality result of the last section is obtained at a price: we had to
consider less precise abstractions, and we had to restrict ourselves to k-bounded
systems. In this section we define an approach, applicable to arbitrary systems,
that uses a class of domains called neighbourhood domains. Intuitively, in a neigh-
bourhood domain the variables an observer has access to must be neighbours with
respect to the order used to construct the MDDs. E.g., an observer may observe
variables x3, x4, x5, but not x1, xs.

We say that a class D of domains is polynomial if the restriction POST%
of POST# to instances in which the domain D belongs to D can be solved in
polynomial time.

By Prop. 4 we know that, unless P=NP, there is no polynomial algorithm
to compute y(-). We define hereafter a class of domains which avoids this prob-
lem, i.e., for every set P in the domain, the v(P)™ can be computed in time
polynomial in | X[, |[P™| and |D™M|.

Definition 5. Let 1 < --- < x,, be a variable ordering for X and let 1 < k <
|X|. The k-neighbourhood domain D is defined as follows

px)= \/ (A @=w)

V;EV zeX\V;

where V is the set of all the sets of k consecutive variables, e.g., forn > k + 2
we find that {2, ..., x4} € V.

In what follows, we sometimes abbreviate /\ ¢ x\y; (z =) to D;i(X).
The following two propositions introduce the two key properties of neigh-
bourhood domains:

Proposition 10. Let D be a k-neighbourhood domain D, and let P € DPL(D).
The MDD for the set (D \ P)T™ can be be computed in polynomial time in
|(D\ P)M| (and so, in particular, it is only polynomially larger than (D\ P)™).

We prove a similar result for the computation of the downward closure.

Proposition 11. Given a k-neighbourhood domain D and a set S C .7, the
MDD for (S| ND;) with V; € V can be computed in polynomial time in
[DM] - [SM].

It follows that, for neighbourhood domains, both a and v can be computed
in polynomial time in their input size.

Proposition 12. For a fized k > 0, the class of k-neighbourhood domains is
polynomial.

Proof. Consider an instance of POST# in which D is a k-neighbourhood do-
main. We give a polynomial algorithm to decide if p € post™[Sys, D](P). By the
definition of post” and a, we have p € post™[Sys, D](P) iff there is a transition



Locality-Based Abstractions 129

t and states s, s’ such that s € v(P) At(s,s’) A s’ € pft. By Prop. 10, v(P)M
over variables X can be computed in polynomial time in [D| and |PM|, and
an MDD p ™, over variables X’ can be computed in polynomial time in |X|.
The algorithm constructs, for each transition ¢ of the system, an MDD for the
formula y(P)M A t(X, X’) A pf™M (X') and checks if it encodes the empty set.
Since the construction and the check can be carried out in polynomial time, we
are done. O

Moreover, while in the concrete system the number of image computations
may also be exponential, here we get a much better bound. Given a k-neighbour-
hood domain, each of the (|X|— (k — 1)) formulee D;(X) has exactly |V|* satis-
fying partial states. This leads us to the following fact: for any k-neighbourhood
domain, for any system and for any set I of initial states, the number of iter-
ations required to reach the fixed point in the computation of (post®)*(I) is
bounded by (|X| — (k — 1)) x |[V|¥. Choosing the domain adequately, we thus
have a way to control the complexity of computing (post™)*(I). In practice this
suggests the following strategy: if the post image computation is costly we can
reduce the number of iterations needed to reach the fixed point by choosing a k-
neighbourhood domain with & << | X/, of course at the prize of losing precision.

7 Abstraction Refinement

In this section, we describe an abstraction-refinement loop for testing reachability
using the partial-reachability method. Given a system Sys = (X,T), a set of
initial states I, and a partial state u. Our goal is to check whether u is reachable,
i.e. whether uf} Npost*(I) # 0.

Our method starts from a (given) initial domain D and computes the reach-
able states in the abstraction, i.e. (post™)*(I]). If the latter includes u, we check
if the imprecision caused by choosing the domain D might be responsible for the
positive result. If so, we refine D accordingly.

More precisely, our scheme consists of the following two steps:

Search. Compute the sequence Fy = a(I]), Ing = Outy = ), and then for ¢ > 0:

Tiy1 ={ (.0 | p € ¥(Fi), p' € (a0 post)(p) }
Fipn =F,U{p |3p: (p,p) € Tisa }
Iniyr =In;U{(p,p)) €Tiv1|pe D}

Outiy1 = Out; U{ (p,p') € Tiy1 |p€ £\ D }.

Stop when the sequence of F;s reaches a fixed point. We denote the values of
the sets in the fixed point as Fy, Iny, Outy, respectively.

Notice that T; records a reachability relation between partial states, where the
left components can be either previously computed partial states in D or partial
states whose reachability was (potentially wrongly) ‘inferred’ by the concretiza-
tion. We then have F; 1 = F; U post#(FZ-). The sequence of In sets records the



130 J. Esparza, P. Ganty, and S. Schwoon

reachability relation between states for which no inference was used, whereas Out
records the relations for which inference was used, i.e. the places where potential
imprecision was introduced.

By Prop. 8, the T; sets can be computed efficiently.

Refine. If v ¢ ~(Fy), then by Prop. 7 u is unreachable, and we stop with a
negative result.

Otherwise, if u ¢ D, then we inferred reachability of u from the reachability of
several partial states. We then refine D to DUw/, which forces the next iteration
to ‘watch’ the partial state u explicitly. (Notice that we could have done this
before the first iteration, but then again we might be able to refute reachability
of w in the first iteration without doing this.)

Failing both tests, we check whether there is a real trace from an initial state
to u. For this, we compute backwards reachability using the relation Iny. We
conclude that u is reachable in the concrete system if 3i € a(I]): (i,u) € Inj}.
Executing this check step for step also gives us the ability to output a witness
path for u’s reachability.

Otherwise, u was reachable in the abstraction because of a step contained
in Outy. To prove concrete reachability of w, we must prove that the partial
source states of these steps were indeed reachable. Thus, we compute the set
A= {p| In}(p,u)} and then refine D to DU {p | 3p’ € A: (p,p’) € Outy}.

Our approach is different from the usual CEGAR approach (see [11] for
more details), where one tests whether an abstract counterexample found in the
search phase is spurious. If it is, one refines the abstraction to prevent that coun-
terexample from being found again. In our approach, we cannot tell whether a
counterexample is spurious or not; we can merely test whether potentially impre-
cise information was used. If the counterexample was spurious, our refinement
prevents it from being found again. If the counterexample was real, then our
refinement gathers additional information to prove the counterexample correct.

Extensive work (see [12,13,14]) investigates the connection between abstract
model checking, and in particular the CEGAR approach, and the domain refine-
ment used in abstract interpretation. As a future work we plan to investigate
the connection but relatively to the refinement technique we proposed in this
section.

8 Experiments

We have produced a prototype implementation of the approaches of Sect. 5 (with
abstraction refinement) and 6 (without abstraction refinement), and applied it
to two well-known examples. The examples only use boolean variables, and so
we use BDDs instead of MDDs. Since our implementation is preliminary and our
main motivation is to provide a space-efficient method, we only report on the
sizes of the BDDs used to decide a property. We compare them with the BDD
size of the full set of reachable states, which is computed using NuSMV [15].



Locality-Based Abstractions 131

8.1 Dining Philosophers Example

Our first example is a deterministic non-symmetric solution to the dining philoso-
phers problem taken from [16]. The model uses two arrays, one for the forks and
the other for the philosophers, both of size N, the number of philosophers. Each
fork is represented by two bits, and each philosopher by three. For our experi-
ments, we use two different ‘natural’ variable orders.

(A) The first order puts the bits for the forks at the top and the philosophers
at the bottom, while each array element is stored with its most significant
bit at the top.

(B) The second order interleaves forks and philosophers, i.e. we put the first fork
at the top, then the first philosopher, then the second fork etc.

The sizes of the BDDs encoding the full set of reachable states are listed (for
orders A and B and various values of N) in the left half of Table 1. As can be
seen, they strongly depend on the variable ordering, with order B working far
better.

We consider the following three properties:

1. Is it possible that two neighbouring philosophers eat at the same time? (This
property is false in the model.)

2. Is it possible for all forks to be taken at the same time? (This property is
true in the model.)

3. Is it possible for philosophers 1 and 3 to eat at the same time? (This property
is true for all N > 3.)

Notice that, without a refinement loop, an abstraction can only prove that a set
of states is not reachable, and so it can only be used to decide property 1. Since
we have not implemented the refinement loop for the neighbourhood approach
(see Sect. 6), we only apply it to this property. The partial-reachability approach
is applied to all three properties.

In the neighbourhood approach, we can decide property 1 by taking N + 1
and k = 3 for ordering A and B, respectively. The BDD sizes for (post™)*(I)
are shown in the right half of Table 1. We observe that, as for full reachability,
the BDDs grow exponentially for ordering A and only linearly for ordering B.

Table 1. BDD sizes in Dining Philosophers example, part 1

full reachability neighb. approach

N ord. A ord. Bord. A ord. B
2 26 25 13 18
3 64 41 40 36
4 140 57 82 54
7 1,204 105 304 108

10 9,716 153 670 162

15 311,284 273 1,600 252



132 J. Esparza, P. Ganty, and S. Schwoon

Table 2. Results for Dining Philosophers, partial-reachability approach

starting with 1 component starting with 2 components
prop. 1 prop. 2 prop. 3 prop. 1 prop. 2 prop. 3

N |post*| #ref |post*| #tref |post*| Fref |post*| Fref |post*| #ref |post*| #ref
2 52 5 34 3 n/a n/a 38 0 46 2 n/a n/a
3 128 4 112 4 109 7 73 0 144 4 73 0

4 217 4 321 5 89 5 112 0 426 5 152 4

7 523 4 6,781 8 167 5 259 0 6,300 8 335 4
10 919 4 7?7 245 5 451 0 7?07 563 4
15 1,807 4 7?77 375 5 871 0 77 1,043 4

However, the constant of the growth for ordering A is much smaller, i.e., the
approach is far less sensitive to the variable order.

The results for the partial reachability approach are detailed in Table 2.
We considered two different initial abstractions for the refinement loop. In the
first one, we take one observer for each component (philosopher or fork); in the
second, one observer for each pair of components (left and right part of Table 2,
resp.). The #ref columns denote the number of refinements that were necessary
to prove or disprove the properties. The column marked |post*| gives the number
of BDD nodes used to represent (post”)*(I|) in the last refinement, where this
number was highest. The representation of D was either nearly of the same size
or significantly lower. The data for the orderings A and B are almost identical,
and so only those for ordering A are shown. For properties 1 and 3, we observe
the same pattern as in the neighbourhood case: the approach works well and
is far less sensitive to the variable ordering. Looking closely, we observe that
the 2-component initialization works better for property 1, presumably because
the property is a conjunction of sub-properties concerning pairs of philosophers.
For property 3, the 1-component initialization works better, probably because it
concerns only 2 specific components. Property 2 is a case in which the locality-
based approach works far worse than full reachability: The property is universally
quantified, forcing the abstraction refinement to consider tuples ranging over all
components.

8.2 Production Cell Example

Our second example is a model of the well-known production cell case study
taken from [17]. Our encoding of the model has 15 variables with 39 bits alto-
gether. We tested all fifteen safety properties mentioned in [17], but present the
results for a few representative ones (the rest yielded similar results). The results
are shown in Table 3.

Table 3 lists results for instantiations of the model with one and five plates.
The number |reach| is the BDD size of the reachable state space as computed
by NuSMV, while |post*| and #ref have the same meanings as in Table 2.

The results show that while the reachable state space grows (linearly) with
the number of plates, the partial-reachability approach is largely unaffected by
their number. Moreover, while the number of refinement iterations varies (the



Locality-Based Abstractions 133
Table 3. Results for production cell example

One plate  Five plates
|reach| = 230 |reach| = 632
Prop |post™| ftref |post™| #ref

1 83 2 83 2
2 88 4 92 6
4 76 1 76 1
6 105 5 120 8
11 146 3 146 3

largest number of refinements was 13), the BDD sizes vary only by about 50%
between the smallest and the largest example. As the number of plates increases,
the space savings of the locality-based approach become significant.

In the neighbourhood approach, 4 out of the 15 properties could be proved
with a neighbourhood domain of size k = 2. Independently of the number of
plates, the number of BDD nodes representing the reachable state space was 129.
A domain of size k = 3 was sufficient to verify another 7 properties; the number
of BDD nodes increased to 208. The remaining properties could only be veri-
fied using full reachability, i.e. the neighbourhood approach did not have any
advantage in this case.

9 Conclusions

We have presented locality-based abstractions, in which a state of the system is
abstracted to the collection of views that some observers have of the state. Each
observer has only access to some variables of the system. As pointed out in the
introduction, special cases of locality-abstractions have been used in different
contexts (planning, analysis of concurrent programs, concurrency theory). In
this paper we have (1) generalized the abstractions used in other papers, (2)
put them in the framework of abstract interpretation, (3) pointed out the bad
complexity of the computation of the abstract successor operator for arbitrary
locality-based abstractions, (4) provided two efficient solutions to this problem,
and (5) evaluated these solutions on a number of examples. Our conclusion is
that locality-based abstractions are a useful tool for the analysis of concurrent
systems.

In our approach we have assumed that variables have a finite domain, and
that if an observer has access to a variable, then it gets full information about its
value. Both assumptions can be relaxed. For instance, locality-based abstractions
can be easily combined with any of the usual abstractions on integer variables. It
must only be required that clustered variables must be observable by the same
observer.



134 J. Esparza, P. Ganty, and S. Schwoon
References
1. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

10.

11.

12.

13.

14.

15.

16.

17.

analysis of programs by construction or approximation of fixpoints. In: Proc.
POPL, ACM Press (1977) 238-252

. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and cartesian abstraction for model

checking C programs. In: Proc. TACAS. (2001) 268-283

. Naumovich, G., Avrunin, G.S.: A conservative data flow algorithm for detecting

all pairs of statements that may happen in parallel. In: Proc. FSE. Volume 23, 6
of Software Engineering Notes., ACM Press (1998) 24-34

. Naumovich, G., Avrunin, G.S., Clarke, L.A.: An efficient algorithm for computing

mhp information for concurrent Java programs. In: Proc. FSE. Volume 1687 of
LNCS. (1999) 338-354

. Naumovich, G., Avrunin, G.S., Clarke, L.A.: Data flow analysis for checking prop-

erties of concurrent Java programs. In: Proc. ICSE; ACM Press (1999) 399-410

. Kovalyov, A.: Concurrency relations and the safety problem for petri nets. In:

Proc. ATPN. Volume 616 of LNCS. (1992) 299-309

. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artificial

Intelligence 90 (1997) 279-298

. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. In: Proc.

IJCAL (1995) 1636-1642

. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE

Trans. Computers 35 (1986) 677-691

Srinivasan, A., Kam, T., Malik, S., Brayton, R.K.: Algorithms for discrete function
manipulation. In: IEEE/ACM ICCAD. (1990) 92-95

Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50 (2003) 752-794
Ranzato, F., Tapparo, F.: Making abstract model checking strongly preserving.
In: Proc. SAS. Volume 2477 of LNCS. (2002) 411-427

Giacobazzi, R., Quintarelli, E.: Incompleteness, counterexamples, and refinements
in abstract model-checking. In: Proc. SAS. Volume 2126 of LNCS. (2001) 356-373
Giacobazzi, R., Ranzato, F., Scozzari, F.: Making abstract interpretations com-
plete. J. ACM 47 (2000) 361-416

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV version 2: An opensource tool for symbolic
model checking. In: Proc. CAV. Volume 2404 of LNCS. (2002)

Zuck, L.D.; Pnueli, A., Kesten, Y.: Automatic verification of probabilistic free
choice. In: Proc. VMCALI Volume 2294 of LNCS. (2002) 208-224

Heiner, M., Deussen, P.: Petri net based qualitative analysis - a case study. Tech-
nical Report 1-08/1995, Brandenburg Tech. Univ., Cottbus (1995)



Type-Safe Optimisation of Plugin Architectures

Neal Glew!, Jens Palsberg?, and Christian Grothoff?

! Intel Corporation, Santa Clara, CA 95054, USA
aglew@acm.org
2 UCLA Computer Science Dept, Los Angeles, CA 90095, USA
palsberg@ucla.edu
3 Purdue University, Dept. of Computer Science, West Lafayette, IN 47907, USA
christian@grothoff.org

Abstract. Programmers increasingly implement plugin architectures in
type-safe object-oriented languages such as Java. A virtual machine can
dynamically load class files containing plugins, and a JIT compiler can
do optimisations such as method inlining. Until now, the best known
approach to type-safe method inlining in the presence of dynamic class
loading is based on Class Hierarchy Analysis. Flow analyses that are
more powerful than Class Hierarchy Analysis lead to more inlining but
are more time consuming and not known to be type safe. In this paper
we present and justify a new approach to type-safe method inlining in
the presence of dynamic class loading. First we present experimental
results that show that there are major advantages to analysing all locally
available plugins at start-up time. If we analyse the locally available
plugins at start-up time, then flow analysis is only needed at start-up
time and when downloading plugins from the Internet, that is, when
long pauses are expected anyway. Second, inspired by the experimental
results, we design a new framework for type-safe method inlining which
is based on a new type system and an existing flow analysis. In the
new type system, a type is a pair of Java types, one from the original
program and one that reflects the flow analysis. We prove that method
inlining preserves typability, and the experimental results show that the
new approach inlines considerably more call sites than Class Hierarchy
Analysis.

1 Introduction

In a rapidly changing world, software has a better chance of success when it
is extensible. Rather than having a fixed set of features, extensible software
allows new features to be added on the fly. For example, modern browsers such
as Firefox, Konqueror, Mozilla, and Viola [25] allow downloading of plug-ins
that enable the browser to display new types of content. Using plugins can
also help keep the core of the software smaller and make large projects more
manageable thanks to the resulting modularisation. Plugin architectures have
become a common approach to achieving extensibility and include well-known
software such as Eclipse and Jedit.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 135-154, 2005.
© Springer-Verlag Berlin Heidelberg 2005



136 N. Glew, J. Palsberg, and C. Grothoff

While good news for users, plug-ins architectures are challenging for optimis-
ing compilers. This paper investigates the optimisation of software that has a
plug-in architecture and that is written in a type-safe object-oriented language.
Our focus is on method inlining, one of the most important and most studied
optimisations for object-oriented languages.

Consider the following typical snippet of Java code for loading and running
a plugin.

String className = ...;

Class ¢ = Class.forName(className) ;
Object o = c.newInstance();
Runnable p = (Runnable) o;

p-run();

The first line gets from somewhere the name of a plugin class. The list of plugins
is typically supplied in the system configuration and loaded using I/O, preventing
the compiler from doing a data-flow analysis to determine all possible plugins.
The second line loads a plugin class with the given name. The third line creates
an instance of the plugin class, which is subsequently cast to an interface and
used.

In the presence of this dynamic loading, a compiler has two choices: either
treat dynamic-loading points very conservatively or make speculative optimisa-
tions based on currently loaded classes only. The former can pollute the analysis
of much of the program, potentially leading to little optimisation. The latter
can potentially lead to more optimisation, but dynamically-loaded code might
invalidate earlier optimisation decisions, and thus require the compiler to undo
the optimisations. When a method inlining is invalidated by class loading, the
run-time must revirtualise the call, that is, replace the inlined code with a virtual
call. The observation that invalidations can happen easily in a system that uses
plugins leads to the question:

Question: If an optimising compiler for a plug-in architecture inlines
aggressively, will it have to revirtualise frequently?

This paper presents experimental results for Eclipse and Jedit that quan-
tify the potential invalidations and suggest how to significantly decrease the
number of invalidations. We count which sites are likely candidates for future
invalidation, which sites are unlikely to require invalidation, and which sites
are guaranteed to stay inlined forever. These numbers suggest that speculative
optimisation is beneficial and that invalidation can be kept manageable.

In addition to the goal of inlining more and revirtualising less, we want
method inlining to preserve typability. This paper shows how to do inlining
and revirtualisation in a way that preserves typability of the intermediate repre-
sentation. The quest for preserving typability stems from the success of several
compilers that use typed intermediate languages [9,15,16,17,26] to give debug-
ging and optimisation benefits [16,24]. A bug in a compiler that discards type
information might result in a run-time error, such as a segmentation violation,



Type-Safe Optimisation of Plugin Architectures 137

that should be impossible in a typed language. On the other hand, if optimi-
sations are type preserving, bugs can be found automatically by verifying that
the compiler generates an intermediate respresentation that type checks. Ad-
ditionally, preserving the types in the intermediate code may help guide other
optimisations. So it is desirable to write optimisations so that they preserve
typability.

Most of the compilers that use typed intermediate languages are “ahead-of-
time” compilers. Similar benefits are desired for “just-in-time” (JIT) compilers.
A step towards that goal was taken by the Jikes Research Virtual Machine [1]
for Java, whose JIT compilers preserve and exploit Java’s static types in the
intermediate representations, chiefly for optimisation purposes. However, those
intermediate representations are not typed in the usual sense—there is no type
checker that guarantees type soundness (David Grove, personal communication,
2004). In two previous papers we presented algorithms for type-safe method
inlining. The first paper [11] handles a setting without dynamic class loading,
and the second paper [10] handles a setting with dynamic class loading, but
with the least-precise flow analysis possible (CHA). In this paper we improve
significantly on the second paper by presenting a new transformation and type
system that together can handle a similar class of flow analyses as in the first
paper.

Our Results. We make two contributions. Our first contribution is to present
experimental numbers for inlining and invalidation. These numbers show that
if a compiler analyses all plugins that are locally available, then dynamically
loading from these plugins will lead to a miniscule number of invalidations. In
contrast, when dynamically loading an unanalysed plugin, the run-time will have
to consider a significantly larger number of invalidations. In order to ensure that
loading unanalzed plugins happens less frequently, the compiler should anal-
yse all of the local plugins using the most powerful technique available. That
observation motivates our second contribution, which is a new framework for
type-safe method inlining. The new framework handles dynamic class loading
and a wide range of flow analyses. The main technical innovation is a technique
for changing type annotations both at speculative devirtualisation time and at
revirtualisation time, solving the key issue that we identified but side stepped in
our previous paper [10]. As in both our previous papers, we prove a formalisa-
tion of the optimisation correct and type preserving. Using the most-precise flow
analysis in the permitted class, our new framework achieves precision comparable
to 0-CFA [18,21].

2 An Experiment

Using the plugin architectures Eclipse and Jedit as our benchmark, we have
conducted an experiment that addresses the following questions:

— How many call sites can be inlined?
— How many inlinings remain valid and how many can be invalidated?



138 N. Glew, J. Palsberg, and C. Grothoff

— How much can be gained by preanalysing the plugins that are statically
available?

Preanalysing plugins can be beneficial. Consider the code in Figure 1. The anal-
ysis can see that the plugin calls method m in Main and passes it an Main.B2;
since main also calls m with a Main.B1, it is probably not a good idea to inline
the a.n() call in m as it will be invalidated by loading the plugin. The analysis
can also see which methods are overridden by the plugin, in this case only run of
Runnable is. The analysis must still be conservative in some places, for example
at the instantiation inside of the for loop, as this statement could load any plu-
gin. But the analysis can gather much more information about the program and
make decisions based on likely invalidations by dynamically loading the known
plugins.

Being able to apply the inlining optimisation in the first place still depends
on the flow analysis being powerful enough to establish the unique target. Thus,
the answer to each of the three questions depends on the static analysis that is
used to determine which call sites have a unique target. We have experimented
with four different interprocedural flow analyses, all implemented for Java byte-
code, here listed in order of increasing precision (the first three support type
preservation, the last one does not):

— Class Hierarchy Analysis (CHA, [7,8])

Rapid Type Analysis (RTA, [2,3])

— subset-based, context-insensitive, flow-insensitive flow analysis for type-pre-
serving method inlining (TSMI, [11]) and

— subset-based, context-insensitive, flow-insensitive flow analysis (0-CFA,
[18,21]).

In order to show that deoptimisation is a necessity for optimising compilers
for plugin architectures, we also give the results for a simple intraprocedural flow
analysis (“local”) which corresponds to the number of inlinings that will never
have to be deoptimised, even if arbitrary new code is added to the system. The
“local” analysis essentially makes conservative assumptions about all arguments,
including the possibility of being passed new types that are not known to the
analysis. A run-time system that cannot perform deoptimisation is limited to
the optimisations found by “local” if loading arbitrary plugins is to be allowed.

The implementations of the five analyses share as much code as possible; our
goal was to create the fairest comparison, not to optimise the analysis time. All
of our experiments were run with at most 1.8 GB of memory. (1.8 GB is the
maximum total process memory for the Hotspot Java Virtual Machine running
on OS X as reported by top and also the memory limit specified at the command
line using the -Xmx option.)

We use two benchmarks in our experiments:

Jedit 4.2prel3. A free programmer’s text editor which can be extended with
plugins from http://jedit.org/, 865 classes; analysed with GNU classpath
0.09, from http://www.classpath.org, 2706 classes.



Type-Safe Optimisation of Plugin Architectures 139

class Main {
static Main main;
public static void main(String[] args) throws Exception {
main = new Main();
for (int i=0;i<args.length;i++) {
Class ¢ = Class.forName(args[i]);
Runnable p = (Runnable) c.newInstance();
p.run(); // virtual if loaded plugins define multiple run methods
}
main.m(new B1()); // can stay optimised for given Plugin
}
void m(A a) { a.n(); // needs to be virtual for given Plugin }
static abstract class A {
abstract void n();
}

static class Bl extends A {
void n() { }
}
static class B2 extends Main.A {
void n() { }
}
}
class Plugin implements Runnable {
public void run() { new Main().m(new Main.B2()); }
}

Fig. 1. Example code loading a known plugin. The Plugin does not modify Main.main,
which ensures that the call to main.m() can remain inlined. If only Plugin is loaded,
p.run() can also be inlined. Pre-analysing Plugin reveals that a.n() should be virtual,
even if the flow analysis of the code without Plugin may say otherwise.

Eclipse 3.0.1. An open extensible Integrated Development Environment from
http://www.eclipse.org/, 22858 classes from the platform and the CDT, JDT,
PDE and SDK components; analysed with Sun JDK 1.4.2 for Linux, 10277 classes
(using the JARs dnsns, rt, sunrsasign, jsse, jce, charsets, sunjce provider, ldapsec
and localedata).

While we have “only” two benchmarks, note that the combined size of
SPECjvm98 and SPECjbb2000 is merely 11% of the size of Eclipse. Furthermore,
these are the only freely available large Java systems with plugin architectures
that we are aware of. Analysing benchmarks, such as the SPEC benchmarks, that
do not have plugins is pointless. We are not aware of any previously published
results on 0-CFA for benchmarks of this size.

We will use app to denote the core application together with the plugins
that are available for ahead-of-time analysis. Automatically drawing a clear line
between plugins and the main application is difficult considering that parts of
the “core” may only be reachable from certain plugins.

Usually, flow analyses are implemented with a form of reachability built in,
and more powerful powerful analyses are better at reachability. To further ensure



140 N. Glew, J. Palsberg, and C. Grothoff

Jedit Can be inlined Cannot be inlined Total
Remain valid  Can be invalidated
By DLCW By DLOW

not DLCW

app lib app lib app lib app lib app lib
Local 682 297 0 0 0 0 20252 7808 20934 8105
CHA 682 297 69 7 18720 6178 1463 1623 20934 8105
RTA 682 297 97 51 18723 6178 1432 1579 20934 8105
TSMI 682 297 99 59 19449 7091 704 658 20934 8105
0-CFA 682 297 103 83 19592 7191 557 534 20934 8105

Eclipse Can be inlined Cannot be inlined Total

Remain valid  Can be invalidated
By DLCW By DLOW

not DLCW
app lib app lib app lib app lib app lib
Local 15497 472 0 0 0 0 481939 26512 497436 26984
CHA 15497 472 4105 61 366114 20796 111720 5655 497436 26984
RTA 15497 472 9024 169 366169 20797 106746 5546 497436 26984
TSMI 15497 472 11479 439 420029 23097 50431 2976 497436 26984
0-CFA 15497 472 9921 46 428944 23971 43074 2495 497436 26984

Fig. 2. Experimental results; each number is a count of virtual call sites

a fair comparison of the analyses, reachability is first done once in the same way
for all analyses. Then each of the analyses is run with reachability disabled. The
initial reachability analysis is based on RTA and assumes that all of app is live,
in particular, all local plugins are treated as roots for reachability. The analysis
determines the part of the library (classpath, JDK) which is live, denoted lib,
and then we remove the remainder of the library.

The combination app + lib is the “closed world” that is available to the
ahead-of-time compiler, in contrast to all of the code that could theoretically be
dynamically loaded from the “open world”. We use the abbreviations:

DLCW = Dynamic Loading from Closed World
DLOW = Dynamic Loading from Open World.

In other words, DLCW means loading a local plugin, whereas DLOW means
loading a plugin from, say, the Internet.

Figure 2 shows the static number of virtual call sites that can be inlined
under the respective circumstances. The numbers show that loading from the
local set of plugins results in an extremely small number of possible invalidations
(DLCW). The numbers also show that preanalyzing plugins is about 50% more
effective for 0-CFA than for CHA: the number of additional devirtualisations is
respectively 57% and 49% higher for 0-CFA after compensating for the higher
number of devirtualisations of 0-CFA. When loading arbitrary code from the



Type-Safe Optimisation of Plugin Architectures 141

open world (DLOW), the compiler has to consider almost all devirtualised call
sites for invalidation. Only a tiny fraction of all virtual calls can be guaranteed
to never require revirtualisation in a setting with dynamic loading—a compiler
that cannot revirtualise calls can only perform a fraction of the possible inlining
optimisations.

The data also shows that TSMI and 0-CFA are quite close in terms of pre-
cision, which is good news since this means it is possible to use the type-safe
variant without loosing many opportunities for optimisation. As expected, using
0-CFA or TSMI instead of CHA or RTA cuts in half the number of virtual calls
left in the code after optimisation. Notice that for Eclipse, in the column for call
sites that can be inlined and invalidated by DLCW, 0-CFA has a smaller number
than TSMI. This is not an anomaly; on the contrary, it shows that 0-CFA is so
good that it both identifies 7357 more call sites in app for inlining than TSMI
and determines that many call sites cannot be invalidated by DLCW.

The closest related work to our experiment is the extant analysis of Sreedhar,
Burke, and Choi [22] which determines whether a variable can only contain
objects of classes from the closed world. They did not consider the more detailed
question of whether inlining can be invalidated due to DLCW or only due to
DLOW. Their largest benchmark was jess which has 112 classes.

3 Overview of Our Framework

Our framework uses a simple construct called dynnew which abbreviates the
Java expression Class.forName(...).newInstance(), that is, an operation
that loads some class and immediately instantiates it. Using this construct means
that we do not need to model the result of Class.forName(...) and deal with
objects that reify classes, simplifying the operational semantics.

A New Type System. In later sections we will prove that TSMI supports type-
safe method inlining for a setting with dynamic class loading. We use a new type
system for the intermediate representation: each type is a pair of Java types. In
this section we explain the main problem that lead us to the new type system.
Our running example is an extended version of one from our paper on TSMI [11].

class B { // code snippet 1:
B m() { return this; } B x =new C(); // x is a field
} x = x.mQ);
x = (B)new CO).mO;

class C extends B {

C f; // code snippet 2:

B m() { By; // y is a field
return this.f; if (...) {y =new CQ; }

} else { y = (B)dynnew; }

} y = y.n0;



142 N. Glew, J. Palsberg, and C. Grothoff

The two code snippets contain three method calls, each to a receiver object of
type B. CHA will for each method call determine that there are two possible
target methods, namely B.m and C.m, so CHA will lead to inlining of none of
the three call sites.

In snippet 1, which does not have dynamic loading, both of the calls have
unique targets that are small code fragments, so it makes sense to inline these
calls:

x = x.f; // does not type check
x = ((B)new CO)).f // does not type check

These two assignments do not type check because while this in class C has static
type C, both x and (B)new C() have static type B. Since B has no £ field, both
field selections fail the type checker. As explained in our previous paper [11],
we remedy this problem by changing static type information to reflect the more
accurate information the flow analysis has. In particular, the flow analysis has
determined that x and the cast expression only evaluate to objects of type C, and
so we transform the static type information to produce the following well-typed
code snippet:

C x = new CQ;
x = x.f; // type checks
x = ((C)new CQ)).f; // type checks

To understand the problems introduced by dynamic class loading, let us consider
code snippet 2. The method call y.m() has a unique target method at least until
the next dynamic class loading. So it makes sense to inline the call, even though
that decision may be invalidated later. To see how this may be achieved, the key
question is:

Question: What is the flow set for dynnew ?

With CHA, the answer is given by the static type of dynnew, which is Object,
and so the flow set is “all classes in the program”. Since dynnew has no impact
on the execution until the next dynamic class loading, we could assign dynnew
the empty flow set! We extend TSMI to dynamic loading in this way. However,
this idea runs into a difficulty quickly, as we explain next.

For code snippet 2, our previous approach transforms the types in a way that
preserves well-typedness:

Cy; // the type of y is changed to C
if (...) { y = new CO; %}

else { y = (C)dynnew; } // the type cast is changed to C
y =y.n0;

Let us now suppose that control reaches dynnew and that it loads and instantiates
a class D which extends class B and is otherwise unrelated to class C. In the
original code snippet 2, the cast of dynnew is to B, so it succeeds. However,



Type-Safe Optimisation of Plugin Architectures 143

in the transformed code snippet, the cast of dynnew is to C, so it fails. Thus,
if we transform the types in the style of our previous paper [11] and we do
not transform the types again at the time of evaluating dynnew, we change the
meaning of the program!

The source of the difficulty is that a type cast can viewed as doing double
duty: it does a run-time check and it helps the type checker. Our solution is to
change the cast into a form that uses a pair of types. In code snippet 2, we would
change the cast of dynnew to (B,C)dynnew. We say that B is the original type
and that C is the current type. The current type is based on the flow analysis.
The original type is used to do the run-time check while the current type is used
to help the type checker. In fact, we need to change the entire type system and
use pairs of types everywhere, not just in casts. Note, to be sound, the current
type must be a subtype of the original type.

Armed with the idea of using pairs of types, we can now state the type of
dynnew. The original type continues to be Object and the current type is derived
from the flow set which is the empty set. The empty set corresponds to a type
which is a subtype of all other types. To reflect that, we introduce a type Null
and give dynnew the type (O0bject, Null). This has the pleasant side effect that
we can remove an artificial requirement from the original formulation of TSMI,
namely that all flow sets have to be nonempty.

Returning to code snippet 2, our approach will first transform the snippet
into:

(B,C) y; // the type of y is changed to (B,C)
if (...) {y =mnew CO; }
else { y = (B,C)dynnew; } // the type cast is changed to (B,C)

y = y.m();

Next, evaluating dynnew and thereby loading and instantiating a class D can be
modeled as replacing dynnew with new D() as well as a new flow analysis of the
program. The new analysis changes the current types, resulting in the following
type-correct code:

(B,B) y;

if (...) {y=mnewCQO; }
else {y = (B,D)new DO); }

y = y.mO;

Notice that the current type of y was B initially, then the TSMI-based optimi-
sation changed it to the more specific type C, and then the dynamic loading of
class D changed the current type of y back to B.

In summary, the new ideas are:

— A type is a pair of Java types in which the second Java type is a subtype of
the first Java type.

— The Null type is used to type dynnew.

— A type cast uses the first Java type in the pair.



144 N. Glew, J. Palsberg, and C. Grothoff

Our main theorem is that with a type system based on those three ideas, TSMI-
based devirtualisation and revirtualisation is type preserving. As our experi-
ments in the previous section show, the new approach will lead to considerably
more inlining than the previously best approach, namely CHA. Later we for-
malise our ideas and prove the main theorem. First we clarify how revirtualisa-
tion is done and how we formalise it, and clarify how we do our proofs.

Patch Construct. Until now we have not said much about how a virtual machine
revirtualises a method invocation. The main problem with revirtualisation is that
an invalidated method inlining may be in a currently executing method, requiring
a nontrivial update of the program state. We focus on a technique for doing
this update called patching, used by some virtual machines (for example [14]
and ORP [5,6]). Patching is a form of in-place code modification for reverting to
unoptimised code, and does not require any update of the stack or recompilation
of methods. The basic idea is to compile the call x.m() to the following code:

label 11: [Inline x.C::m()]

label 13:

label 12: x.m(Q); [out of linel
jump 13;

(Where out of line means after the end of the function being compiled.) Then
if a class is loaded that invalidates the inlining, the virtual machine writes a
jump 12; instruction at address 11. There are important low-level details that
we abstract (these and techniques other than patching are described in our
previous paper [10]).

To formalise this idea in a small language, we need an expression of the
form e; patchto’ e; where £ is a label. Additionally, program states will have
a component, called the patch set, that is a set of labels of patches that have
been applied. If ¢ is in this set then the above expression acts like es, if not it
acts like e;. This idea models what the assembly sequence above does.

Note that, as in previous papers, we concentrate on devirtualisation, the
first step of method inlining, as the other step is straightforward. Given this
focus, a general patch construct is not needed. Instead we use a construct of
the form e. [C: :]ém(), which can be though of as e.C::m() patchto’ e.m()
where e.C: :m() invokes C’s implementation of m on e, and ultimately should be
thought of as the code above.

The correctness of speculative inlining with patching is far less obvious than
the correctness of inlining for whole programs. We use a proof framework devel-
oped in our previous paper [10]. Note that we do devirtualisation of both the
initial program and of dynamically loaded classes. Furthermore, the patching
operation, which is part of the optimisation, is a runtime operation. The usual
formalisation methods do not suffice, and instead we formalise the optimisation
as a second semantics. This semantics includes the transformation that does de-
virtualisation and the patching operation as part of the semantics of dynnew.
To prove correctness of the optimisation we show that the optimising semantics



Type-Safe Optimisation of Plugin Architectures 145

gives the same meaning to a program as a standard semantics does. To prove
type preservation, we prove the optimising semantics type safe.

4 Dynamic Loading Language

This section begins the formal development of our results. It defines a simple
language with dynamic class loading that is the source language for the op-
timisation. The language is a variant of Featherweight Java (FJ [13]), adding
just one new expression form for dynamically loading a new class. Due to space
limitations we omit many standard or obvious details (readers can refer to the
original FJ paper or our previous dynamic loading paper). The optimised code
will use a slightly different syntax (see the following section), here is the common
syntax:

Expressions e ==x'|newcCl(e)|e.f!|e.ml(e) | (t)’e | dynnew’
Method Declarations M ::=t’m(t x*) { returne; }

Class Declarations  CD ::= class C; extends Co { t fé; M}
And here is the standard syntax:

Types tu=C
Program State P ::= (CD;e)

We use standard metavariables and the bar notation from the FJ paper.

To simplify matters, we assume that field names are unique, that all x* ex-
pressions have the same label as the binder of x, and that all labels of this in a
class have the same label. These restrictions mean that lab(f) identifies a unique
label for each field declared in a program, and that in the given scope lab(x)
identifies a unique label for each variable in that scope.

Some auxiliary definitions that are used in the rest of the paper appear in
appendix A. The standard operation semantics is similar to FJ extended with a
rule for dynnew:

CD = class Cextends --- { -+ } (1)

D 4 ’
(CD; X(dynnew’)) Crﬁf (CD, CD; X(new C* (e)))

Here X ranges over evaluation contexts. To keep the semantics deterministic, we
explicitly label the reduction with a label of the form (CD, e, ¢), where CD is the
newly loaded class, e are the initialiser expressions, and ¢ is the label to use on
the new object.

The typing rules are those of Featherweight Java extended with a rule for
dynnew; they can be recovered from the more general rules in Figure 4 by ignoring
the right type in the type pairs. The type system is sound as can be proven by
standard techniques.



146 N. Glew, J. Palsberg, and C. Grothoff

poly(P,¢) = {¢ | e.[C::1"m(e) € P,3D € $(lab(e)) : impl(P,D,m) # C: :m}

fields(CD,C) =t £;

(CD;S;X(new C1 (e) .£2)) >, (CD;S;X(e;)) @
mbody(CD, C,m) = (x, e, £) 3)

(CD;S;X{new C“ (e) .m?2 (d))) +—, (CD;S;X(e{this, x := new C’1 (e),d}))
CDFC<:D (4)

(CD;S;X(((D,E))new C(e))) —, (CD;S;X(new C’(e)))
CD = class Cextends --- { --- } P = (CD,CD;S;X(new C*(e))) ¢ = fa(P)
CD’ = retype(CD, ¢) X' = retype(X, ¢) CD' = [retype(CD, <z§)]]CD Do
e’ = [retype (e, ¢)HCD,CD,¢ " = s U poly(P, ¢)

(CD;S;X{dynnew’)) C]»)—’i;e, (CD’,CD’; 8/ ;X (new C¥ (e)))

()
mbody(CD, { g ﬁi ; : } 7m) = (Xv e7£)

(CD;S;X(new C%1 (e) . [D::1%2m(d))) o (CD;S;X(e{this,x := new C’* (e),d}))

(6)

Fig. 3. Optimised Operational Semantics

5 Devirtualisation Optimisation

This section formalises speculative devirtualisation with patching for revirtuali-
sation as a second semantics, called the optimising semantics, for the language
of the previous section. The additional constructs required are described next,
following by the actual transformation, and finally the semantics and the type
system.

Syntaz. The optimised semantics needs a patching construct and an associated
patch set in the program states, and two types in each static typing annotation—
the original and the current type. The modified syntax is:

Types t := (C1,C9)
Expressions en=---|e.[C::]1m(e)
Program States P ::= (CD;S;e)

Here 8, called the patch set, is the set of labels of the patch constructs that had
to be revirtualised. A patch construct has the form e. [C: :1'm(e). If £ is in the
patch set S then this expression acts like a normal virtual method invocation
e.m’(e). Otherwise it acts like a nonvirtual method invocation—it invokes C’s
version of m on object e with arguments e. Types are now pairs where the left
class name is the original type from the unoptimised code, and the right class
name is the current type based on the current flow analysis.

Transformation. The transformation of code is based on a flow that assigns
sets of class names, called flow sets, to expressions, fields, method parameters,



Type-Safe Optimisation of Plugin Architectures 147

and method returns. The set should include all classes in the current program
state that the expression might evaluate to. A flow analysis takes a program
state and returns a flow for it, and it should ignore the current types. Before
applying the transformation, the static type information must be transformed
so that the current types reflect the flow used. The retype function achieves
this change. Its definition is in Appendix A, as the only interesting clause
is: retype((Cl,Cg)é,qb) = (C1, U ¢(¥)). The transformation takes an expres-
sion, method declaration, or class declaration and changes monomorphic virtual
method invocations into patchable nonvirtual method invocations. It appears in
Appendix A as the only interesting clause is:

[[e.m’f(e>]]CD¢ = [elep., - [C::1m([elp ,) i VD € ¢(lab(e)) : impl(CD,D,m) = C::m

Optimised Semantics. The optimised semantics is parameterised by a flow anal-
ysis fa (that is, a function that takes an optimised-syntax program state and re-
turns a flow for it). A standard syntax program (CD;e) starts in the optimised se-
mantics state ([retype(CD, ¢)]]CD,¢;®; [retype(e, ¢)HCD,¢) where ¢ = fa(CD;0;e).
In other words a flow analysis is performed on the initial program and used to
transform it to form the initial state along with an empty patch set.

The reduction rules for the optimised semantics appear in Figure 3. The
rules are similar to the standard semantics with the following modifications.
The rule for cast uses the original type in the cast rather than the current type
to determine if the cast should succeed. The rule for dynamic new is the most
complex. It performs a flow analysis on the unoptimised new program state.
Then it uses this flow analysis to retype the program state and to transform the
new class declaration and initialiser expressions. Finally, it adds to the patch
set the labels of patch constructs that are no longer monomorphic. The rule for
the patch construct is similar to the rule for method invocation except in how
it finds the method body. If the label is in the patch set, then the construct is
“patched” and should act like a virtual method invocation. In this case it uses
the object’s class to lookup the body as in the rule for method invocation. If the
label is not in the patch set, then the construct acts like a nonvirtual invocation,
and uses the class in the construct, D, to lookup the method body.

Type System. The typing rules appear in Figure 4. The rules are fairly straight-
forward. They essentially are checking the original and current typing in parallel.
To look up field or method types, since these are the same whether we look in
the superclass or subclass, we simply use the original type. Two rules treat the
current and original types differently. For dynamic new, the current is Null as it
is always retyped before it is replaced by an actual object, but its original type
must be Object. For the patching construct, if not currently patched then the
object must be in the type E being dispatched to, so we require the current type
to be a subtype of this.

Except for the details of subtyping, the rules are deterministic, and for a
program state P, there is a unique t and derivation of - P € t. Therefore, given
a program and an occurrence of a label in it, there is a uniquely determined type
associated with that occurrence: either the type of the expression it labels, or



148 N. Glew, J. Palsberg, and C. Grothoff

CD I Null <: Object  CDF Object <: Object

class CextendsD{ --- } €CD
CDF Null<:C CD-C«<:C CDFC<:D

CDFC<:D CDFD<: E
CDFC<: E
CDF Csy <: Cy
CD k- (C1,C2)
CDFCy <: Dy CDF Cy <: Do
CDF (Cy,C2) <: (D1,D2)

CD;S; I'Fx e I'(x)

fields(CD,C) =t £; CD;S;'Fect’ CDFt/<:t

CD; S; I' - new Cf(e) € (C,C)
CD;S;I'+~e € (C,D) fields(CD,C) =t £;
CD;8; e .ffet;
CD;S;I'+~e € (C,D) mitype(CD,C,m) =t — t CD;S;I'Hect’
CD;S;'He.mf(e) €t

CD;S;I'Fect’ CDF t
CD;8; I (t)fe et

CD;S; I' - dynnew’ € (Object,Null)
CD;S;I'~e € (C,D)
miype(CD,C,m) =t — t
CD;S;I'Fect!
CODFt/<:t
mtype(CD, E,m) is defined
{¢S=CDFD<:E
CD;S;'Fe.[E::1'm(e) €t
CDFt CDFt
CD;S;this : (C,C),x:thFe€t’ CDHt'<:t
can-declare(CD,C,m,t — t)

CD;S F tfm(t x*) {returne; } in C
CDFt CD;SFMin C
CD;S - class C extends D { t £; M }
CD; S+ CD CD;S;-Fect
F (CD;S;e) €t

Fig. 4. Typing Rules for the Optimised Syntax

9)
(10)

(11)

(12)
(13)

(14)

CDFt/<:t

(18)

the field, return, or parameter type that it labels. A flow ¢ for a program is type
respecting if and only if for each label ¢ in the program, each class C in ¢(¢), and

each original type D associated with ¢, C is a subtype of D.



Type-Safe Optimisation of Plugin Architectures 149
6 Correctness

In this section we prove the optimisation correct, that is, that it preserves typa-
bility and operational semantics. The optimisation is correct, however, only for
certain flow analyses—the ones that respect the typing rules and approximate
the operational semantics. A flow ¢ for a program P is acceptable exactly when
it satisfies the conditions in Figure 5. A flow analysis fa is correct if fa(P) is an
acceptable and type-respecting flow for P whenever - P € t for some t. We prove
the optimisation correct when it is based on a correct flow analysis.

Typability Preservation. Since the optimisation is stated as a second semantics
for the language, typability preservation means that a well-typed standard syn-
tax program does not get stuck in the optimised semantics. However, it is not
enough that the original program type checks, all dynamically loaded classes
must type check as well. We say that (CD,e,?) type checks with respect to
program (CD;S;e) exactly when CD,CD;S I CD and CD,CD;S;- e € t where
CD = class C extends --- { --- } and fields(CD,CD,C) = t f;. We say that
a reduction sequence type checks exactly when the initial program state type
checks and all the labels in the reduction sequence type check with respect to
the program state that precedes them.

Theorem 1 (Typability Preservation). If P is a well-typed standard-syntax
program, then any well-typed reduction sequence in the optimised semantics,
which starts from a state corresponding to P and is based on a correct flow
analysis, does not end in a stuck state.

The proof is given in the full version of the paper, which is available from the
webpage http://www.cs.ucla.edu/ palsberg/publications.html. The key
to proving the theorem is proving that at each point in the reduction sequence
the program state type checks and there is an acceptable and type-respecting
flow for the program state. Formally, we define - (P, ¢) good to mean P € t for
some t, ¢ is an acceptable and type-respecting flow for P, and the current type
of every static typing annotation in P is Ug(¢) where ¢ is the label associated
with the annotation. As with standard type soundness arguments, we show that
reduction preserves goodness (rather than typability), and that typable (a subset
of good) states are not stuck.

Operational Correctness. We prove that the optimisation preserves semantics,
specifically that the optimised semantics simulates the standard semantics and
vice versa. To state the result we need a correspondence relation corresponds
(P,P’). This relation generalises the transformation slightly to reflect the fact
that the transformation is applied at consecutive loading points rather than all
at once. Its definition appears in the full version of the paper. Essentially, where
the left program has a virtual dispatch the right program may have one of two
expressions. It can have a corresponding virtual dispatch. It can also have an
equivalent patch construct if the virtual dispatch is monomorphic in the current



150 N. Glew, J. Palsberg, and C. Grothoff

— For each new C’(e) in P where fields(CD,C) =t £;:

d(lab(e)) C p(lab(£)) (22)
C € 4() (23)
— For each e.£f in P:
¢(lab(£)) = ¢(£) (24)
— For each e.m(e) in P where e has type (C1,C2) and mbody(P,C1,m) = (x,e’,£'):
d(lab(e)) C p(lab(x)) (25)
o(l') = o(6) (26)
And for each D € ¢(lab(e)), impl(P,D,m) = E: :m, and ¢ labels this in E:
¢(lab(e)) C ¢(¢') (27)
— For each ((C,D))%e in P:
¢(lab(e)) N subclasses(P,C) C ¢(¢) (28)
— For each dynnew’ in P:
o) =0 (29)

— For each e.[C::1’m(e) in P where e has type (Cy,C2) and mbody(P,C1,m)
(x,e',0):

o(lab(e)) C ¢(lab(x)) (30)
o(l") = ¢() (31)

And if ¢ € S where P = (---;8S;--+) then for each D € ¢(lab(e)), impl(P,D,m) =
E::m, and ¢ labels this in E:

¢(lab(e)) C ¢(¢') (32)
And if £ ¢ S then the following where impl(P,C,m) = E: :m and ¢’ labels this in E:
¢(lab(e)) C ¢(¢') (33)

— For each class C in P with label ¢ for C’s this occurrences:
C € p(0) (34)
— For each method t* m(t x*) { returne; } in P:
¢(lab(e)) € ¢(f) (35)

— If t“ m(t 2%') { return e;; } overrides t*> m(t #3?) { return es; } in P then:

Fig. 5. The Conditions for an Acceptable Flow Analysis



Type-Safe Optimisation of Plugin Architectures 151

program (the subscripts CD and ¢ on the relation) or if the patch label is in the
current patch set (the subscript S on the relation).

Given the correspondence relation, two facts are true. First, if P’ is the initial
state in the optimised semantics for program P then corresponds¢(P,P’ ) where
¢ is the flow analysis used to compute the initial state. Second, the optimised
semantics simulates the standard semantics and vice versa, as stated in the
following theorem.

Theorem 2 (Operational Correctness).
If corresponds 4 (P1,P}) and the flow-analysis is correct then:

— If Py +5, Py then P} o Py and corresponds 4, (P2,P5) for some Py and ¢s.

— IfP] »—L>o P, then P, r—L>S Py and corresponds.,, (P2,P5) for some Pa and ¢o.

The proof of both these facts is very similar to the proof in our previous pa-
per [10].

7 Conclusion

We presented a new type system and theorem that shows that TSMI is type pre-
serving in the presence of dynamic class loading. Our experimental results show
that TSMI leads to considerably more inlining than the current best approach,
namely CHA. Our experimental results also show the value of analyzing all lo-
cal plugins at start-up time: only few inlinings will be invalidated when loading
a local plugin. The flow analysis has to be recomputed only when a plugin is
loaded from non-local sources. Since such remote operations involve considerable
delay anyway, the extra delay from redoing the flow analysis is unlikely to be
noticable.

Researchers have recently developed many new ideas for efficiently doing flow
analysis, virtualisation, and devirtualisation in JIT compilers [4,12,19,20]. Our
results can form the basis of a new generation of typed intermediate representa-
tions used by powerful, type-preserving JIT compilers.

In future work we would like to go beyond the static counts of virtual call
sites. We would like to count how many times each call site is executed, and count
how many call sites turn out to be monomorphic at run time. Researchers might
also explore how our results fit with recent work on dynamic code updates [23].

References

1. B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D. Choi,
A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov,
M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd,
S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeno virtual
machine. IBM System Journal, 39(1), February 2000.



152

2.

10.

11.

12.

13.

14.

15.

16.

N. Glew, J. Palsberg, and C. Grothoff

David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual
function calls. In Proceedings of OOPSLA’96, ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications, pages 324—
341, 1996.

David Francis Bacon. Fast and Effective Optimization of Statically Typed Object-
Oriented Languages. PhD thesis, Computer Science Division, University of Cali-
fornia, Berkeley, December 1997. Report No. UCB/CSD-98-1017.

Jeff Bogda and Ambuj K. Singh. Can a shape analysis work at run-time? In Java
Virtual Machine Research and Technology Symposium, 2001.

Michal Cierniak, Marsha Eng, Neal Glew, Brian Lewis, and James Stichnoth. The
open runtime platform: A flexible high-performance managed runtime environ-
ment. Intel Technical Journal, 7(1), February 2003.

Michal Cierniak, Guei-Yuan Lueh, and James Stichnoth. Practicing judo: Java
under dynamic optimizations. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 13—26, June 2000.

J. Dean and C. Chambers. Optimization of object-oriented programs using static
class hierarchy analysis. Technical Report 94-12-01, Department of Computer Sci-
ence, University of Washington at Seattle, December 1994.

J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs
using static class hierarchy analysis. In W. Olthoff, editor, Proceedings of the
Ninth European Conference on Object-Oriented Programming (ECOOP’95), pages
77-101, Aarhus, Denmark, August 1995. Springer-Verlag.

Neal Glew. An efficient class and object encoding. In Proceedings of OOPSLA’00,
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages
and Applications, pages 311-324, 2000.

Neal Glew and Jens Palsberg. Method inlining, dynamic class loading, and type
soundness. Journal of Object Technology. Preliminary version in Sixth Workshop
on Formal Techniques for Java-like Programs, Oslo, Norway, June 2004.

Neal Glew and Jens Palsberg. Type-safe method inlining. Science of Computer
Programming, 52:281-306, 2004. Preliminary version in Proceedings of ECOOP’02,
European Conference on Object-Oriented Programming, pages 525-544, Springer-
Verlag (LNCS 2374), Malaga, Spain, June 2002.

Martin Hirzel, Amer Diwan, and Michael Hind. Pointer analysis in the presence
of dynamic class loading. In Proceedings of ECOOP’04, 16th Furopean Conference
on Object-Oriented Programming, pages 96—122, 2004.

Atsushi Igarashi, Benjamion Pierce, and Philip Wadler. Featherweight Java: A
minimal core calculus for Java and GJ. In ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, pages 132-146,
Denver, CO, USA, October 1999.

Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Komatsu, and
Toshio Nakatani. A study of devirtualization techniques for a Java just-in-time
compiler. In Proceedings of OOPSLA’00, ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages 294-310, 2000.
Christopher League, Zhong Shao, and Valery Trifonov. Representing Java classes
in a typed intermediate language. In Proceedings of ICFP ’99, ACM SIGPLAN
International Conference on Functional Programming, pages 183-196, 1999.

Greg Morrisett, David Tarditi, Perry Cheng, Christopher Stone, Robert Harper,
and Peter Lee. The TIL/ML compiler: Performance and safety through types. In
ACM SIGPLAN Workshop on Compiler Support for System Software, 1996.



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Type-Safe Optimisation of Plugin Architectures 153

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed
assembly language. ACM Transactions on Programming Languages and Systems,
21(3):528-569, May 1999.

Jens Palsberg and Michael I. Schwartzbach. Object-oriented type inference. In
Proceedings of OOPSLA’91, ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications, pages 146-161, 1991.

Igor Pechtchanski and Vivek Sarkar. Dynamic optimistic interprocedural analy-
sis: A framework and an application. In Proceedings of OOPSLA’01, ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages and Ap-
plications, pages 195-210, 2001.

Feng Qian and Laurie J. Hendren. Towards dynamic interprocedural analysis in
JVMs. In Virtual Machine Research and Technology Symposium, pages 139-150,
2004.

Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, CMU,
May 1991. CMU-CS-91-145.

Vugranam Sreedhar, Michael Burke, and Jong-Deok Choi. A framework for inter-
procedural optimization in the presence of dynamic class loading. In Proceedings
of PLDI’00, ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 196-207, 2000.

Gareth Stoyle, Michael W. Hicks, Gavin M. Bierman, Peter Sewell, and Iulian
Neamtiu. Mutatis mutandis: Safe and predictable dynamic software updating. In
Proceedings of POPL’05, SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 183-194, 2005.

David Tarditi, Greg Morrisett, Perry Cheng, Christopher Stone, Robert Harper,
and Peter Lee. TIL: A type-directed optimizing compiler for ML. In 1996 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
pages 181-192, Philadelphia, PA, USA, May 1996. ACM Press.

P.Y. Wei. A brief overview of the VIOLA engine, and its applications. http://
www.xcf .berkeley.edu/"wei/viola/violaIntro.html, 1994.

Andrew Wright, Suresh Jagannathan, Cristian Ungureanu, and Aaron Hertzmann.
Compiling Java to a typed lambda-calculus: A preliminary report. In ACM Work-
shop on Types in Compilation, Kyoto, Japan, March 1998.

Appendix A: Details of the Formalisation

The function fields(CD,C) returns C’s fields (declared and inherited) and their
types; mtype(CD,C,m) returns the signature of m in C, it has the form t — t
where t are the argument types and t is the return type; mbody(CD, C,m) returns
the implementation of m in C, it has the form (x, e, f) where e is the expression
to evaluate, x are the parameters, and ¢ is the label of the method return;
impl(CD, C,m) returns the class from which C inherits m (this could be C itself), it
has the form D: :m where D is the class; can-declare(CD, C,m, t — t) checks that C
is allowed to declare m with signature t — t—this would not be the case if one
of C’s ancestors in the class hierarchy also declared m with a different signature.

Field Lookup, Method Information and Inheritance Checking

CD(C) = class CextendsD{t £ } fields(CD,D) = t’ £';

fields(CD, Object) = - fields(CD,C) =t/ £/;t £



154 N. Glew, J. Palsberg, and C. Grothoff

CD(C) = class CextendsD{ t £ M } t*m(t x°) { returne; } €M

miype(CD,C,m) =T — t
mbody(CD, C,m) = (x, e, {)
impl(CD,C,m) = C::m

CD(C) = class Cextends D { t £ M } m not defined in M

mtype(CD, C,m) = mtype(CD,D,m)
mbody(CD, C,m) = mbody(CD,D,m)
tmpl(CD, C,m) = ¢mpl(CD, D, m)

CD(C) = class C extends D{ --- } miype(CD,D,m) =t’ — t’ impliest =t/ At =t

can-declare(CD,C,m,t — t)

The Retyping Function and the Transformation

retype((C1,C2), $) = (C1, Ugp(£)

retype (x*, ¢) =x

retype (new C° (e), ¢) = new C* (retype(e, ¢))

retype (e. fe,qﬁ) = retype(e, ¢).£*

retype(e.m’ (e), ¢) = retype(e, ¢).m’ (retype(e, $))
retype((t)*e (;5) = (retype(tt, $)) ‘retype(e, @)

retype (dynnew’ ,qﬁ) = dynnew’

retype(e. [C::1m(e), @) = retype(e, ¢). [C: : 1 m(retype(e, $))

retype(t‘ m(t x*) { returne; },¢)
{ return retype(e, ¢); }
retype(class C1 extends C2 { t f[’; M}, ¢) = class C; extends Ca

retype(t*, ¢)° m(retype (t°, ) x°)

{ retype(t*, ¢) £ retype(M, ¢) }

[[Xg]]CD,¢ ==
[new c* (e)]](:]lq5 = new CZ([[e]]Cqub)
[e-£Tep = lelgp ,-£°
[[e.me(e)]]CD’d) = [elep - [C::] m([[e]]CD )
if VD E o(lab(e)) : zmpl(CD D,m) =C::m
[[e.me(e)]]cnq5 = [[e]]CD@'mZ([[e]]CD,qa)
otherwise
[ el , = ) [elgp ,
[[dynnewé]]ZCD’ o = dynnew* )
[e.[C::] m(e)]]CD,¢ = [[e]]CD7¢.[C::] m([[e]]CD,¢)
[t m(t x°) { return e; }]]CD,¢ = t‘ m(t x*) { return [[e]]CD,¢; }
[class Ci extends C2 { t 5 M Hep s = class C; extends C2 { t £ Mep o }



Using Dependent Types to Certify the Safety
of Assembly Code*

Matthew Harren and George C. Necula

Computer Science Division, University of California
Berkeley, CA, USA 94720-1776
{matth, necula}@cs.berkeley.edu

Abstract. There are many source-level analyses or instrumentation
tools that enforce various safety properties. In this paper we present an
infrastructure that can be used to check independently that the assem-
bly output of such tools has the desired safety properties. By working at
assembly level we avoid the complications with unavailability of source
code, with source-level parsing, and we certify the code that is actually
deployed.

The novel feature of the framework is an extensible dependently-typed
framework that supports type inference and mutation of dependent val-
ues in memory. The type system can be extended with new types as
needed for the source-level tool that is certified. Using these dependent
types, we are able to express the invariants enforced by CCured, a source-
level instrumentation tool that guarantees type safety in legacy C pro-
grams. We can therefore check that the x86 assembly code resulting from
compilation with CCured is in fact type-safe.

1 Introduction

There are numerous ongoing efforts to design static analyses or instrumentation
tools to ensure various safety and security properties of programs. In most cases,
there is no independent way to ensure that the analysis or instrumentation tool
was actually run on a given program. Since most of today’s software security
tools operate only on source code, a concerned user must obtain the source for
the program in question, must run the tool himself, and is forced to trust that
the tool and the compiler are working as advertised. In this paper, we describe
our efforts to develop an independent verification strategy for static analyses
and instrumentation tools.

A well-known example of the strategy that we advocate is the verification
of type safety in Java and .NET bytecode. A compiler verifies that the origi-
nal source code is type-safe, and uses this typing information to generate typed

* This research was supported in part by the National Science Foundation under grant
number CCR-00225610. Any opinions, findings, conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 155-170, 2005.
© Springer-Verlag Berlin Heidelberg 2005



156 M. Harren and G.C. Necula

bytecode. The bytecode can then be checked for safety independently from the
source code. We want to push this strategy to lower-level languages, such as
assembly, and to allow more language-based enforcement tools to make use of it.
Working at the assembly-language level makes our technique fit well in the cur-
rent standard object-code distribution process. Furthermore, it does not require
the program source code, is applicable to more source languages, and eliminates
the compiler from the trusted computing base.

An additional goal of our work is to make it relatively easy for tool writers
to customize a generic certification infrastructure with the rules and invariants
that should hold in the processed code. To this end, the certification infrastruc-
ture performs many operations that are likely to be needed across a variety of
enforcement tools.

1.1 Motivation

This work was initially motivated by requests from CCured users to have inde-
pendent verification that libraries or object files have been processed by CCured.
CCured [1] is a source-to-source translator that guarantees type safety for legacy
C code by inserting run-time checks before potentially unsafe operations. Where
necessary, it modifies data structures to accommodate metadata such as array-
bound information. CCured performs extensive static analysis to minimize the
changes to data structures and the number of run-time checks necessary. CCured
also has many different kinds of run-time checks, for arrays, pointers on the stack,
or type hierarchies. A framework that can keep up with CCured’s analysis and
run-time checks would be suitable for certifying the result of simpler tools such
as Cqual [2] and Stackguard [3]. We believe our framework is general enough to
be used with languages other than C and safety policies other than type safety.

We cannot use standard Typed Assembly Languages [4] to encode the out-
put of CCured for two main reasons. First, the instrumentation scheme used
by CCured requires dependent types to encode, for example, that a field in
a structure is a pointer to a memory area whose length is stored in another
field. The DTAL [5] language is dependently-typed and is at the assembly-
language level, but does not allow mutation of dependently-typed records. The
ability to overwrite dependent memory locations is crucial for CCured, because
most C programs store pointer values in memory. We propose in this paper a
new dependently-typed language that allows mutable records, by allowing the
dependent-type invariants to be temporarily broken inside a basic block.

The other major obstacle in using one of the existing typed assembly lan-
guages is that it would require a special compiler that produces the desired lan-
guage. Instead, we want to apply this strategy even to source-to-source trans-
formations, in which the output of the tool is compiled using an off-the-shelf
compiler. The challenge posed by an external compiler is that register allocation
and other optimizations will cause us to lose the correspondence between local
variables in our source code and registers in the compiled code.

Our framework relies on (untrusted) annotations for function signatures and
types of global variables. These annotations are generated by the source-level



Using Dependent Types to Certify the Safety of Assembly Code 157

tool whose policy we enforce. We decided against using such annotations for
individual program points inside of a function’s body, in order to reduce sensi-
tivity to optimizations or compilation details. Instead, we use type inference to
rediscover the types of the registers and stack slots in assembly code. Our use of
abstract interpretation for type inference is similar to that used in bytecode ver-
ifiers, or to that described described by Chang et al. for compiler debugging [6].
For space reasons, we do not discuss type inference in this paper.
The contributions of this paper include:

— An expressive yet practical dependent type system for low-level code that
supports mutable records. We describe in Section 2 the mechanism used for
customizing the type system to new policies, and present the type system
itself in Section 3.

— A description of the typechecking algorithm for this type system.

— An encoding of the safety constraints of CCured in this type system, with
support for arrays, dynamic typing, and stack-allocated variables whose ad-
dress is taken (Section 4). We describe in Section 5 our experience using a
prototype verifier that can check the CCured output for type safety.

2 Type Policies

Our type system is parameterized by a type policy that describes the invariants
enforced by the safety tool you wish to use (CCured, for example). Factoring
our type system in this way provides modularity and allows us to support ex-
tension to different safety tools. Furthermore, it lets us focus this paper on the
specific contributions of our framework, such as mutable dependent types and
the infrastructure for type checking.

A type policy consists of the following:

— A finite set T of type constructors C. These constructors are used to build
policy-specific types for word-sized values, as described below.

— A subtyping relation IsSubtype: 7 — 7 — Bool for the types generated by
these constructors, and the associated upper bound function TJoin : 7 —
T — 7T that returns a supertype of its arguments.

— An operation ArithType : 7 — op — 7 — 7 that assigns a type to the
result of binary operators given the type of the operands, and an operation
ConstType : const — 7 that gives a type to each constant.

— A Constrain operation that refines a typing context after a certain boolean
expression has been tested to be true.

For example, a type policy could define a type constructor “Int” for integers
that will fit in a machine word, and a constructor “MaybeNullPtr ¢” for possibly-
NULL pointers to records with type o. We'll see below that the framework defines
the “Ptr ¢” type to describe pointers to . Then the policy will likely define both
IsSubtype(Ptr o, MaybeNullPtr o) and IsSubtype(MaybeNullPtr o, Int) to be
true. Additionally, the policy might define ArithType(Ptr o, “-”, Ptr o) to be



158 M. Harren and G.C. Necula

Int. Finally, the definition of Constrain for this policy may promote one or more
values of type MaybeNullPtr ¢ to Ptr o following an appropriate NULL-check.

We defer the more detailed discussion of the IsSubtype, TJoin, ArithType,
and Constrain operators until the presentation of our typechecking algorithm
in Section 3.1.

Although we currently trust the soundness of the type policy, our implemen-
tation is designed to facilitate formal proofs of the soundness of verification. Such
a proof would rely on lemmas that the operators of the type policy are sound
with respect to the definition of the type constructors.

3 Our Type System

We describe in this section our framework for dependent types, and show how a
program can be typechecked with respect to a given type policy.

Figure 1 shows the language of memory types in our framework. Field types
t describe the contents of a word in memory or in a register whereas o types
describe a mutable record consisting of a sequence of related fields.

field types t = C(d1,...dn) | Ptr o
dependencies d :=c | s.i | s
record types o ::=Recs.(0:to; ... ; n—1:tn_1)
constants ¢
type constructors C € T

Fig. 1. The types that are assigned to registers and memory locations

The type of a word-sized location is either the instantiation of a type con-
structor C' (given by the type policy) or a pointer to a mutable record. We saw
above a few examples of nullary constructors for non-dependent types; construc-
tors for dependent types are parameterized on one or more values. We distin-
guish the pointer type in our system so that we can give generic typing rules for
memory reads and writes.

The notation Recs.(0 : to; ... ; n—1:%,_1) denotes a very-dependent [7]
record type with m mutable fields, each of whose types may depend on the
runtime values of other fields. For simplicity, fields are labeled with their index
in the record. The dependent type constructor “Recs” binds a variable s that
can be thought of as the “self pointer” for the record. We use s to encode
dependencies among the fields of the record: the special expression s.i refers to
the value stored in the i*" word of the current record, where i is a constant. We
say that a field type C(d1,...d,) refers to field ¢ iff at least one expression d; is
“s.t”. A record type 0 =Recg.(0:tg; ... ; n—1:t,_1) is well-formed if for all
terms s.j referring to a field, we have 0 < j < n. In other words, dependencies
must refer to fields that actually exist. We require that all types used in this
framework be well-formed.



Using Dependent Types to Certify the Safety of Assembly Code 159

For example, a type policy may define the singleton type constructor Sin-
gle(e), and then can define a dependent record containing two identical integers
as

Rec,.(0 : Int; 1 : Single(s.0))
If we define the type constructor “Array(len)” to be the type of a pointer to an
array of Ints with length len, then a record containing an array pointer and the
length of that array has the type

Rec,.(0: Array(s.1); 1: Int)

Field types can even refer directly to the self pointer s. Rec.(0 : Single(s)) is a
one-word object that contains a pointer to itself. Circular dependencies are also
allowed, so

Rec;.(0 : Single(s.1); 1 : Single(s.0))

is another valid definition for our record containing two identical integers.

We therefore have two kinds of memory locations in the language. Dependent
fields have types that refer to the self pointer or other fields, or are referred to
by the types of sibling fields. Non-dependent fields have types of the form C'
(or C(cq,...cpn), where each ¢; is a constant) that do not refer to, and are not
referred to by, any other field. We must be careful when a dependent field is
updated, to ensure that the dependencies are respected. However, we can modify
non-dependent fields in place without additional checking.

We also support dependent function types, including function pointers.
Checking dependent functions is very similar to checking that dependent records
are used correctly, and we do not discuss them further here.

3.1 Type Checking

We describe here the process of typechecking assembly code when the start of
each basic block has been annotated with an invariant, as is done in TAL [8]. For
space reasons, we do not discuss in this paper our inference system for generating
such invariants.

Figure 2 shows the simple MIPS-like assembly language that we will be type-
checking. A basic block is a sequence of instructions whose entry is denoted by
some label, and whose exit is a branch or a jump. Note that in this paper, we omit
details relating to stack handling or the calling convention [9]. Our implementa-
tion uses the stack analysis engine written for the Open Verifier project [10].

We must track the memory state explicitly in order to reason about writes
to dependent fields. “upd(m, e, e2)” denotes the memory state that results from
modifying memory state m by writing value es at location e, while “sel(m, e)”
is the result of reading address e in memory state m. We define “ValidMem” to be
the type of a memory heap that is in a consistent state: one where all allocated
locations contain a value that adheres to the type that the location was assigned
when it was allocated. Consistency may be temporarily broken when we write
a dependent field, since in general we will have to write to all of the fields in a
dependent group before we can conclude that the group is consistent. But we
will check that consistency holds at basic block boundaries.



160 M. Harren and G.C. Necula

instructions [ ::= MOV I'gest, C | MOV Tgest, L | alte Tgest,Ts1,Ts2
| load rgest, ra | Store rsre, Ia
arithmetic alu ::= add | mult | xor | slt | ...
labels L
jumps Ju=Dbeqre,L | jump L | jrr
basic blocks B u=1,B|J
functions F == (L : Bu, s Lm : Bm)

Fig. 2. The target assembly language

states

register states

type states

memory states
abstract values
register types
symbolic expressions
binary operations

w= (A, I, m)

r=e€i, ..., I'y = €g

I=U1 > T1, V2= T2,...
= upd(m,e1,ez2) | v

x=Cl(e1,...en) | Ptro
u=c|v|L]|sel(m, e)|e opes
= 4| X | xor | < ...

'%(‘h‘lﬁs’jbtl)

Fig. 3. The states of our symbolic execution algorithm for typechecking

Our typechecker performs symbolic evaluation on one basic block at a time,
using abstract values v for any unknown values. As seen in Figure 3, a state
in our checker is (A, I'ym), where A is a mapping from registers to symbolic
expressions, I'is a mapping from abstract values to types, and m is the current
memory state. We could represent a checker state in which ro was known to
equal r1 + 1 as (Ao, [0, Umemo), Where:

Ay={r1=v; o =v+1}
I't = {v — Int; vmemo — ValidMem}

This state can be considered syntactic sugar for the following logical formula:

Jv € Int. Fvmemo € ValidMem . (r1 = v) A (rz =v+ 1)

Typing Expressions. We give here the rules for assigning types to symbolic
expressions. The judgment I' - e : 7 means that expression e has type 7 in
context I'. Most of the this work is done by the type policies through the func-
tions ConstType, IsSubtype, and ArithType, while the framework maintains
the types of abstract variables and handles the typing of memory operations.

=C tT
[Abstract] 7 = ConstType(c) [Const]
I'tov:I(v) I'te:r

I'te:7 IsSubtype(r’, T)
[Subsumption]
I'Fe:T



Using Dependent Types to Certify the Safety of Assembly Code 161

e :m I'kFes:m T = ArithType(r1, 0p, T2) )
[Arith]
I'eiopesy:T
Type policies that do not care about arithmetic can say that ArithType(r,
op, T2) is Int for all inputs, but policies such as CCured will derive a more precise
type for some inputs to ArithType.

The final form of expression is a read from memory. When reading a depen-
dent field with type C(s.j), we must replace dependency s.j with a symbolic
expression that explicitly encodes the current value of the j** field. Consider a
record that contains an array pointer and its length, and suppose we read the
array field into r; and the length field into ro: !

A = {r; = sel(myg, v); r2 = sel(mg, v+ 1)}
I' = {v +— Ptr Rec;.(0 : Array(s.1); 1:Int)}

The value in ry should have type “Array(sel(mg, v+ 1)),” to reflect the fact
that the length of the array is located at address v + 1 in memory state mg. We
can now use ro as the length of array ri. Even if memory is later changed, for
example by updating this record with a new array and different length, we will
still be able to use ry as the length of r since we remember that they were read
from the same memory state m.

We generalize the above intuition into the following rule:

I'e:PtrRecg.(0:tg; ... ; n—1:t,_1)

T= ti[e/s][sel(m, et 0)/3,()} T [sel(m, etn- 1)/3.(71 — 1)}

I'+m : ValidMem [Read]

I'tsel(m, e+i): 7

The binding step 7 = ti[e/SHsel(m, e+ O)/S.O] e [sel(m, e+n) s.n] will,
for example, convert the field type Array(s.1) from the previous example to the
register type Array (sel(m, v+1)). The requirement I F m : ValidMem ensures
that we are not in the middle of a dependent update.

Memory Updates. After writing a value to memory, we must see whether
I' = m : ValidMem for the resulting memory state m. If the store wrote to a
dependent field, then other fields in the record may have to be updated as well
in order for the record to be internally consistent once again. For simplicity, our
framework requires that all the relevant dependent fields of a record be mutated
in the same basic block, with no other intervening writes to the heap. However,
it would not be hard to extend the type system to allow invalid memory states
that span basic block boundaries.

The rule for stores is below. Starting from a consistent state m, a basic block
can perform a series of writes to some object that starts at address e,. The
notation upd(-, e, + ¢;, ;) represents the result of storing e; into the object’s c;th

! Throughout this paper we assume that memory is addressed by words, not bytes.



162 M. Harren and G.C. Necula

field; we check that each ¢; is in bounds while typechecking the corresponding
store statement. We ignore duplicate writes to the same field. Regardless of
which fields have been overwritten, we can reestablish consistency for this object
by checking whether every field e, +4 in memory state m’ has the type it should.
First, we define a function that computes a canonical form for the result of a
memory read using standard axioms for memory:

e if m =upd(m’, e, + i, ¢€)
Read(m, e, +1i) = < Read(m’,e, +1i) if m =upd(m/,eq + j,€) and i # j
sel(Vmem, €a +1) if m = Umem
With this function we can write the axiom for validating a sequence of writes
to the same record:

m’ =upd((...upd(m, eq + c1,€1)...),€a + Cj,€;)

I'+eq :PtrRecs.(O:tg; ... ; n—1:tp_1)
VO<i<n.ItFRead(m',e, +1):7;
’ ’
where 7; = ti[ea/s][Read(m ,ea + O)/S‘O] . [Read(m ,eq + n)/sn]

I+ : ValidM
m : ValidMem [Update]

I' - m’ : ValidMem

For example, consider a record that contains an array reference, its length,
and one other field of type Foo. Suppose ry contains an array pointer and that
rg contains its length:

A = {r1 = vptr; T2 = v2; T3 = V3}
I' = {vpty — Ptr Rec,.(0 : Array(s.1); 1:1Int; 2: Foo);
v — Array(vs); vs — Int; Umemo — ValidMenm}

Now we update the memory state vyemo writing ve at address r; and vs at
address r1+1, therefore mutating both the array and length fields of the record.
These two store instructions produce the memory state

m' = upd(upd(vmemm Uptr, U2)7 Uptr + 1, US)

The intermediate memory state upd(Vmemo, Uptr, V2) is 10t consistent, and in
general it must not be used for load instructions. But m’ is consistent. Observe
that we get

Read(m/, vyt + 0) = v
Read(m/, vyt + 1) = v3
Read(m/, vper + 2) = sel(Vmemo, Vptr + 2)

Each of these three fields has the correct type. vo has type

Array(vs) = Array(sel(m/, vp, + 1))
!/
— Array(s.l)[Read(m s Uptr + 1)/511]
while v3 has type Int. Location vy, + 2 was not modified, so we rely on the

fact that “I" F Vmemo : ValidMem” holds to ensure that sel(m’, vpy, + 2) =
sel(Umemo, Uptr + 2) has a value of type Foo.



Using Dependent Types to Certify the Safety of Assembly Code 163

Checking Basic Blocks. Now we can put these rules together to create a
complete algorithm for typechecking a basic block according to the type policy.

The transition function for symbolic evaluation is straightforward. The effect
of each instruction on a state (A, I',m) is as follows:2

(A, Iy m) Fmov Tgest, ¢ b (Alrgest — ¢, I, m)

(A, I'ym) - 1oad rgest, ta 4 (Alrgest — sel(m, A(ry))], I, m)

(A, I'ym) - store rgpe, 1 I (4, I, upd(m, A(ry), A(rsre))
<A7F7m> - add rgest, I's1,Ts2 4 <A[rdest = A(rs1> + A(I‘sg)], r, m>

The other ALU operations have rules similar to add. In addition to updating
the state, we check that r, contains a valid pointer in each load and store
operation (I'F A(r,) : Ptr o).

We assume that each basic block is annotated with an invariant in the form of
a typechecker state (Ag, I, mo), which we use as the initial state of our symbolic
evaluation for the block. Evaluation then proceeds according to the transition
rules above until we reach the end of the block. At this point we must check that
the current state satisfies the invariant that is attached to the successor block(s).

One interesting case here is branches. The branch “beq rq, L;” at the end
of block Bj, means that control will jump to block Bj if r1 = 0, or fall through
to Biy1 if r1 # 0. A branch may be a dynamic check of some fact that is
interesting to the type policy. So each type policy can define an operation
Constrain : (A, I'm) — e — (A, I'ym) that transforms a state to account
for any relevant information in a branch condition. For example, suppose we
have a state in which r; and ry hold the same possibly-NULL pointer to o:

Ay = {rl = U1,I2 = U1}
I = {v1 — MaybeNullPtr o}

Then a typical type policy would define

Constrain({Ay, I'1,m1),r1 =0) = ({r1 =0,r2 =0}, { }, m1)
Constrain((Al,Fl,m1>,r1 ;é 0) = <{I‘1 = V1,2 = ’01}, {1}1 — Ptr 0'}, m1>

We must check now that Constrain({Ay, I't, m1),r1 =0) implies the invariant
of Bj, and that Constrain({A;, I, m1),r17#0) implies the invariant of Bj41.

4 Dependent Types for CCured

We have built a prototype checker and inference system for the CCured type
system. CCured enforces type safety for legacy C code by classifying pointers
according to their usage. Depending on a pointer’s classification, or kind, CCured
changes the pointer to a “fat” pointer structure that stores metadata such as ar-
ray bounds and run-time type information. Figure 4 shows two such fat pointers
that we support in our prototype implementation: RTTI pointers, which hold

2 Changes to the program counter are omitted.



164 M. Harren and G.C. Necula

T * RTTI T * SEQ

|pointer ‘Tag for T” ‘pointer| base | end ‘

\ T'<: T \
] Ty N
X AR

EIES ) IR

Fig.4. Two “fat” pointer kinds used by CCured: (a) a pointer with run-time type
information, and (b) a sequence pointer (array). The current targets of the pointers
are shown with stripes, and the metadata added by the CCured code transformation
is in grey.

Run-Time Type Information specifying the dynamic type of the object being
pointed to, and Sequence pointers, which are used for arrays. The metadata is
used to support run-time checks that CCured inserts when the pointer is deref-
erenced (for SEQ) or cast (for RT'TI). When we want to update a pointer in
memory, we may have to update all of the fields in the fat pointer.

4.1 RTTI Pointers

Figure 4(a) shows a two-word pointer that refers to a structure in memory and
has a type tag specifying the run-time type of the object being pointed to.
CCured stores the tag alongside the pointer instead of with the object itself for
the sake of a less invasive transformation: the striped location could be in the
middle of an array or a struct, and changing its representation to accommodate
a type tag would mean transforming all accesses to the base type as well.

RTTI pointers are governed both by a static type (T in Figure 4) and the
dynamic type specified by the tag (T’), which must be a subtype of the static
type. Before casting this pointer to a different type T”, a program must check
that the tag represents a subtype of T”. CCured implements these checks using
a global table that relates tag values to types.

The assembly-level definition of an RTTI pointer is given in Figure 5. The
Rttiy () type constructor defines a possibly-NULL pointer that has the static
type “pointer to ¢” but that also has the type denoted by tag x. We use the
function typeof here to encode the tags-to-types relation for each program.

Our prototype does not yet handle CCured’s tagged unions or variable-
argument functions, which require reasoning similar to RTTI pointers.

4.2 Sequence Pointers

CCured uses Sequence pointers to support arrays and pointer arithmetic in C. A
Sequence pointer is a three-word fat pointer, as shown in Figure 4(b), consisting
of the actual pointer and pointers to the two ends of the array.

The assembly-level encoding of these pointers is shown in Figure 5. The def-
inition of Seq, directly follows the invariants that CCured maintains for its



Using Dependent Types to Certify the Safety of Assembly Code 165

RTTI pointer to 0 = Recs.{0: Ritis(s.1); 1: Int)
Sequence pointer to ¢ = Rec,.(0: Seq,(s.1,s.2); 1:1Int; 2: Int)

where

Rttis (1) 2 {p | (p = 0V p isPtr o) A (p = 0V p isPtr typeof(s.1))
Seq, (b,e) 2 {p|(b<e) A (e—b) mod sizeof(c) =0
A (p —b) mod sizeof(c) =0
AVi.(b < (p+i-sizeof (o)) < e) = ((p+1i-sizeof(o)) isPtr o)}

Fig. 5. The meanings of the Rtti and Seq type constructors used by CCured. We use
the set comprehension notation {z|. ..} to show the meanings of the types constructors,
where “e isPtr ¢” means that value e is a pointer to a record with type o. The < and
< operators used here are unsigned comparisons.

Sequence pointers: sequence is non-empty and both the end pointer and the ac-
tual pointer are aligned on multiples of the element size, although the pointer
itself may be out of bounds. We can dereference a Seq, pointer p and treat it
as an ordinary o pointer if it is within its bounds b and e. Moreover, we can
apply pointer arithmetic to this value, so long as the quantity being added is a
multiple of the element size. If the new value is within the bounds, it too can be
dereferenced.

To encode Sequence pointers in a type policy for our framework, we define a
type constructor Seq, (b, e) for each base type o used by the program. We also
define a constructor CheckedSeq,, (b, e) that represents a sequence pointer after
a bounds check:

CheckedSeq,, (b, e) =
{p | (b<e) A (e — b) mod sizeof(c)=0 A (p — b) mod sizeof(c)=0
AVi.(b < (p+i-sizeof(o)) <e) = ((p+i-sizeof(o)) isPtr o)
Ab<p<e}

CheckedSeq,, has all of the properties of Seq,,, meaning that we can do pointer
arithmetic on it, as well as the property that the current value of the pointer is in
bounds and can be dereferenced immediately. In the subtyping relationship used
by IsSubtype and TJoin, CheckedSeq, (es, e.) is a subtype of both Seq, (e, e.)
and Ptr o.

Whenever our typechecker sees a bounds-checking branch instruction® for a
value v, that has type Seq, (ep, €. ), the Constrain operation refines the type of v
into CheckedSeq, (ep, ec). Now the value v, can be dereferenced: the requirement
in rules [Read] and [Update] that v, have a pointer type is satisfied by the rule
[Subsumption] and the fact IsSubtype(CheckedSeq, (ep,e.), Ptr o).

3 CCured checks both the lower and upper bounds of a sequence pointer in one branch
instruction, by using the unsigned comparison (pointer — base) < (end — base).



166 M. Harren and G.C. Necula

For pointer arithmetic, we can define a type constructor MultipleOf(e) for
the integers that are multiples of some value e, and we use the rules

ArithType(Single(c), x, Int), (where cis a power of two') = MultipleOf(c)
ArithType(Seq, (ep, ee), +, MultipleOf(sizeof(0))) = Seq, (ep, €c)
ArithType(CheckedSeq, (ep, €c), +, MultipleOf(sizeof(c))) = Seq,(ep,€e)

These rules let us assign the correct type Seq, (ep, e.) to “p+ 4x”, where p has
type CheckedSeq, (ep, e.) and o is 4 words long,.

4.3 Other Features

Besides Rtti and Seq, our type system for CCured uses the basic type con-
structors you would expect for C code, such as MaybeNullPtr and Int. For each
struct or base type defined in the source code, we create a record type o.

Initialization. Allocation in C programs is done via calls to malloc or a related
function. It is important to check that the newly-allocated data is initialized
correctly. When allocating a record type that contains only non-dependent Ints,
no initialization is needed since even garbage values are well-typed. But if the
record contains pointer or dependent fields, those fields must be initialized to
NULL. (By design, NULL is a valid value for every field type in CCured.)

Stack-allocated data. To support a common C programming idiom, we allow
programs to take the address of locations on the stack and pass these pointers
to other functions. Typically, this is done to achieve call-by-reference behavior.
We require, however, that programs not store such pointers into heap locations or
return them from functions. This restriction ensures that when the stack frame
is deallocated, there are no dangling pointers into that stack frame. CCured’s
inference engine can tell us which arguments may be pointers to stack-allocated
memory; the verifier needs simply to check that these pointers are not allowed
to “escape” through the heap or a return value.

5 Implementation

We have implemented a prototype verifier for the output of CCured using the
design in this paper. We use CCured to instrument C programs for type safety,
and gcc 3.3.3 to optimize and compile the code to x86 assembly. Our verifier
uses abstract interpretation over the domain of symbolic expressions to infer
register types and ensure that every instruction preserves memory safety. Our
implementation can handle Sequence and RTTI pointers and their associated
dependencies. We also implement pointers to stack-allocated data.

The CCured code transformer will generate annotations for each program
that serve as a partial witness of the program’s correctness, but these annota-
tions need not be trusted. Incorrect annotations will result in failed verification

4 When c¢ is not a power of two, we need a branch instruction to check the result of
the multiplication for overflow before assuming that the product is a multiple of c.



Using Dependent Types to Certify the Safety of Assembly Code 167

rather than unsoundness, just as incorrect type information in Java bytecode
will result in failed typechecking. The annotations encode: (1) the type of ev-
ery global variable; (2) the global table of RTTI tags; (3) for each function, the
types of its arguments and return value, and the types and stack location of
any local variables that will have their address taken; and (4) for every call to
malloc, the type that will be applied to the resulting pointer (e.g. “T*” if the
source instruction is “T* var = (T*) malloc(e)”). Annotations are expressed
in inline assembly so that GCC will pass them from the instrumented source
code down to the verifier. Only the annotations for malloc appear in the middle
of a function, ensuring that this inline assembly will impose minimal constraints
on the optimizer. Other annotation strategies would also be feasible.

These annotations give us all the information we need to know about the
structure of the heap. All that remains is to infer types for registers and check
each instruction for memory safety.

Considerable engineering work needs to be done before our verifier will be
able to support all of the features of C. The prototype does not yet support
variable-argument functions, tagged unions, floating point operations, or func-
tion pointers. We have not implemented any fat pointer kinds other than Se-
quence and RTTI, although most other kinds (such as “forward-sequence” and
kinds that combine RTTI with bounds information) will be straightforward. We
also do not support casts between Sequence pointer types that have different
base types. Such casts are rare, and we may need CCured to annotate them so
that they can be verified.

In order to facilitate joins, our abstract interpreter limits the form of symbolic
expressions that are used for pointer arithmetic. Pointer offsets may be either
constants or multiples of the base type size. This works well for one-dimensional
arrays, but not for nested arrays. We are currently examining how to support
more general indexing expressions without losing precision in our join algorithm.

We treat calls to malloc and other allocation functions specially, and deal
with initialization as described in Section 4.3. CCured uses the Boehm-Demers-
Weiser garbage collector [11], which we trust, so calling free has no effect.

5.1 Experiments

As an initial test, we used our prototype on the go program in the Spec95 bench-
mark suite. Of the Spec95 programs, we chose go because it makes extensive use
of arrays while avoiding floating-point instructions, which our x86 parser does
not yet handle. We used the -02 optimizer flag while compiling the program.

Of the 378 functions in the 29,321 LOC program, we can successfully verify
316 of them(84%). The most common reason for failure was that array indexing
expressions of nested arrays are too complicated for our abstract domain. We di-
rected CCured to flatten two-dimensional arrays into single-dimensional arrays,
but in general there is no way to do this for arrays of structs that themselves
contain arrays. Other failures were due to the unimplemented C features men-
tioned earlier. We are currently working to improve the implementation so that
we can verify all of the Spec95 suite.



168 M. Harren and G.C. Necula

Verifying the program takes 194 seconds on a 2.4 GHz Pentium 4 with 1
GB of RAM. While testing our system, we discovered several soundness bugs
in CCured: the instrumentation did not safely handle NULL return values from
malloc, and CCured’s optimizer incorrectly removed bounds checks based on
the faulty assumption that two pointers couldn’t alias. This experience shows
the importance of independent verification of safety tools.

6 Related Work

Certified object code. There has been much work done to certify that binary code
adheres to various safety properties. Colby et al. [12] survey several approaches,
such as TAL and PCC, and describe the general problem of certifying mobile
code, including how such certifications can be communicated to the end user.

Typed Assembly Language [8,4] is used as a compilation target for Popcorn,
a subset of C. TAL includes many useful features, including flow-sensitive types
for registers so that register types can change from one instruction to the next;
typechecking that is done one basic block at a time; existential types; and sup-
port for stack-based compilation schemes [9]. But TAL does not support the
dependent types that we need for CCured, and it assumes that assembly code
is generated by a specially-written, type-preserving compiler.

Proof-Carrying Code [13,14] packages object code with a checkable proof of
safety. The original implementations of PCC targeted specific type policies, such
as Java’s type system [14]. Recent projects such as LTT [15] and work by Shao
et al. [16] seek a general type system for certified code that is not tied to any one
source language. A low-level type system permits use of a wide variety of proofs
and proof techniques, and it allows code from multiple source languages to be
combined safely. But these two systems do not yet target imperative languages,
making them impractical for the applications we are considering.

Producing checkable proofs is a goal for our type system as well. Our approach
will follow work done by the Open Verifier group to design an extensible system
for foundational verification [17]. Currently, our implementation uses the Open
Verifier’s code for checking that stacks and function calls are handled correctly.

Balakrishnan and Reps [18] present a system for analyzing memory accesses
in x86 code. They do not require annotations from the compiler, but in exchange
they trade off some precision and soundness.

Dependent types. The Xanadu language [19] provides an expressive dependent
type system for an imperative, source-level language. Xanadu supports depen-
dencies between different objects, which lets the language express more interest-
ing properties about heap structures than ours can.

Xanadu can be compiled to DTAL, a dependently-typed assembly language
[5]. DTAL focuses largely on array types and array-bound check elimination.
Basic blocks are annotated with invariants to reduce the need for type inference,
and a type-preserving compiler is used. DTAL does not support modification of
dependently-typed locations in the heap.



Using Dependent Types to Certify the Safety of Assembly Code 169

Our restricted form of dependent types is similar to Hickey’s very dependent
function types [7]. Hickey encodes immutable records as functions from labels
to values. By using very dependent types for these functions, one can impose
dependencies among the object’s fields. Hickey uses these types to formalize a
theory of objects, including methods and inheritance. Our type system has a
similar focus on dependencies among fields and function arguments, but in the
context of a low-level imperative language with mutable structures.

Grossman [20] discusses the difficulty in supporting destructive updates in
a language with existential types; this is the same difficulty that our system
addresses for dependent types.

7 Discussion

We have described a dependently typed assembly language that supports destruc-
tive updates of dependent values that are stored in the heap. We can express in
this framework the invariants enforced by CCured in the instrumented programs
it outputs, and we can check statically that they are maintained. Our prototype
verifier for CCured demonstrates that our approach can be used in practice.

Future work on this project will proceed in three main directions. First,
we will apply our framework to type policies other than CCured. Already we
have created an extension for Cqual [2], an interprocedural static analysis tool
that infers type qualifiers for C programs and has been used to check several
important security properties [21,22].

The second direction is to generalize our system of dependent types. Our
types work well for dependencies between two local variables or two fields of the
same object, but they cannot encode dependencies between two memory loca-
tions that are not stored in the same object. Removing this limitation will allow
us to encode all or nearly all invariants of the source languages we are dealing
with, including downcasts in object-oriented code and null-terminated strings.

The third direction of future work is to produce a proof of type safety for
each program. Currently, the verifier and type policy are treated as part of the
trusted computing base. Through the Open Verifier project [10], we plan to
produce “foundational” proofs that can be checked by end users who would not
need to trust our type inference or the implementation of the type policy.

References

1. Necula, G.C., Condit, J., Harren, M., McPeak, S., Weimer, W.: CCured: Type-safe
retrofitting of legacy software. ACM Transactions on Programming Languages and
Systems 27 (2005)

2. Foster, J.S., Terauchi, T., Aiken, A.: Flow-Sensitive Type Qualifiers. In: Proceed-
ings of the 2002 ACM SIGPLAN Conference on Programming Language Design
and Implementation, Berlin, Germany (2002) 1-12

3. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle,
P., Zhang, Q., Hinton, H.: StackGuard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks. In: Proc. 7th USENIX Security Conference, San
Antonio, Texas (1998) 63-78



170

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Harren and G.C. Necula

Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems 21 (1999)
Xi, H., Harper, R.: Dependently Typed Assembly Language. In: The Sixth ACM
SIGPLAN Int’l Conference on Functional Programming, Florence (2001) 169-180

. Chang, B.Y.E., Chlipala, A., Necula, G., Schneck, R.: Type-based verification of

assembly language for compiler debugging. In: The 2nd ACM SIGPLAN Workshop
on Types in Language Design and Implementation. (2005) 91-102

. Hickey, J.: Formal objects in type theory using very dependent types. In: Pro-

ceedings of the 3rd International Workshop on Foundations of Object-Oriented
Languages. (1996)

. Morrisett, G., Crary, K., Glew, N.,; Grossman, D., Samuels, R., Smith, F., Walker,

D., Weirich, S., Zdancewic, S.: TALx86: A realistic typed assembly language.
In: Proceedings of the 1999 ACM SIGPLAN Workshop on Compiler Support for
System Software. (1999) 25-35

. Morrisett, G., Crary, K., Glew, N., Walker, D.: Stack-based typed assembly lan-

guage. In: Proceedings of the Second International Workshop on Types in Compi-
lation, Springer-Verlag (1998) 28-52

Schneck, R.R.: Extensible Untrusted Code Verification. PhD thesis, University of
California, Berkeley (2004)

Boehm, H.J., Weiser, M.: Garbage collection in an uncooperative environment.
Software—Practice and Experience (1988) 807-820

Colby, C., Crary, K., Harper, R., Lee, P., Pfenning, F.: Automated techniques for
provably safe mobile code. Theor. Comput. Sci. 290 (2003) 1175-1199

Necula, G.C.: Proof-carrying code. In: The 24th Annual ACM Symposium on
Principles of Programming Languages, ACM (1997) 106-119

Colby, C., Lee, P., Necula, G.C., Blau, F., Plesko, M., Cline, K.: A certifying
compiler for java. In: Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementation, ACM Press (2000) 95-107
Crary, K., Vanderwaart, J.C.: An expressive, scalable type theory for certified
code. In: Proceedings of the seventh ACM SIGPLAN international conference on
Functional programming, ACM Press (2002) 191-205

Shao, Z., Saha, B., Trifonov, V., Papaspyrou, N.: A type system for certified
binaries. In: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, ACM Press (2002) 217-232

Chang, B.Y.E., Chlipala, A., Necula, G.C., Schneck, R.R.: The Open Verifier
framework for foundational verifiers. In: The 2nd ACM SIGPLAN Workshop on
Types in Language Design and Implementation. (2005) 1-12

Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 binary executables.
In: Proc. Compiler Construction (LNCS 2985), Springer Verlag (2004) 5-23

Xi, H.: Imperative programming with dependent types. In: Proceedings of 15th
IEEE Symposium on Logic in Computer Science, Santa Barbara (2000) 375-387
Grossman, D.: Existential types for imperative languages. In: Proceedings of the
11th European Symposium on Programming Languages and Systems. (2002) 21-35
Shankar, U., Talwar, K., Foster, J.S., Wagner, D.: Detecting Format String Vul-
nerabilities with Type Qualifiers. In: Proceedings of the 10th Usenix Security
Symposium, Washington, D.C. (2001)

Johnson, R., Wagner, D.: Finding user/kernel pointer bugs with type inference.
In: Proceedings of the 13th USENIX Security Symposium. (2004)



The PER Model of Abstract Non-interference

Sebastian Hunt! and Isabella Mastroeni?

! Department of Computing, School of Informatics,
City University, London, UK
seb@soi.city.ac.uk
2 Department of Computing and Information Sciences,
Kansas State University, Manhattan, Kansas, USA
isabellm@cis.ksu.edu

Abstract. In this paper, we study the relationship between two models
of secure information flow: the PER model (which uses equivalence rela-
tions) and the abstract non-interference model (which uses upper closure
operators). We embed the lattice of equivalence relations into the lat-
tice of closures, re-interpreting abstract non-interference over the lattice
of equivalence relations. For narrow abstract non-interference, we show
that the new definition is equivalent to the original, whereas for abstract
non-interference it is strictly less general. The relational presentation of
abstract non-interference leads to a simplified construction of the most
concrete harmless attacker. Moreover, the PER model of abstract non-
interference allows us to derive unconstrained attacker models, which do
not necessarily either observe all public information or ignore all private
information. Finally, we show how abstract domain completeness can be
used for enforcing the PER model of abstract non-interference.

Keywords: Information flow, non-interference, abstract interpretation,
language-based security.

1 Introduction

An important task of language based security is to protect confidentiality of
data manipulated by computational systems. Namely, it is important to guar-
antee that no information, about confidential/private data, can be caught by
an external viewer. In the standard approach to the confidentiality problem,
called non-interference, the characterization of attackers does not impose any
observational or complexity restriction on the attackers’ power. This means that
the attackers are all powerful: they are modeled without any limitation in their
quest to obtain confidential information. For this reason non-interference is an
extremely restrictive policy. The problem of refining these security policies is
considered as a major challenge in language-based information flow security [17].
Refining security policies means weakening standard non-interference, in such a
way that it can be used in practice. Specifically, we need a weaker notion of non-
interference where the power of the attacker (or external viewer) is bounded,
and where intentional leakage of information is allowed.

C. Hankin and I. Siveroni (Eds.): SAS 2005, LNCS 3672, pp. 171-185, 2005.
© Springer-Verlag Berlin Heidelberg 2005



172 S. Hunt and I. Mastroeni

Abstract non-interference is introduced [9] for modeling the secrecy degree
of programs by means of abstract interpretation. In particular, it is possible
to characterize the observational capability of the most powerful harmless at-
tacker, that is, the most powerful attacker that cannot disclose any confiden-
tial information. Moreover, this model also allows one to characterize which
aspects of private information can flow during the execution of a given pro-
gram, when non-interference fails. These two complementary aspects of non-
interference have been proved to be adjoint transformers of semantics in [10],
where non-interference has been modeled as an abstract domain completeness
problem.

In the PER model of secure information flow [18], a generalised notion of non-
interference is obtained by using equivalence relations to model attackers. In this
paper we show that, since equivalence relations can be viewed as particular types
of closures called partitioning closures [16], the definitions of narrow and abstract
non-interference from [9] can be re-interpreted by using equivalence relations only
in place of arbitrary closures. For narrow abstract non-interference, we show
that the new definition is equivalent to the original, whereas for abstract non-
interference it is strictly less general. The difference lies in the fact that abstract
non-interference depends on being able to distinguish properties of sets of values,
such as intervals, congruences, etc, and this cannot be done with equivalence
relations on the underlying set. We then show how the relational presentation of
narrow abstract non-interference leads to a simplified construction of the most
powerful harmless attacker. Moreover, the generalization of the PER model of
secure information flow allows us to derive unconstrained attacker models, which
do not necessarily either observe all public information or ignore all private
information. Finally, we show how abstract domain completeness can be used for
enforcing the PER model of abstract non-interference, proving that abstract non-
interference corresponds to abstract domain completeness of the corresponding
partitioning closures.

2 Mathematical Background

In this paper we use the standard framework of abstract interpretation [5,7] for
modeling the observational capability of attackers. The idea is that, instead of
observing the concrete semantics of programs, namely the values of public data,
attackers can only observe properties of public data, namely an abstract seman-
tics of the program. For this reason we model attackers by means of abstract do-
mains. Abstract domains are used for denoting properties of concrete domains,
since their mathematical structure guarantees, for each concrete element, the
existence of the best correct approrimation in the abstract domain. This is due
to the fact that abstract domains are closed under the concrete greatest lower
bound. The relation between abstract and concrete domains is formalized by Ga-
lois connections (GC). In GC-based abstract interpretation the concrete domain
C and abstract domain A are often assumed to be complete lattices and are re-
lated by an abstraction map « : C' — A and concretization map v : A — C form-



The PER Model of Abstract Non-interference 173

ing a GC (C, i, 7, A) [5], i.e., forany x € C and y € A: a(z) <ay <z <c v(y).
When « is surjective then the GC is said to be a Galois insertion (GI) and
uniquely determines an abstract domain. Formally, the lattice of abstract in-
terpretations of C' is isomorphic to the lattice uco(C) of all the upper closure
operators on C [7]. An upper closure operator p: C'— C on a poset C' is mono-
tone, idempotent, and extensive!. The dual notion of lower closure operator (Ico)
is a monotone, idempotent and reductive? map. Any closure operator is uniquely
determined by the set of its fix points p(C'), which forms an abstract domain. If C
is a complete lattice then (uco(C),C,U, M, T,id) is the lattice of upper closures,
where T = A\z. T, id= A\z. z, and for every p,n € uco(C), {pi}ticr C uco(C)
and x € C: p Cniff n(C) C p(C); Uierpi = ey pis and Mierpi = M (Ui pi)
where M is the operation of closing a domain by concrete greatest lower bound,
e.g., intersection on power domains. The disjunctive completion of an abstract
domain p € uco(C) is the most abstract domain able to represent the concrete
disjunction of its objects: Y (p) = U{n € uco(C)|n C p and 7 is additive}. p is
disjunctive (or additive) iff Y (p) = p (cf. [7]).

2.1 Equivalence Relations vs Closure Operators

In this section we review the relationships between equivalence relations and
upper closures which are key to the development in the rest of the paper.

The lattice of equivalence relations. The equivalence relations on a set C form a
lattice (Fq(C),C,MN, U, Idc, Allc), where Ide is the relation that distinguishes
all the elements in C, All¢ is the relation that cannot distinguish any element
in C, and:

—QCRIfTQCRIiff2Qy = zRy;
— QMR=QNR,ie,zQMNRyiff xQy A zRy;
— QUR=T(QUR), where z QURy iff zQy V zRy.

Here T(S) is the transitive closure of the relation S (it is easily seen that both U
and T preserve symmetry and reflexivity).

Relating equivalence relations and upper closures. In this paper we will generally
be concerned with relationships between equivalence relations on a set C' and
upper closure operators on the powerset p(C'). However, we start by observing
the following strong correspondence between ucos (on any lattice) and their own
kernels. (Recall that the kernel, K¢, of a function f : C' — D, is the equivalence
relation on C defined by = Ky y iff f(z) = f(y).)

Lemma 1. Letn,p € uco(C). Then n C p iff K, CK,,.

Lvyz e C x <c p(z).
2Vr e C. .z >c p(x).



174 S. Hunt and I. Mastroeni

Next, we recall that there exists an isomorphism between equivalence rela-
tions and a subclass of the upper closure operators [16]. In fact, this isomorphism
arises from a Galois connection between Eq(C') and uco(p(C)). For each equiv-
alence relation on a set C, R C C' x C, we can define an upper closure operator
on p(C), Clo* € uco(p(C)), and vice versa, from each upper closure operator
n € uco(p(C)) we can define an equivalence relation Rel” C C x C.

Consider an upper closure operator n € uco(p(C)). We define Rel” C C' x C,
asVz,y € C.xz Rel'y < n({z}) = n({y}). Proving that Rel" is an equivalence
relation is immediate and doesn’t depend on the fact that n is a uco, but only
on the fact that it is a function.

Consider now an equivalence relation R C C'x C. We define Clo* € uco(p(C))
as follows: Vo € C'. Clo*({z}) = [z]p and VX C C'. Clo*(X) = J,c x[#]r- Thus
Clo® is obtained by disjunctive completion of the partition induced by R. Proving
that Clo* is an upper closure operator is immediate. In particular idempotence
derives directly from the fact that R is an equivalence relation.

In [16], Clo® is identified as the most concrete uco 7 such that R = Rel”. More
precisely:

Proposition 2. Let C be any set.

1. The mappings defined above form a Galois connection between the lattice of
equivalence relations on C and the lattice of upper closure operators on its
powerset. That is, for allR € Eq(C), n € uco(p(C)): Clo® C n < R C Rel.

2. For allR € Eq(C), RelCl0" = R,

Corollary 3. Let I1(n) be defined by IT(n) = Clofte!".

1. 11 : uco(p(C)) — uco(p(C)) is a lower closure operator.
2. For all n € uco(p(C)), II(n) is the (unique) most concrete closure that
induces the same equivalence relation as 1 (Rel’ = Rel’™) ),

The fix points of IT are termed the partitioning closures [16].

Proposition 4. An upper closure operator n € uco(p(C)) is partitioning, i.e.,
n = II(n), iff it is complemented, namely if VX € n. X doXen.

Indeed, an upper closure operator 7 is always closed under glb (intersection
in this context), therefore whenever it is closed also under complementation, we
have that it is surely disjunctive, by De Morgan’s laws. In the following we have
an example of the partitioning closure associated with a partition.

Ezample 5. Consider the set X' = {1,2,3,4} and one of its possible partitions
m = {{1},{2,3}, {4}}, then the closure n with fix points {&, {1}, {4}, {123}, X'}
induces exactly 7 as partition of states, but the most concrete closure that
induces 7 is Clo™ = II(n) =Y ({<,{1},{2,3},{4}}, X), which is the closure on
the right in Fig. 1.

On the closures we have the following characterizations. Note that, since IT
is a lower closure operator on uco(p(C)), then Ll in Eq coincides with LI in uco,
whereas Clo¥™® can be strictly less than Clo® I Clo®.



The PER Model of Abstract Non-interference 175

e corresponding
partition induced -7 e TN « partitioning closure
by a closure e P ! N
@ @3

T : N N :
| RS P

| B
| 4 . N N

€0 o) fo o}
\\\@{// \\//

Fig. 1. A partitioning closure

Proposition 6. Q C R iff Clo® C CI*, QMR = RelCloMCI0" g quRr =
Re ICIOQI_I Clo* )

3 Information Flows in Language-Based Security

In the rest of this paper, confidential data are considered private, labeled with
H (high level of secrecy), while all other data are public, labeled with L (low
level of secrecy). Non-interference can be naturally expressed by using semantic
models of program execution (this idea goes back to Cohen’s work on strong
dependency [3]). Non-interference for programs essentially means that “a varia-
tion of confidential (high or private) input does not cause a variation of public
(low) output” [17]. When this happens, we say that the program has only secure
information flows [1,3,8,13]. This situation has been modeled by considering the
denotational (input/output) semantics [P] of the program P. Program states in
X are functions (represented as tuples) mapping variables into the set of values
V. I T € {H,L}, n = |[{z € Var(P)|z : T}|, and v € V", we abuse notation by
denoting v € VT the fact that v is a possible value for the variables with security
type T. Moreover, we assume that any input s, can be seen as a pair (h, (), where
s = h is a value for private data and s* = [ is a value for public data. In this
case, (standard) non-interference can be formulated as follows.

A program P is secure if V input s,t. s =& = ([P](s))* = ([P](¢))"

This definition has been formulated also as a Partial Equivalence Relation (PER)
[18]. The standard methods for checking non-interference are based on security-
type systems and data-flow/control-flow analysis. Type-based approaches are
designed in such a way that well typed programs do not leak secrets. In a
security-typed language, a type is inductively associated at compile time with
program statements in such a way that any statement showing a potential flow
disclosing secrets is rejected [19,21]. Similarly, data-flow/control-flow analysis
techniques are devoted to statically discover flows of secret data into public vari-
ables [2,13,15,18]. All these approaches are characterized by the way they model
attackers (or unauthorized users).



176 S. Hunt and I. Mastroeni

Table 1. Narrow and Abstract Non-Interference

[M]P(p) it vh1, ha € Vi Vi1 1g € V2 n({1a ) = n({l2}) = p({TPI(h1, 1)FD) = p({[P](ha, 12)"D)

(M) P(@ ~p) it vy, ng € VH, vi € V. p(IPT(6({h1 ), n({INE) = p(IPT($({ha }), n({1INE)

3.1 Abstract Non-interference: Attack Models

The notion of abstract non-interference [9] is introduced for modeling both
weaker attack models, and declassification. The idea is that an attacker can
observe only some properties, modeled as abstract interpretations of program
semantics, of public concrete values. The model of an attacker, also called at-
tacker, is therefore a pair of abstractions (1, p), with n,p € uco(p(V*)), rep-
resenting what an observer can see about, respectively, the input and output
of a program. The notion of narrow (abstract) non-interference (NNI), denoted
[n]P(p), is given in Table 1. It says that if the attacker is able to observe the
property 7 of public input, and the property p of public output, then no informa-
tion flow concerning the private input is observable from the public output. The
problem with this notion is that it introduces deceptive flows [9], generated by
different public output due to different public input with the same 1 property.
Consider, for instance, the program [ := [ * h? and an observer who can observe
only the parity of [ on input and its sign on output. Intuitively, we may say
that no information flows from h, since the sign of [ after the assignment does
not reveal anything about the value of h. However, [Par]l := [ * h?(Sign) does
not hold?, since there is variation of the output’s sign due to the existence of
both negative and positive even numbers. In order to avoid deceptive flows we
introduce a weaker notion of non-interference, which considers as public input
the set of all the elements sharing the same property 7. Hence, in the previous
example, the observable output for [ is the set of all the elements with the same
parity, e.g., if Par(l) = even then we check the sign of { 1% h? ‘ [ is even } which
is always unknown, since an even number can be both positive and negative,
while h? does not interfere with the final sign. Moreover, we consider also a
property ¢ € uco(p(V#)), modeling the private property that has not to be ob-
served by the attacker (1, p). This notion, denoted (n)P(¢ ~p), is called abstract
non-interference (ANI) and is defined in Table 1. So for example the property
(id)l := I*h?(Sign ~{Sign) is satisfied, since the public result’s sign do not depend
on the private input sign, which is kept secret.

Note that [id] P(id) models exactly (standard) non-interference. Moreover, we
have that abstract non-interference is a weakening of both standard and narrow
non-interference: [id|P(id) = (n)P(¢ ~p) and [n]P(p) = (n)P(¢ ~p), while
standard non-interference is not stronger than the narrow version, due to de-
ceptive flows. In [9], two methods are provided for deriving the most concrete
output observation for a program, given the input one, for both NNI and ANI.
In particular the idea is to collect in the same abstract object all the elements

def

3 Here Par d:Qf{"l',ey,od, 1} and Sign={T,0+,—, L}.



The PER Model of Abstract Non-interference 177

that, if distinguished, would generate a visible flow. These most concrete output
observations, unable to get information from the program P observing 7 in in-
put, are, respectively, denoted [n][P](id) and (n)[P](¢ ~]id), both in uco(p(V*)).
Hence, if for instance P = [ := |I| * Sign(h) (where | - | is the absolute value), we
note that each value n has to be abstracted together with its opposite —n, in
order not to generate visible flows, hence the most concrete harmless attacker
can at most observe the absolute value Abs, i.e., [Abs][P](id) = Abs.

3.2 PER Model

The semantic approach described above has also been equivalently formalized
in [18], by using partial equivalence relations (PER) to model dependencies in
programs. As we noted above, the problem of non-interference can be seen as
absence of dependencies among data, where the meaning of dependency is given
in [3]. The idea behind this characterization consists in interpreting security
types as partial equivalence relations. In particular the type H is interpreted by
using the equivalence relation All, and L by using the relation Id. The intuition
is that All and Id model, respectively, that the user has no access to the high
information and has full access to the low information. This perspective can
simply be generalized to multilevel security problems.

In order to use this model in the security framework we need to combine
equivalence relations on simple domains to construct new relations on more
complex domains, in particular product spaces and function spaces. For the
latter, it turns out to be natural to generalise slightly to consider partial equiv-
alence relations, that is, relations which are symmetric and transitive but not
necessarily reflexive. Let Per(D) be the set of partial equivalence relations on
D. Given P € Per(D) and Q € Per(E) we define (P — Q) € Per(D — E) and
(P x Q) € Per(D x E) as follows:

1. f(P=Qg & Vo, eD.zPa’ = f(x)Qg(z)
2. (z,y) PxQ(z',y) & zPa’ A yQy'.

In general, for P € Per(D) and « € D, we write 2 : P to mean z P z. In particular,
if f (P—-Q) f, we write f : P — Q. Note that P — Q will not, in general, be
reflexive, even when P and Q are (for example, All — Id relates only functions
which are equal and constant).

At this point, we can formalize security in this model.

Definition 7. [18] A program P is said to be secure iff Vs, t . (s%, s*) All x Id
(1) = [P](s) All x Id [P](t), or, more concisely: [P] : All x Id — All x Id.

4 PER Model Versus Abstract Non-interference

The correspondence existing between ucos and equivalence relations suggests
that we can define particular notions of abstract non-interference where the clo-
sures modeling properties are all partitioning, i.e., correspond exactly to equiv-



178 S. Hunt and I. Mastroeni

alence relations. As shown below, for NNI this specialisation makes essentially
no difference, while for ANI it does involve a loss of generality.

First of all we introduce the natural generalization of the PER model pro-
vided in [18]. Given a program P and relations Q,W € Eq(V), we say that P is
(Q, Wy-secure iff [P] : Q — W. Clearly, P is secure (Definition 7) just when it is
(All x Id, All x Id)-secure.

4.1 PER Model vs NNI
Proposition 8. Let P be a deterministic program. Let n, p € uco(p(V®)). Then:

1. P (p) iff [P] : All X Rel" — All X Rel®
2. [l P(p) ff UI(m]P(I(p))

Proof. Part 1 is immediate from the definitions. Part 2 follows from part 1 by
part 2 of Corollary 3. O

Since every equivalence relation R is represented exactly by the uco Clo®, this
result shows that precisely the same class of NNI properties can be expressed
using equivalence relations or partitioning closures as using arbitrary ucos. In
particular, we may define NNI directly in terms of equivalence relations:

Definition 9. Let P be a program. Let R,S € Eq(VY). Then P is said to be
(R, 8)-NSecret, written [R1P(S), iff [P] : All x R — All x 8.

By Proposition 8, all NNI properties may be written in this form.

4.2 PER Model vs ANI

To compare the relative expressive power of the PER model and the general no-
tion of abstract non-interference using arbitrary ucos, it is helpful to consider the
extension of a relation on C to a relation on subsets of C. The basic construction
is that used in defining Plotkin’s powerdomain.

Definition 10. Let R be a binary relation on a set C. Then the extension of R
to p(C) is the relation PR] C p(C) x p(C) such that X PR]Y iff

Vee X.JyeY . 2Ry andVyeY. dx € X .z Ry

For a partitioning closure, the extension of its corresponding equivalence relation
from C to p(C) has a particularly simple characterisation:

Proposition 11. Let C be any set and let n € uco(p(C)) be partitioning. Then
P[Rel"] =Ky, that is: X P[Rel'l Y < n(X)=n(Y).

Corollary 12. Let n,¢ € uco(p(V®)) and let p € uco(p(V)). If p is partition-
ing, then (n)P(¢ ~p) iff

VX1, Xy € VR/Rel’, VY € V2/Rel” . [P](X1,Y) P[All x Rel’] [P](X2,Y)



The PER Model of Abstract Non-interference 179

The following proposition shows that, in contrast to NNI, there are ANI
properties which cannot be expressed using the partitioning closures alone.

Proposition 13. Let P be a program, letn, ¢ € uco(p(V*)) and p € uco(p(VH)).
Then (II(n))P(I1(¢) ~II(p)) = (n)P(¢ ~|p) but, in general, the reverse implica-
tion does not hold.

The following example shows where the difference between the two notions lies.

Example 14. Consider the following program fragment:

PE if h=0then!:=1 mod 6+ 2;else if | < 0 then [ := 2 else [ := T;

def

with security typing h : H, I : L. Consider n = {T,27,27Z + 1, L} for parity,
¢ ={T,0+,—, L} for sign, and p = Int of intervals [5], in uco(p(Z)). Note that,
since each integer number is in particular an interval, we have that IT(Int) = id,
distinguishing all the integer values, while II(n) = n and II(¢) = ¢. Let us see
what happens in abstract non-interference. Consider n(l) = 2Z, then if ¢(h) =
0+ we have that p([P](¢(h),n(1))") = p({2,4,6,7}) = [2,7]. While, if ¢(h) = —,
then we have p([P](¢(h),n(1))*) = p({2,7}) = [2,7]. On the other hand, if n(l) =
22+ 1 and ¢(h) = 0+, then p([P[(4(h),n(1))") = p({2,3,5,7}) = [2,7], and
when (k) = — we have p([P)(6(h), n(1))") = p({2,7}) = [2,7]. So (m)P(6 ~10)
holds. Consider now II(p) = id. It is clear that if we substitute above p with id,
then we have that (I1(n))P(II(¢) ~|II(p)) does not hold. O

Hence, ANI with ucos is a more precise notion whenever we have to deal with sets
of values, instead of with singletons. This may be particularly useful, for example,
for non-deterministic systems, where the denotational semantics returns a set of
states as output.

5 Deriving Attacker Models by Abstract Interpretation

In this section we consider the PER model of NNI and use it to derive simple,
constructive characterisations of various classes of attacker considered in [9]. For
example, suppose given a class of attackers whose power to observe low security
inputs is given by R: for a given program P, what is the most powerful attacker
in the class (with respect to observation of low security outputs), for which P is
secure? There are two cases of principal interest:

1. Most powerful attacker: given R € Eq(V"), is there a smallest S € Eq(V*)
such that [R]P(S)? Or, given S € Eq(V*), is there a greatest R € Eq(V") such
that [R]P(S)?

2. Fiz point (canonical) attacker: is there a smallest R such that [R]P(R)?

The particular interest of fix point attackers is that, in many situations, the

power of the attacker to observe low security data may be independent of the
data’s role as input or output.



180 S. Hunt and I. Mastroeni

5.1 Deriving Unconstrained Attackers

In this section, given a semantics f and an input [output] equivalence relation R
[S], we show how we can derive the most concrete [abstract] output [input] rela-
tion S [R] that makes the program satisfy f : R — S. Consider an arbitrary func-
tion f : A — B between sets. As is well known, any such f lifts to an adjunction
between p(A) and p(B), in the form of f’s direct and inverse image mappings. It
turns out that f can be lifted to an adjunction (Eq(A), £ Eq(B)) between
lattices of equivalence relations in a similar way. In this section we detail the
construction of f and f 1 and we go onto show how they are used to derive
attackers.

Given an output relation S it is always possible to find a good candidate for
input relation R, essentially by simply imposing the condition f : R — S. In other
words we can always define the equivalence relation f~1(8) in the following way:

v fH8) yiff f(2) S f(y) (1)

This is the key definition in [14] and is also exactly the idea used in [22] on the
trace semantics, namely we collect together all the elements whose semantics are
equivalent in the output observation.*

Lemma 15. ffl(s) is an equivalence relation and f :R —- S < RLC ffl(S).

Note that for each S we have ffl(S) = Ky. This means that the input relation
has, at least, to identify all the elements with the same image under f. This
observation makes the definition of f a bit more complicated. Indeed, given R,
we would like to find the best relation S which satisfies f : R — S. A naive
construction leads to the function f : Rel(C) — Rel(C), as follows:

y f(R) Y iff Gz,2’ . xRa’ and f(z) =y, f(z')=y V y=1Y)

Note that the disjunct y = y' guarantees that the relation is reflexive. However,
f(R) may fail to be transitive, as we can see in the following example.

Ezample 16. Consider a domain C' = {1,2,3,4,5,6} and a function f such that
f) =1, f(3) = f(4) = 2, f(2) = f(6) = 5 and f(5) = 3, and suppose that
R = {[1,3],[2,4],5,6]}, then we would have 1f(R)2, 2f(R)5 and 5f(R)3, but for
example 1-f(R)3.

The problem is that f is not injective (Ky # Id) and therefore, in the example
the fact that f(3) = f(4) while R distinguishes 3 from 4, creates the problems.

Proposition 17. Consider f : C' — C and R € Eq(C). If Ky C R, then f(R) is
an equivalence relation, if Ky =R, then f(R) = Id.

We would like to modify f in order to guarantee that f(R) is always an
equivalence relation. For this reason we prove the following result.

4 This transformation corresponds to the quotient of the concrete semantic domain
with respect to the property Clo® [4].



The PER Model of Abstract Non-interference 181
Fig. 2. Example of application of f and of ffl

Proposition 18. Let f: A — B. Then f_l : Eq(B) — Eq(A) is co-additive.

This means that ]?71 is the right adjoint of a Galois connection. Thus we can
define the following function, which is its left adjoint [5]:

fe=n{arc i@} 2)

The co-additivity of ffl guarantees that the element uniquely exists. We ma-
nipulate this set obtaining that f(R) =[17{ Q ’x Ry = f(x)Q f(y) }.

Theorem 19. f(R) = f(RUKs) = T(f(R)).

This means that, when R J K¢, then f(R) = f(R)
By construction, the following result is straightforward:

Proposition 20. (Eq(A ) f f , Eq(B)) is a Galois connection. That is, for all
R€ Hg(A),S € Eq(B): [R)CS<RL [1(S).

Combining Proposition 20 with Lemma 15, gives:
Theorem 21. f:R—S < f(R)CS < RLC f(9).

This result shows which is the role of the two operators fand ffl in the whole
construction. Indeed, by Theorem 21 we have that f satisfies non-interference,
namely f:R— S, iff f ( ) C 8. This means that f characterizes exactly the most
concrete output relation that guarantees non-interference for f, fixed the input
relation. By the adjunction relation we can also say that f : R — SiffR C f~1(8).
Thus f_l characterizes the most abstract input relation that guarantees non-
interference for f, fixed the output relation. Indeed, as expected, we can always
abstract the output observation and we can always concretize the input one.
Note that [9] misses exactly a construction of the input observation that makes
a program secure, given the output one, while this is possible in this context
since we are considering equivalence relations. An example is provided in Fig. 2.

5.2 Fix Point Attackers

In this section we look for the characterisation of attackers that observe the same
property both in input and in output. The idea is to consider the fix points of



182 S. Hunt and I. Mastroeni

Fig. 3. Examples of fix points

the unconstrained attackers derived above. Unfortunately, the most concrete and
the most abstract non trivial (different from top and identity) attacker models
do not exist as can be also verified in Fig. 3, therefore we can use the fix point
iteration simply as a possible systematic construction of canonical attackers.

Fiz point of f_l. Note that f_l(T) = T, this means that the interesting case,
if it exists, is the least fix point of fil starting from Id. We know that ffl is
monotone (Prop. 20), therefore the least fix point exists and can be obtained as
the limit of the iterative application of ffl starting from Id, the bottom of the
lattice of relations [6,20].

Fiz point of f. Note that f([d) = Id, this means that we can find, if it exists,
only the greatest fix point of f starting from T. We know that f is monotone
(Prop. 20), therefore the greatest fix point exists and can be obtained as the

limit of the iterative application of fstarting from the element T of the lattice
of relations [6,20].

5.3 Deriving Contrained Attackers

In this section, we consider attackers which are unable to observe private data,
and which can only observe properties of public data. In this way we derive
attackers for abstract non-interference [9], where the attackers are modeled by
equivalence relations instead of by closure operators.

Most Powerful Attackers. We can use fto construct the most powerful attacker.
Firstly, note that it follows directly from the definitions that [R]P(S) iff ma o [P] :
All x R — 8°. The following result is then a straightforward consequence of
Theorem 21:

Proposition 22. Let P be a program and let R € Eq(V*). Then the smallest S

~

such that [R]P(S) is f(All X R), where [ = my